
Program Structure II

Steven M. Bellovin November 11, 2013 1



More Architecture — More on Email Security

• We want to secure email

• Generally, that requires crypto, which in turn requires protecting keys

• How shall we do that?

Steven M. Bellovin November 11, 2013 2



Standard Techniques

• Encrypt the private key with a user-typed passphrase

• Use special-purpose crypto hardware

• The latter is rarely available; we need to use the former, at least in
some cases

Steven M. Bellovin November 11, 2013 3



Where are Decryption and Signing Done?

• Gateway machine?

• End-user’s machine?

Steven M. Bellovin November 11, 2013 4



Signing at the Gateway

• Tempting target

• Hard for user to supply the key or the passphrase

• How does the gateway know who sent the mail?

• Best for organizational signatures

Steven M. Bellovin November 11, 2013 5



Decrypting at the Gateway

• Again, how are keys supplied?

• When is decryption done?

• Is the mail stored internally in the clear?

Steven M. Bellovin November 11, 2013 6



Signing Every Message

• Suppose we want to sign every message

• Do we prompt users for a passphrase on each email sent?

• Rather annoying — can we cache passphrases?

Steven M. Bellovin November 11, 2013 7



(Why Sign Everything?)

• Principle?

• Prevent false attribution?

• Anti-spam?

Steven M. Bellovin November 11, 2013 8



Caching Keys

• If we cache keys, they’re exposed to bugs in the mailer

• How risky are mailers?

• (How big are they?)

Steven M. Bellovin November 11, 2013 9



Some Mailer Sizes

Mailer KLOC
Thunderbird 6000
Evolution 2500

(extras) 2200
Claws-Mail 840
Pine 530
Mutt 288

Numbers are very imprecise. All of these mailers require many libraries,
especially the GUI mailers. (GTK+ is about 3,000,000 lines of code.)

Steven M. Bellovin November 11, 2013 10



(Why are Mailers So Big?)

• Mail formats are complex

– MIME

– Multilingual

– GUIs

• HTML rendering

• Other stuff bundled in (calendar, vCard, etc)

• Frequently include an editor

Steven M. Bellovin November 11, 2013 11



Why are Mailers Insecure?

• Size—security hole rates go up as the square of the code size

• Accept untrusted input

• Plenty of room for user error

Steven M. Bellovin November 11, 2013 12



Entrust our Keys to Mailers?

• They’re big and complicated

• They interact with lots of other programs

• They have long histories of security problems

• Handing them keys doesn’t sound like a great idea. . .

Steven M. Bellovin November 11, 2013 13



Outboard Key Manager

• Should we have a separate application to handle keys?

• How big are such applications?

• Can we trust them?

Steven M. Bellovin November 11, 2013 14



Key Managers

Component KLOC
GNOME Keyring 150
GNOME Keyring Manager 97
GPG 520
GPG2 737
pinentry 55

These aren’t exactly tiny, either. . .

Steven M. Bellovin November 11, 2013 15



Bug Rates

• How many bugs per 1,000 lines of code?

• Hard to measure

• Different types of software have different rates

• We can’t count bugs that aren’t found!

• That said. . .
Component Bugs/KLOC
Linux 2.6 Kernel .17
Commercial code 20–30

(Is that bug rate for Linux believable?)

• But — Microsoft claims that Vista and its components have had fewer
security bugs than the open source competition

Steven M. Bellovin November 11, 2013 16



Managing the Key Manager

• The mailer still tells the key manager what to decrypt or sign

• If the mailer is buggy, it can fool the key manager

• You don’t know what’s really being signed or decrypted

• (This all applies to crypto hardware solutions, too)

Steven M. Bellovin November 11, 2013 17



Pure Outboard Solution?

• Save inbound mail; manually decrypt it

• (Hand-carry it to an offline decryption machine?)

• Edit outbound mail separately; manually sign, then paste that into
mailer buffer

• (Hand-carry it from an offline encryption and signing machine?)

• Does this work?

Steven M. Bellovin November 11, 2013 18



It’s Too Inconvenient

• Most users won’t put up with this

• Result: very few signed messages

• Result: reluctance to receive inbound encrypted messages

• Does this give us worse security?

Steven M. Bellovin November 11, 2013 19



What Do We Do?

• There are no perfect solutions

• How disciplined are the users?

• How important is secure email?

• Can you have separate grades of keys?

• Who is your enemy?

Steven M. Bellovin November 11, 2013 20



Outboard Keys

• Despite the risks, outboard keys are still better

• Still simpler than the mailer

• Less risk of key theft

• Easier to add (secure) audit trail

Steven M. Bellovin November 11, 2013 21



Windows Vista and IE

• Web browsers have also been problematic

• Historically, Internet Explorer has been bad, but it’s been improving

• (IE 6 was horrid)

• (These days, Firefox seems to have twice as many security bugs as
IE.)

• IE 7 on Vista was a lot better; its successors are better still

• Why?

Steven M. Bellovin November 11, 2013 22



Protected Mode

• Run web browser with fewer privileges (exception: trusted sites can
have full privileges)

• Compromise of the browser does not result in compromise of (most)
user files

• (Plus — very rigorous development process, with a lot of emphasis
on security)

Steven M. Bellovin November 11, 2013 23



Components

• User Account Control (UAC)

• Mandatory Integrity Control (MIC)

• User Interface Privilege Isolation (UIPI)

Steven M. Bellovin November 11, 2013 24



User Account Control

• Eliminate need to log in as Administrator

• Even Administrator can run most applications without privilege —
they changed the privilege requirements for some operations

• Privilege can be raised as needed, with password entry. (Will users
make that decision correctly?)

• Users have found UAC very annoying

Steven M. Bellovin November 11, 2013 25



Mandatory Integrity Control

• Low-privilege processes cannot write to protected files

• Available levels: low, medium, high

• Similar to MAC

Steven M. Bellovin November 11, 2013 26



Bell-Lapdula and MIC

• Recall how Bell-Lapadula confidentiality mechanisms could be used
for integrity protection, by reversing labels

• MIC uses half of it: it’s really “no write down”

• MIC does not provide confidentiality protection

Steven M. Bellovin November 11, 2013 27



Privilege is Inherited

• The privilege level of a process is inherited by its children

• Children spawned by protected mode IE also run at Low privilege

• This blocks attacks by ActiveX, VBScript, etc.

Steven M. Bellovin November 11, 2013 28



Virtualization

• A lot of existing code wants to write files (cache, temporary files,
cookies, history, registry, etc.)

• A shim layer virtualizes these functions

• Files to be modified in Low mode are copied to the Low area; the
changes are made only to the copies

Steven M. Bellovin November 11, 2013 29



Why Virtualization?

• Legacy code and legacy design patterns

• Older programs were not intended to be sandboxed like this

• Virtualization layer makes it easy to convert

Steven M. Bellovin November 11, 2013 30



Gaining Privilege

• Sometimes, Low processes need to do things requiring privilege

• Special broker processes will perform such operations on request

• Brokers ask user consent before proceeding

• Is that reliable?

Steven M. Bellovin November 11, 2013 31



Trusting the User?

• Users can be tricked

• Many of today’s dialog boxes are useless

• From a W3C glossary Wiki:

Dialog box: A window in which resides a button labeled “OK”
and a variety of text and other content that users ignore.

Steven M. Bellovin November 11, 2013 32



Users Don’t Like It

• Some older applications break

• These were probably insecure to begin with

• But people are used to them

• Windows 7 has cut down on the prompts — but some say that makes
it less secure. Must security be annoying?

Steven M. Bellovin November 11, 2013 33



Lack of Confidentiality Protection

• Low mode malware can still read your files

• It appears possible for Low mode applications to export data

• But — full Bell-Lapadula confidentiality control is impractical

• Cookies are a special case — prevent (some) cross-site scripting
attacks

Steven M. Bellovin November 11, 2013 34



User Interface Privilege Isolation

• Prevents Low mode processes for sending certain messages to
higher-mode processes

• Blocks “shatter attack” (inject code into another process via Windows
messages)

• In essence, ACL for message-passing

Steven M. Bellovin November 11, 2013 35



What Has Microsoft Done?

• Separated Internet Explorer from Windows Explorer (i.e., restored the
distinction between net and desktop)

• (In the antitrust trial in 1998, Microsoft claimed they couldn’t separate
the two.)

• Used OS access controls to isolate browser

• Added more access controls

• Structural separation

Steven M. Bellovin November 11, 2013 36



Does it Work?

• IE7 on Vista is immune to the .ani file (animated cursor) attack (see
http://www.microsoft.com/technet/security/bulletin/

MS07-017.mspx)

• More precisely, the attack code couldn’t escape the Low mode jail

• Human interface attacks may still be an issue

• Other delivery mechanisms for .ani still work

Steven M. Bellovin November 11, 2013 37



Firefox vs. Chrome

• Chrome has a higher rate of security bugs reported than Firefox does

• (May reflect different amounts of attention)

• But—critical and high priority bug rates in Chrome are much lower
(and falling) than in Firefox

• Is this because of the privilege separation architecture in Chrome? It
still has holes, but they’re not nearly as serious.

• Firefox does not use privilege separation.

Steven M. Bellovin November 11, 2013 38



Securing a Browser

• User interface runs with normal privileges

• Retrieving and rendering pages done with low privileges

• What about separation between sites?

Steven M. Bellovin November 11, 2013 39



Process Separation

• Firefox runs as one process

• Chrome and IE 8 use a process per tab

+ Good for monitoring and controlling resource consumption

• Experimental Gazelle browser uses separate protection domains for
each web site contacted

– Protects against improper information flow between web sites

– Matches browser’s “same origin” principal

– In other words: implement browser security semantics via OS
security mechanisms

Steven M. Bellovin November 11, 2013 40



Summary

• Structural separation helps

• It’s not a panacea

• There are still challenging user interface issues

• Backwards compatibility is a problem

Steven M. Bellovin November 11, 2013 41


