Confinement

N0

CS@ Steven M. Bellovin __ November 10, 2015 ___ 1

CU

Security Architecture

e We've been looking at how particular applications are secured

e We need to secure not just a few particular applications, but many
applications, running on separate machines

e We need a few more primitives first

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 2

CU

Confining an Application

e For Web security, we used OS permissions to protect the system
against compromise via a compromised Web server

e Suppose we want to isolate the Web server still further

e More precisely, we want to limit the Web server to a small subset of
the system’s resources

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 3

CU

Rationale

e We wish to run powerful, complex applications that we do not
completely trust

e Neither Unix nor Windows file permissions are flexible enough to do
what we want

e There are other resources besides files that need to be protected

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 4

CU

Couldn’t We Use ACLs?

e ACL usually do not have permissions that say “don’t allow access to
anything else”

e We'd have to find and change the protections of every file on the
system that was writable/readable/searchable by other

e \We’d have to ensure that no other such files were created
e This is all possible but difficult

e More seriously, it is not high assurance

CSGL;7 Steven M. Bellovin __ November 10,2015 ___ 5

CU

Other Resources

e What other resources need to be protected?
e CPU time

e Memory, real and virtual

e Disk space

e Network identity

e Network access rights

e More...

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 6

CU

Some Are Easy

e Operating systems already regulate access to some resources

e Unix examples: setrlimit (), file system quotas

CS@ Steven M. Bellovin __ November 10,2015 ___ 7

CU

Network Identity and Access Rights

e A machine has an IP address

e A compromised application can use this address to exploit
address-based access control

e |f nothing else, it can confuse intrusion detection systems

CS@ Steven M. Bellovin __ November 10, 2015 __ 8

CU

Bypassing File Permissions

e Suppose the attacker gains root privileges
e This permits overriding file permissions

e Also allows evasion of other resource limits, plus changes to network
identity
== Change the IP address and hide from the system administrator!

CS@ Steven M. Bellovin __ November 10, 2015 ___ 9

CU

Goals

e Security

e High assurance

e Simple setup

e (General-purpose mechanism
e Available to all applications

e We can’t get them all. ..

CSGL;7 Steven M. Bellovin __ November 10,2015 __ 10

CU

Change Root: chroot ()

e Oldest Unix isolation mechanism
e Make a process believe that some subtree is the entire file system
e File outside of this subtree simply don’t exist

e Sounds good, but...

CS@ Steven M. Bellovin __ November 10, 2015 __ 11

CU

Chroot

localtime sandbox

CS@ Steven M. Bellovin __ November 10,2015 __ 12

CU

Limitations of Chroot

e Only root can invoke it. (Why?)
e Setting up minimum necessary environment can be painful

e The program to execute generally needs to live within the subtree,
where it's exposed

e Still vulnerable to root compromise

e Doesn'’t protect network identity

CSGL;7 Steven M. Bellovin __ November 10,2015 ___ 13

CU

Root versus Chroot

e Suppose an ordinary user could use chroot ()

e Create a link to the su command

e Create /etc and /etc/passwd with a known root password
e Create links to any files you want to read or write

e Besides, root can escape from chroot ()

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 14

CU

Escaping Chroot

e What is the current directory? If it's not under the chroot () tree, try
chdir("../../..")

e Better escape: create device files
e On Unix, all (non-network) devices have filenames
e Even physical memory has a filename

e Create a physical memory device, open it, and change the kernel
data structures to remove the restriction

e Create a disk device, and mount a file system on it. Then chroot ()
to the real root

CSGL;7 Steven M. Bellovin __ November 10,2015 ___ 15

CU

Trying Chroot

mkdir /usr/sandbox /usr/sandbox/bin
cp /bin/sh /usr/sandbox/bin/sh

chroot /usr/sandbox /bin/sh

chroot: /bin/sh: Exec format error

mkdir /usr/sandbox/libexec

cp /libexec/ld.elf_so /usr/sandbox/libexec
chroot /usr/sandbox /bin/sh

Shared object "libc.so.1l2" not found

mkdir /usr/sandbox/1lib

cp /lib/libc.so.12 /usr/sandbox/1ib
chroot /usr/sandbox /bin/sh

Shared object "libedit.so.2" not found

CS@ Steven M. Bellovin __ November 10,2015 ___ 16

CU

Trying Chroot (Continued)

cp /lib/libedit.so.2 /usr/sandbox/lib
chroot /usr/sandbox /bin/sh

Shared object "libtermcap.so.0" not found

cp /lib/libtermcap.so.0 /usr/sandbox/1lib
chroot /usr/sandbox /bin/sh

1s
ls: not found

echo sandbox >/Escape

°D

1s -1 /usr/sandbox
total 4

drwxr—-xr—-x 2 root
—-rw—-r——r—— 1 root
drwxr—-xr—-x 2 root
drwxr—-xr—-x 2 root

CS¥

wheel
wheel
wheel
wheel

512

512
512

Nov
Nov
Nov
Nov

CU

N ==

1

21
22
272
22

:50 bin

:31 Escape
:31 1lib

:30 libexec

Steven M. Bellovin __ November 10,2015 ___ 17

Summary of Chroot

e It's a good, but imperfect means of restricting file access
e [t's fairly useless against root
e |t doesn’t provide other sorts of isolation

e Setting up a usable environment is more work than you might think

CSGL;7 Steven M. Bellovin __ November 10,2015 __ 18

CU

FreeBSD “Jail”

e Like chroot () on steroids

e Assign a separate network identity to a jail partition
e Restrict root’s abilities within a jail

e Intended for nearly-complete system emulation

e Network interactions with main system’s daemons

CSGL;7 Steven M. Bellovin __ November 10,2015 __ 19

CU

Sandboxes

e \ery restricted environment, especially for network daemons
e Assume that the daemon will do anything
e Example: Janus traps each system call and validates it against policy

e Can limit I/O to certain paths

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 20

CU

The Java Virtual Machine

e Java executables contain byte code, not machine language
e Java interpreter can enforce certain restrictions

e Java language prevents certain dangerous constructs and operations
(unlike, for example, C)

e Intheory, it's safe enough that web browsers can download byte code
from arbitrary web sites

e But that’s in theory...

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 21

CU

Is the JVM Secure?

e Heavy dependency on the semantics of the Java language

e The byte code verifier ensures that the code corresponds only to
valid Java

e The class loader ensures that arguments to methods match properly
e \ery complex process—not high assurance

e Bugs have been found, but they'’re fairly subtle

e But—there have been buffer overflows in the C support library

e The support library, in fact, is large, written in C, and quite buggy

e Currently, the JVM is considered to be very insecure

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 22

CU

Using the JVM For Servers

e The dangers come from untrusted executables

e |f you write your applications in Java, you don’t have to worry about
that
= Android apps are all written in Java (Note that Android has other
security issues)

e The strict type system, the array bounds-checking, and the (optional)
file access control all protect you from your own bugs

e Java is a very secure language for applications (if, of course, you're
not too fussy about performance)

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 23

CU

Virtual Machines

e Give the application an entire “machine”, down to the (virtual) bare
silicon

e Run an entire operating system on this
e Run the untrusted application on that OS

e |t can be very safe—but not perfect

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 24

CU

How VMs Work

e Recall the hardware access control mechanisms: privileged
operations and memory protection

e Run the guest operating system unprivileged

e Any time the guest OS issues a privileged operation, it traps to the
virtual machine monitor (VMM) (sometimes known as a hypervisor)

e The VMM emulates the operation. For example, an attempt at disk
/0O is mapped to I/O to a real file that represents the virtual disk

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 25

CU

Virtual Devices

e Virtual disks (or part or all of a real disk)
e Virtual screens, keyboards, and mice
e Virtual Ethernets

e Other virtual devices as needed

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 26

CU

There Used to be Virtual Card Readers
and Virtal Card Punches

’::rJﬂ 29

.I l'lncumu
‘?';‘";nuouJuuujuuoﬂunauunnaul

BEERBENNINUSENNAR

1IIIIt1|1I1111|1111

|

|
I g2 222222222 22222222222212222122220222202220000 |
¥333319033333323333333133

rATEwiNT |
ol |8

.W‘UUU]—QUGOUlOUL

I‘fll)r‘)l)l.,'\)

l'}llil

lLU\JJJJ

Illlilllllltlllllwni:‘. BRI

"33333333333.3]\
|

14
' 5

lll&llii#di-ﬂ»wi

| i444A4 44
\
1

\
55555}5:5'5 3 SB35 555595556555555 B 5151955975 5015183 <R [R 5555555 5]

B8 E66EFE56S

F444444 4444

9555

| i
-;BEEEEESE'G&BEG'

g
| 1
|

TJ;J]F“T'I“

lssssaa UL NE
{oi9gsgisPsss

jl‘z IBEULVE
I 530457

g8

(Photo: Arnold Reinhold,

.JHJM.I?]?I?H

,'38382343 38

!
;ai
1

a8 8

https://en.wikipedia.org/wiki/File:FortranCardPROJ039.agr. jpg)

CS¥
CU

Steven M. Bellovin __ November 10, 2015 ___ 27

Virtual Machine Security

e \ry strong isolation
e \ery high overhead...
e Must set up and administer an entire OS

== Guest copies of Microsoft Windows require just as many patches as
do native copies

e Performance can be bad, though some hardware architectures have
special instructions to improve VM performance

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 28

CU

Using Virtual Machines

e Great for testing OS changes
e (reat for student use
e Internet hosting companies

e Can use them for executing suspected viruses and worms—but some
viruses detect the presence of the VMM and hide

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 29

CU

Interacting with a Virtual Machine

e Often don’t want perfect isolation.
e Example: cut-and-paste between windows

e Performance can be dramatically enhanced if the guest OS signals
the VMM

e Example: add a virtual “graphics” driver that calls the VMM, via the
equivalent of a system call

CS@ Steven M. Bellovin __ November 10, 2015 ___ 30

CU

Calling the VMM

e Need an analog to a system call (sometimes known as a hypercall)

e Use some instruction that will cause a trap—»but not an instruction
used by a guest OS

e Example: IBM’s original VM system relied on an instruction used only
to run hardware diagnostics; never used by a real OS

e Can you run a virtual VMM? Sometimes. ..

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 31

CU

Limitations of Virtual Machines

e They can be too real
e Would you let your enemy put a machine inside your data center?
e VMs can spread viruses, launch DoS attacks, etc.

e VMs require just as much care, administration, and monitoring as do
real machines

¢ |In many situations, they represent an economic mechanism rather
than a security mechanism

e (Save on power, cooling, etc.)

e But—may be less painful when wiping the disk and starting over

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 32

CU

The MacOS App Sandbox

e Requested permissions are specified at compile time

e Permissions (and the program) are part of a digitally signed object;
system can verify the signature at execution time

e Fairly simple set of permissions to allow access to certain files
e App cannot request other files outside of its sandbox directory

= Programs sold via Apple’s App Store must use sandboxing

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 33

CU

v App Sandbox

Netwaork:

Hardware:

App Data:

File Access:

App Permissions

Incoming Connections {Server)
Dutgoing Connections (Client)

Camera
Microphone
USB
Printing

Contacts
Location

Calendar

Type

User Selected File
Downloads Folder
Pictures Folder
Music Folder
Movies Folder

Steps: v Add the "App Sandbox" entitler

CS¥

Permission & Access

None
None
None
None

None

i

&
&
&
&

There are other
permissions related to
Apple’s online services,
e.g., to permit in-app
purchases or to be part of
their “Game Center”.

Steven M. Bellovin __ November 10, 2015 ___ 34

CU

HTML5 Sandboxing

e HTML5 allows IFRAMEs to be sandboxed:
e Plugins, applets, etc., are disabled
e Cookies aren’t shared with the sandbox

e No pop-ups, new browser windows, etc.

CS@ Steven M. Bellovin __ November 10, 2015 __ 35

CU

Windows Sandboxing

e Some apps (e.g., Internet Explorer, Adobe Acrobat Reader) split into
trusted/untrusted halves; the untrusted half is sandboxed

e Many add-on programs to run arbitrary applications in a sandbox

e “Metro” apps on Windows 8 are sandboxed

CSGL;7 Steven M. Bellovin __ November 10, 2015 __ 36

CU

Other Isolation Mechanisms

e Light-weight VM systems, such as Solaris Zones

e Domain and type enforcement: limit file accesses by each executable
e Systrace (on some BSD operating systems) is similar

e Many options on Linux

e Sub-operating system: permission overlay on top of file system,
based on subUIDs

e All require fairly complex permission-setting

CSGL;7 Steven M. Bellovin __ November 10, 2015 __ 37

CU

The Limits of Isolation

e All of the mechanisms we’ve described are complex (but canned
scripts can help)

e Older ones typically require root privileges to set up and often to
invoke

e As a consequence, they’re useful for complex system designs, but not
for general application isolation

e Newer ones are better, but still very complex

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 38

CU

Covert Channels

e We can block ordinary file accesses and network communication
e Are there other ways to leak information?

e Yes—covert channels: mechanisms for communication that don’t use
“normal” communications channels

e Very important issue in a MAC world

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 39

CU

MAC and Covert Channels

e One goal of MAC is to prevent leakage of information between a
high-security process and a low-security process

e It's (relatively) easy to close the explicit communication channels,
such as shared files or network connections

e There are more subtle ways to communicate

e Two types: storage channels and timing channels

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 40

CU

Storage Channels

e Modulate some shared resource
e Example: create and delete files in a shared directory
e The files themselves need not be readable

e MAC systems often have per-level and/or per-user /tmp directories, to
help avoid this problem

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 41

CU

Timing Channels

e Modulate system timing in detectable way
e Example: do heavy disk I/O or refrain

e Receiver times how long it takes to do I/O operations

CS@ Steven M. Bellovin __ November 10, 2015 ___ 42

CU

The Password-Checking Channel

e An old operating system (Tenex, for the PDP-10) checked (unhashed)
passwords one byte at a time.

e |t returned a failure indication as soon as a byte didn’'t match

e Locate the password overlapping the end of virtual memory; ask the
OS to check it

e |f the first byte was wrong, it would return “fail”.

e |f the byte was right, it would try to fetch the next byte, but take a
segmentation fault because it was past the edge

e Repeat as needed

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 43

CU

Falling Off the Edge of the Earth

CS@ Steven M. Bellovin __ November 10, 2015 ___ 44

CU

Defeating Covert Channels

e One approach—find them and eliminate them

e Bandwidth-limit them—cap the rate at which certain operations can
be done

e Add noise to the channel

CS@ Steven M. Bellovin __ November 10, 2015 ___ 45

CU

Defense Limits

e They're hard to find
e Will bandwidth limits interfere with legitimate use?

e Shannon showed that noise can’t completely block a channel, just
reduce its bandwidth

CSGL;7 Steven M. Bellovin __ November 10, 2015 ___ 46

CU

