Access Control
Security Begins on the Host

- Even without a network, hosts must enforce the CIA trilogy
- Something on the host — the operating system aided by the hardware — must provide those guarantees
Access Control

- Hardware
- Software
 - Operating systems
 - Databases
 - Other multi-access programs
- Distributed
Hardware

- What is the minimum necessary?
- What do other mechanisms buy us?
Minimum Functionality

- Protect the OS from applications
- Protect applications from each other
- Change state from application to OS
- Timer interrupt
Why a Timer?

- Availability is a security feature
- Must prevent uncooperative applications from hogging CPU
- Not going to discuss this more here, but it’s a major topic in W4118 (Operating Systems)
Historical Mechanisms

- Single privileged mode bit — restrict ability to execute certain instructions
- Memory protection
- Interrupts — hardware and software — cause state transition
What Are Privileged Instructions?

- Ability to do I/O without the OS’s intervention — allowing that could bypass file permission checking
- Ability to manipulate timers
- Ability to access other programs’ memory without OS intervention
Example: IBM System/360 Mainframe

- Designed in the early 1960s
- Much of the architecture still in use...
- 4-bit protection key associated with each 4K block of memory, plus read-protect bit
- Single “supervisor mode” bit
- 4-bit state key of 0 can write to anything
- But — operating systems of that time didn’t use the hardware to its full capabilities
Memory-Mapped Control

- On some machines, privileged operations work by memory access
- If applications have no access to such memory, they can’t do sensitive things
- But — must have way to enter privileged state
Multics

- Virtual memory
- "Ring" structure — 8 different privilege levels (i386 has rings, too)
- OS could use rings 0-3; applications could use 4-7.
- (Original design had 64 rings!)
- Each ring is protected against higher-numbered rings
- Special form of subroutine call to cross rings
- Most of the OS didn’t run in Ring 0
What is the Advantage of Rings?

- A single bit is theoretically sufficient
- Assurance!
- Don’t need to trust all parts of the system equally
- “Principle of Least Privilege”
Assurance

- How do you *know* something is secure
- Much harder to provide later than features
- A *trustable* secure system has to be designed that way from the beginning: designed, document, coded, and tested — and maybe proved
Underlying Principles of Privilege

- Two basic approaches to privilege: identity and attribute
- Hardware protection is *attribute*: the state of various registers controls what can and cannot be done
- Easier to manage in a single system
What is the role of the OS?

• Protect itself
• Separate different applications
• More?
Operating Systems and Hardware

- The hardware provides the minimum functionality
- The OS has to provide its own services on top of that
- Must manage access to I/O devices as well
What Protections do Operating Systems Provide?

- User authentication (why?)
- File protection
- Process protection
- Resource scheduling (CPU, RAM, disk space, etc)
User Authentication

- (Much more on this later)
- Why authenticate users?
- Most operating system privileges are granted by identity, not attributes
- Procedure:
 - Authenticate user
 - Grant access based on userid
File Permissions

• Besides user authentication, the most visible aspect of OS security
• Read protection — provide confidentiality
• Write protection — provide integrity protection
• Other permissions as well
Classical Unix File Permissions

- All files have “owners”
- All files belong to a “group”
- Users, when logged in, have one userid and several groupids.
- 3 sets of 3 bits: read, write, execute, for user, group, other
- (512 possible settings. Do they all make sense?)
- Written rwxrwxrwx
- 111 101 001: User has read/write/exec; group has read/exec; other has exec-only
- Some counter-intuitive settings are very useful
Permission-Checking Algorithm

if curr_user.uid == file.uid
 check_owner_permissions();
else if curr_user.gid == file.gid
 check_group_permissions();
else
 check_other_permissions();
fi

Note the else clauses — if you own a file, “group” and “other” permissions aren’t checked
Execute Permission

• Why is it separate from "read"?
• To permit only execution
• Cannot copy the file
•Readable only by the OS, for specific purposes
Directory Permissions

- “write”: create a file in the directory
- “read”: list the directory
- “execute”: trace a path through a directory
$ id
uid=54047(smb) gid=54047(smb) groups=0(wheel),3(sys),54047(smb)

$ ls -l not_me
----r--r-- 1 smb wheel 29 Sep 12 01:35 not_me

$ cat not_me

cat: not_me: Permission denied

I own the file but don’t have read permission on it
Example: Directory Permissions

$ ls -ld oddball
dr--r--r-- 2 smb wheel 512 Sep 12 01:36 oddball
$ ls oddball
cannot get at
$ ls -l oddball
ls: cannot get at: Permission denied
$ cat oddball/cannot_get_at
cat: oddball/cannot_get_at: Permission denied

I can read the directory, but not trace a path through it to oddball/cannot_get_at
Deleting Files

- What permissions are needed to delete files?
- On Unix, you need write permission on the parent directory
- You can delete files that you can’t write. You can also write to files that you can neither create nor delete
- Other systems make this choice differently
Historical Note

- Unix has *never* been fond of asking “do you really mean that?”
- That said, at least as long ago as February 1973 the original Bell Labs Unix `rm` command prompted if you tried to delete a file you couldn’t write
- In other words, the Unix model is philosophically correct but perhaps incorrect from a human factors perspective
Access Control Lists

• 9-bit model not always flexible enough
• Many systems (Multics, Windows XP and later, Solaris, some Linux) have more general Access Control Lists
• ACLs are explicit lists of permissions for different parties
• Wildcards are often used
Sample ACL

smb.* rwx
4187-ta.* rwx
*.faculty rx
**. x

Users “smb” and ‘4187-ta” have read/write/execute permission. Anyone in group “faculty” can read or execute the file. Others can only execute it.
Order is Significant

With this ACL:

. faculty rx
smb.* rwx
4187-ta.* rwx
. x

I would not have write access to the file
MacOS ACLs
Windows Vista ACLs
Linux/Solaris ACLs

$ getfacl acl.pdf
file: acl.pdf
owner: smb
group: smb
user::rw-
user:postfix:-w-
group::r--
group:landscape:--x
mask::rwx
other::r--

The standard Unix permissions are translated into ACL entries
Setting File Permissions

- Where do initial file permissions come from?
- Who can change file permissions?
Unix Initial File Permissions

- Unix uses “umask” — a set of bits to turn off when a program creates a file

- Example: if umask is 022 and a program tries to create a file with permissions 0666 (rw for user, group, and other), the actual permissions will be 0644.

- Default system umask setting has a great effect on system file security

- Set your own value in startup script; value inherited by child processes
Why Umask?

- Suppose files were always created with rw,r,r permissions
- What’s wrong with the application simply changing the file permissions after creating the file?
- Race conditions
Multics Initial File Permissions

- Directories contain “initial access control list” — values set by default for new files

- Common setting:

 smb.faculty rw
 *.sysdaemon r
 . -

- If group “sysdaemon” doesn’t have read permission, the file can’t be backed up!

- Linux and Solaris also have default ACLs for new files
MAC versus DAC

- Who has the right to set file permissions?
- Discretionary Access Control (DAC) — the file owner can set permissions
- Mandatory Access Control (MAC) — only the security officer can set permissions
- Enforce site security rules
- Note: viruses and other malware change DAC permissions, but not MAC permissions
Implementing MAC

• Often side-by-side with DAC: system has both
• Processes need to pass both sets of permissions to access files
• Or — can have a special ACL-changing attribute in an ACL:

  ```
  security_officer.wheel p
  ```
• But — can security_officer give him/herself privileges?
• In reality, MAC is often used for classification levels (next class), rather than ACLs
Privileged Users

- Root or Administrator can override file permissions
- This is a serious security risk — there is no protection if a privileged account has been compromised
- There is also no protection against a rogue superuser...
- Secure operating systems do not have the concept of superusers
Database Access Control

- Often have their own security mechanisms
- Permit user logins, just like operating systems
- Some have groups as well
- Permissions are according to database concepts: protect rows and columns
- Different types of operations: select, insert, update, delete, and more
Databases versus OS Security

- The database has many objects in a single OS file
- The OS can control access to the file
- The DBMS has to control access to objects within the file
- The set of database users is not the same as the set of OS users
Access Control Formalisms

- Access control can be modeled formally. What does this buy us?
- There are theorems that can be proved
- For example, if ACLs permit negation there are undecidable questions
Access Control Formalisms (cont.)

• For the general case:
• Model using a Turing machine.
• Turing machine enters a special state if the access control is faulty.
• Contradiction!