
Secure Programming I

Steven M. Bellovin September 25, 2013 1

“If our software is buggy, what does
that say about its security?”

—Robert H. Morris

Steven M. Bellovin September 25, 2013 2

The Heart of the Problem

• For the typical programmer, crypto is the easy part

• There are standard solutions—and standard libraries—that can solve
most such problems for you

• But every program is different

• How you write the programs, and how you combine them, are the
most critical part of total system security

Steven M. Bellovin September 25, 2013 3

It’s All About the Software

• Most penetrations are due to buggy software

• Crypto won’t help there: bad software trumps good crypto

• Design matters, too

Steven M. Bellovin September 25, 2013 4

Three Separate Aspects

• Avoiding bugs

• Enforcing security

• Proper components and proper composition

Steven M. Bellovin September 25, 2013 5

Avoiding Bugs

• Many simple bugs can be exploited to cause security problems

• (The C language is a large part of the problem)

• Some of the trouble is compounded by poor specifications

Steven M. Bellovin September 25, 2013 6

Buffer Overflows

• Once responsible for about half of all security vulnerabilities; still a
serious problem

• Fundamental problems:

– Character strings in C are actually arrays of chars

– There is no array bounds checking done in C

• Attacker’s goal: overflow the array in a controlled fashion

Steven M. Bellovin September 25, 2013 7

Stack Frame

Return Address

r l d \0

o w o

h e l l

When a function is called, the
return address is stored on the
stack. Lower in memory, all local
variables are stored.

Steven M. Bellovin September 25, 2013 8

Buffer Overflow

Return Addressl o w \0

v e r f

a n o

i s

T h i s

If the array bounds are
exceeded, the return address
can be overwritten.

Steven M. Bellovin September 25, 2013 9

Buffer Overflow Attack

Return Address0x23 0x45 0x67 0x89

0x0D 0x0E 0x0F 0x10

0x09 0x0A 0x0B 0x0C

0x05 0x06 0x07 0x08

0x01 0x02 0x03 0x04

Put code in the early part of the
buffer, then change the return
address to point to it. When the
function exits, the injected code
is executed.

Steven M. Bellovin September 25, 2013 10

How Can Such Things Happen?

• C has lots of built-in functions that don’t check array bounds

• Programmers frequently don’t check, either

• The attacker supplies too-long input

Steven M. Bellovin September 25, 2013 11

Sample Problematic Code

char line[512];

...

gets(line);

That’s from the 4.3BSD fingerd command, exploited by the first Internet
Worm in 1988. . .

Steven M. Bellovin September 25, 2013 12

Bad versus Good

gets() fgets()
strcpy() strncpy()
strcat() strncat()
sprintf() snprintf()

Steven M. Bellovin September 25, 2013 13

Java vs. C

• Java checks array bounds

• C# checks array bounds

• Go checks array bounds

• More or less everything but C and C++ check. . .

Steven M. Bellovin September 25, 2013 14

Indirect Buffer Overflows

void f(char *s)

{
sprintf(s, "....");

}

void g()

{
char buf[128];

f(buf);

}

Function f doesn’t even know the size of the array!
Steven M. Bellovin September 25, 2013 15

Canaries

• Compiler trick—available for gcc and Microsoft compilers

• Insert a random “canary” value between the return address and the
rest of the stack frame

• Check if it’s intact before returning

• Any stack-smash attack will have to overwrite the canary to get to the
return address

• Use a different random value each time the program is executed

Steven M. Bellovin September 25, 2013 16

Overwriting a Canary

Return Address

Canary

l o w \0

v e r f

a n o

i s

T h i s

If the random canary is
overwritten, the program will
abort

Steven M. Bellovin September 25, 2013 17

ASLR: Address Space Layout Randomization

• Put stack at different random location each time program is executed

• Put heap at different random location as well

• Defeats attempts to address known locations

• But—makes debugging harder

Steven M. Bellovin September 25, 2013 18

Checking Code

• Look for suspect calls

• Use static checkers

• Use language feature like Perl’s “taint” mode

Steven M. Bellovin September 25, 2013 19

“Taint” Mode

• Optional feature in Perl

• Variables whose value comes from an untrusted source are marked
as “tainted”

• Variables whose value comes (in part) from a tainted variable are also
tainted

• Tainted values cannot be passed to sensitive routines

• Taints are removed via regular expression match; it is presumed that
the expression will sanitize the data, and remove anything dangerous

Steven M. Bellovin September 25, 2013 20

Stack versus Heap or BSS Storage

• Easiest to exploit if the buffer is on the stack

• Exploits for heap- or BSS-resident buffers are also possible, though
they’re harder

• Heap and BSS attacks not preventable with canaries (but there are
analogous techniques to protect malloc()-allocated storage)

• Some operating systems can make such memory pages
non-executable, which is a big help—but that breaks some
applications

Steven M. Bellovin September 25, 2013 21

Issues for the Attacker

• Finding vulnerable programs

• NUL bytes

• Uncertainty about addresses

Steven M. Bellovin September 25, 2013 22

Finding Vulnerable Programs

• Use nm and grep to spot use of dangerous routines

• Probe via very-long inputs

• Look at source or disassembed/decompiled code

Steven M. Bellovin September 25, 2013 23

NUL Bytes

• C strings can’t have embedded 0 bytes

• Some instructions do have 0 bytes, perhaps as part of an operand

• Solution: use different instruction sequence

Steven M. Bellovin September 25, 2013 24

Address Uncertainty

• Pad the evil instructions with NOPs

• This is called a landing zone or a NOP sled

• Set the return address to anywhere in the landing zone

Steven M. Bellovin September 25, 2013 25

Buffer Overflow: Summary

• You must check buffer lengths

• Where you can, use the safer library functions

• Write your own safe string library (there’s no commonly-available
standard)

• Use C++ and class String

• Use Java

• Use anything but raw C!

Steven M. Bellovin September 25, 2013 26

History of Buffer Overflows

• Long-recognized as a security issue

• First very visible exploit: Robert T. Morris’ Internet Worm, November
1988.

• Popularized by Aleph One in November 1996; serious threat since
then
+ The attack is theoretically difficult, but there are canned exploit kits
available

Steven M. Bellovin September 25, 2013 27

Hoare’s Turing Award Lecture, 1980

The first principle was security: . . . A consequence of this principle is that
every occurrence of every subscript of every subscripted variable was on
every occasion checked at run time against both the upper and the lower
declared bounds of the array. . . . I note with fear and horror that even in
1980, language designers and users have not learned this lesson. In any
respectable branch of engineering, failure to observe such elementary
precautions would have long been against the law.

Steven M. Bellovin September 25, 2013 28

Can We Afford Array-Bounds Checking?

• Of course—spend the Moore’s Law benefit on something besides
better video games

• Compiler optimizations often make the expense a lot less than you’d
think

• It’s hard to do in C, though, because of array vs. pointer semantics

• Things like *p++ = *q++ are hard to check efficiently

• A bounds-checking C compiler has been written, but it’s largely
unused

Steven M. Bellovin September 25, 2013 29

The Role of Specifications

• Contrast this:

“File names may be up to 1024 bytes long”

with

“File names may be up to 1024 bytes long; longer file names
must be rejected”

• The second form alerts the programmer to the real requirement

• Just as important, the second form alerts the tester to the
requirement

• Testing is done against requirements!

Steven M. Bellovin September 25, 2013 30

Format String Errors

• Suppose str is input to the program

• Wrong:
printf(str);

• Right:
printf("%s", str);

• Format strings can be dangerous. . .

• Note: other functions (i.e., syslog) also take format strings

Steven M. Bellovin September 25, 2013 31

What’s the Problem?

• Minor problem: metacharacters can confuse log files

• Here’s an embedded newline in a username

+ 12:34:56 Permission denied: user
12:34:xx Watch this crash!

• Bigger problem: %n

Steven M. Bellovin September 25, 2013 32

The %n Problem

• Rather complex; I won’t try to explain the details here

• Fundamental issue: %n writes to a variable the number of bytes
printed thus far

• The statement
printf("Hello\n%n", &cnt)

stores a 6 in integer variable cnt

• This can be used to overwrite memory locations

• Use tricks involving other references to (non-existent!) other
arguments to let you write to someplace “useful”

Steven M. Bellovin September 25, 2013 33

The Underlying Issues

• Problem 1: C has strange semantics

• The only defense is to know the language thoroughly

• You also have to know possible exploits

• There are integer overflow attacks, too

• Problem 2: programs don’t always validate their inputs

Steven M. Bellovin September 25, 2013 34

Input Validation

• Trust nothing supplied by the user

• Must define inputs before they can be checked

• “A program whose behavior has not been specified cannot be buggy,
only surprising.”

• Example: is a newline a valid character in a username?

Steven M. Bellovin September 25, 2013 35

Defenses

• Rigorously check all inputs against the specification

• Before that, of course, you need a spec

• (Specs can be buggy, too)

• Alternatively, use an earlier filter or check against a known-good list

Steven M. Bellovin September 25, 2013 36

Filtering

• Example: fgets() stops at a newline; you can’t find any embedded

+ But watch for unterminated buffer—what if the input line is too long?

• Note that argv has no such guarantee

• Email: check recipient name against valid user list—no funny
characters there

Steven M. Bellovin September 25, 2013 37

Being Careful Near the Shell

• If user input is being passed to the shell, be especially careful

• Watch for popen() and system()

• Dangerous characters include:
‘˜$ˆ&()={}[]|;:’"?<>\

• That’s most of the special characters!

• You’re always much better off with a “good” list than a “bad” list

• Example: on some Unix systems, ˆ is treated the same as |. Why?
Because on some models of Teletype, ˆ printed as ↑, which looked
similar to |

Steven M. Bellovin September 25, 2013 38

Knowing the Semantics

• Sometimes check that there are no / characters in a program name

• Why? To ensure that the reference is to a given directory

• Do you need to check \ as well?

+ Will the program ever run on Windows? Note that URLs on Windows
use /, but the file system uses \

Steven M. Bellovin September 25, 2013 39

Summary

• Trust nothing

• Specify acceptable inputs

• Check everything

• Understand the semantics of anything you invoke

• Try to use a better language than C

Steven M. Bellovin September 25, 2013 40

