
Confinement

Steven M. Bellovin November 7, 2013 1



Security Architecture

• We’ve been looking at how particular applications are secured

• We need to secure not just a few particular applications, but many
applications, running on separate machines

• We need a few more primitives first

Steven M. Bellovin November 7, 2013 2



Confining an Application

• For Web security, we used OS permissions to protect the system
against compromise via a compromised Web server

• Suppose we want to isolate the Web server still further

• More precisely, we want to limit the Web server to a small subset of
the system’s resources

Steven M. Bellovin November 7, 2013 3



Rationale

• We wish to run powerful, complex applications that we do not
completely trust

• Neither Unix nor Windows file permissions are flexible enough to do
what we want

• There are other resources besides files that need to be protected

Steven M. Bellovin November 7, 2013 4



Couldn’t We Use ACLs?

• ACL usually do not have negative permissions

• We’d have to find and change the protections of every file on the
system that was writable/readable/searchable by other

• We’d have to ensure that no other such files were created

• This is all possible but difficult

• More seriously, it is not high assurance

Steven M. Bellovin November 7, 2013 5



Other Resources

• What other resources need to be protected?

• CPU time

• Memory, real and virtual

• Disk space

• Network identity

• Network access rights

• More. . .

Steven M. Bellovin November 7, 2013 6



Some Are Easy

• Operating systems already regulate access to some resources

• Unix examples: setrlimit(), file system quotas

Steven M. Bellovin November 7, 2013 7



Network Identity and Access Rights

• A machine has an IP address

• A compromised application can use this address to exploit
address-based access control

• If nothing else, it can confuse intrusion detection systems

Steven M. Bellovin November 7, 2013 8



Bypassing File Permissions

• Suppose the attacker gains root privileges

• This permits overriding file permissions

• Also allows evasion of other resource limits, plus changes to network
identity
+ Change the IP address and hide from the system administrator!

Steven M. Bellovin November 7, 2013 9



Goals

• Security

• High assurance

• Simple setup

• General-purpose mechanism

• Available to all applications

• We can’t get them all. . .

Steven M. Bellovin November 7, 2013 10



Change Root: chroot()

• Oldest Unix isolation mechanism

• Make a process believe that some subtree is the entire file system

• File outside of this subtree simply don’t exist

• Sounds good, but. . .

Steven M. Bellovin November 7, 2013 11



Chroot

Steven M. Bellovin November 7, 2013 12



Limitations of Chroot

• Only root can invoke it. (Why?)

• Setting up minimum necessary environment can be painful

• The program to execute generally needs to live within the subtree,
where it’s exposed

• Still vulnerable to root compromise

• Doesn’t protect network identity

Steven M. Bellovin November 7, 2013 13



Root versus Chroot

• Suppose an ordinary user could use chroot()

• Create a link to the su command

• Create /etc and /etc/passwd with a known root password

• Create links to any files you want to read or write

• Besides, root can escape from chroot()

Steven M. Bellovin November 7, 2013 14



Escaping Chroot

• What is the current directory? If it’s not under the chroot() tree, try
chdir("../../..")

• Better escape: create device files

• On Unix, all (non-network) devices have filenames

• Even physical memory has a filename

• Create a physical memory device, open it, and change the kernel
data structures to remove the restriction

• Create a disk device, and mount a file system on it. Then chroot()

to the real root

Steven M. Bellovin November 7, 2013 15



Trying Chroot

# mkdir /usr/sandbox /usr/sandbox/bin

# cp /bin/sh /usr/sandbox/bin/sh

# chroot /usr/sandbox /bin/sh

chroot: /bin/sh: Exec format error

# mkdir /usr/sandbox/libexec

# cp /libexec/ld.elf_so /usr/sandbox/libexec

# chroot /usr/sandbox /bin/sh

Shared object "libc.so.12" not found

# mkdir /usr/sandbox/lib

# cp /lib/libc.so.12 /usr/sandbox/lib

# chroot /usr/sandbox /bin/sh

Shared object "libedit.so.2" not found

Steven M. Bellovin November 7, 2013 16



Trying Chroot (Continued)
# cp /lib/libedit.so.2 /usr/sandbox/lib
# chroot /usr/sandbox /bin/sh
Shared object "libtermcap.so.0" not found
# cp /lib/libtermcap.so.0 /usr/sandbox/lib
# chroot /usr/sandbox /bin/sh
# ls
ls: not found
# echo sandbox >/Escape
# ˆD
# ls -l /usr/sandbox
total 4
drwxr-xr-x 2 root wheel 512 Nov 1 21:50 bin
-rw-r--r-- 1 root wheel 7 Nov 1 22:31 Escape
drwxr-xr-x 2 root wheel 512 Nov 1 22:31 lib
drwxr-xr-x 2 root wheel 512 Nov 1 22:30 libexec

Steven M. Bellovin November 7, 2013 17



Summary of Chroot

• It’s a good, but imperfect means of restricting file access

• It’s fairly useless against root

• It doesn’t provide other sorts of isolation

• Setting up a usable environment is more work than you might think

Steven M. Bellovin November 7, 2013 18



FreeBSD “Jail”

• Like chroot() on steroids

• Assign a separate network identity to a jail partition

• Restrict root’s abilities within a jail

• Intended for nearly-complete system emulation

• Network interactions with main system’s daemons

Steven M. Bellovin November 7, 2013 19



Sandboxes

• Very restricted environment, especially for network daemons

• Assume that the daemon will do anything

• Example: Janus traps each system call and validates it against policy

• Can limit I/O to certain paths

Steven M. Bellovin November 7, 2013 20



The Java Virtual Machine

• Java executables contain byte code, not machine language

• Java interpreter can enforce certain restrictions

• Java language prevents certain dangerous constructs and operations
(unlike, for example, C)

• In theory, it’s safe enough that web browsers can download byte code
from arbitrary web sites

• But that’s in theory. . .

Steven M. Bellovin November 7, 2013 21



Is the JVM Secure?

• Heavy dependency on the semantics of the Java language

• The byte code verifier ensures that the code corresponds only to
valid Java

• The class loader ensures that arguments to methods match properly

• Very complex process — not high assurance

• Bugs have been found, but they’re fairly subtle

• But — there have been buffer overflows in the C support library

• Currently, the JVM is considered to be very insecure

Steven M. Bellovin November 7, 2013 22



Using the JVM For Servers

• The dangers come from untrusted executables

• If you write your applications in Java, you don’t have to worry about
that

• The strict type system, the array bounds-checking, and the (optional)
file access control all protect you from your own bugs

• Java is a very secure language for applications (if, of course, you’re
not too fussy about performance)

Steven M. Bellovin November 7, 2013 23



Virtual Machines

• Give the application an entire “machine”, down to the (virtual) bare
silicon

• Run an entire operating system on this

• Run the untrusted application on that OS

• It can be very safe

Steven M. Bellovin November 7, 2013 24



How VMs Work

• Recall the hardware access control mechanisms: privileged
operations and memory protection

• Run the guest operating system unprivileged

• Any time the guest OS issues a privileged operation, it traps to the
virtual machine monitor (VMM) (sometimes known as a hypervisor )

• The VMM emulates the operation. For example, an attempt at disk
I/O is mapped to I/O to a real file that represents the virtual disk

Steven M. Bellovin November 7, 2013 25



Virtual Devices

• Virtual disks (or part or all of a real disk)

• Virtual screens, keyboards, and mice

• Virtual Ethernets

• Other virtual devices as needed

Steven M. Bellovin November 7, 2013 26



Virtual Machine Security

• Very strong isolation

• Very high overhead. . .

• Must set up and administer an entire OS

+ Guest copies of Microsoft Windows require just as many patches as
do native copies

• Performance can be bad, though some hardware architectures have
special instructions to improve VM performance

Steven M. Bellovin November 7, 2013 27



Using Virtual Machines

• Great for testing OS changes

• Great for student use

• Internet hosting companies

• Can use them for executing suspected viruses and worms — but
some viruses detect the presence of the VMM and hide

Steven M. Bellovin November 7, 2013 28



Interacting with a Virtual Machine

• Often don’t want perfect isolation.

• Example: cut-and-paste between windows

• Performance can be dramatically enhanced if the guest OS signals
the VMM

• Example: add a virtual “graphics” driver that calls the VMM, via the
equivalent of a system call

Steven M. Bellovin November 7, 2013 29



Calling the VMM

• Need an analog to a system call (sometimes known as a hypercall)

• Use some instruction that will cause a trap — but not an instruction
used by a guest OS

• Example: IBM’s original VM system relied on an instruction used only
to run hardware diagnostics; never used by a real OS

• Can you run a virtual VMM? Sometimes. . .

Steven M. Bellovin November 7, 2013 30



Limitations of Virtual Machines

• They can be too real

• Would you let your enemy put a machine inside your data center?

• VMs can spread viruses, launch DoS attacks, etc.

• VMs require just as much care, administration, and monitoring as do
real machines

• In many situations, they represent an economic mechanism rather
than a security mechanism

• (Save on power, cooling, etc.)

• But — may be less painful when wiping the disk and starting over

Steven M. Bellovin November 7, 2013 31



The MacOS App Sandbox

• Requested permissions are specified at compile time

• Permissions (and the program) are part of a digitally signed object;
system can verify the signature at execution time

• Fairly simple set of permissions to allow access to certain files

• App cannot request other files outside of its sandbox directory

+ Programs sold via Apple’s App Store must use sandboxing

Steven M. Bellovin November 7, 2013 32



App Permissions

There are other
permissions related to
Apple’s online services,
e.g., to permit in-app
purchases or to be part of
their “Game Center”.

Steven M. Bellovin November 7, 2013 33



HTML5 Sandboxing

• HTML5 allows IFRAMEs to be sandboxed:

• Plugins, applets, etc., are disabled

• Cookies aren’t shared with the sandbox

• No pop-ups, new browser windows, etc.

Steven M. Bellovin November 7, 2013 34



Windows Sandboxing

• Some apps (e.g., Internet Explorer, Adobe Acrobat Reader) split into
trusted/untrusted halves; the untrusted half is sandboxed

• Many add-on programs to run arbitrary applications in a sandbox

• “Metro” apps on Windows 8 are sandboxed

Steven M. Bellovin November 7, 2013 35



Other Isolation Mechanisms

• Light-weight VM systems, such as Solaris Zones

• Domain and type enforcement: limit file accesses by each executable

• Systrace (on some BSD operating systems) is similar

• Many options on Linux

• Sub-operating system: permission overlay on top of file system,
based on subUIDs

• All require fairly complex permission-setting

Steven M. Bellovin November 7, 2013 36



The Limits of Isolation

• All of the mechanisms we’ve described are complex (but canned
scripts can help)

• Older ones typically require root privileges to set up and often to
invoke

• As a consequence, they’re useful for complex system designs, but not
for general application isolation

• Newer ones are better, but still very complex

Steven M. Bellovin November 7, 2013 37



Covert Channels

• We can block ordinary file accesses and network communication

• Are there other ways to leak information?

• Yes — covert channels: mechanisms for communication that don’t
use “normal” communications channels

• Very important issue in a MAC world

Steven M. Bellovin November 7, 2013 38



MAC and Covert Channels

• One goal of MAC is to prevent leakage of information between a
high-security process and a low-security process

• It’s (relatively) easy to close the explicit communication channels,
such as shared files or network connections

• There are more subtle ways to communicate

• Two types: storage channels and timing channels

Steven M. Bellovin November 7, 2013 39



Storage Channels

• Modulate some shared resource

• Example: create and delete files in a shared directory

• The files themselves need not be readable

• MAC systems often have per-level and/or per-user /tmp directories, to
help avoid this problem

Steven M. Bellovin November 7, 2013 40



Timing Channels

• Modulate system timing in detectable way

• Example: do heavy disk I/O or refrain

• Receiver times how long it takes to do I/O operations

Steven M. Bellovin November 7, 2013 41



The Password-Checking Channel

• An old operating system (Tenex, for the PDP-10) checked (unhashed)
passwords one byte at a time.

• It returned a failure indication as soon as a byte didn’t match

• Locate the password overlapping the end of virtual memory; ask the
OS to check it

• If the first byte was wrong, it would return “fail”.

• If the byte was right, it would try to fetch the next byte, but take a page
fault because it was past the edge

• Repeat as needed

Steven M. Bellovin November 7, 2013 42



Falling Off the Edge of the Earth

e

s e c

s e c

r

r e

s 3 c r

t

e

s 3 c r

Steven M. Bellovin November 7, 2013 43



Defeating Covert Channels

• One approach — find them and eliminate them

• Bandwidth-limit them — cap the rate at which certain operations can
be done

• Add noise to the channel

Steven M. Bellovin November 7, 2013 44



Defense Limits

• They’re hard to find

• Will bandwidth limits interfere with legitimate use?

• Shannon showed that noise can’t completely block a channel, just
reduce its bandwidth

Steven M. Bellovin November 7, 2013 45


