Case Study: Access Control

QOB

CSe Steven M. Bellovin __ September 28, 2013 ___ 1

CU




Case Studies in Access Control

e Joint software development

o Mail

CSe Steven M. Bellovin __ September 28, 2013 __ 2

CU




Situations

e Small team on a single machine or group of machines with a shared
file system

e Medium-to-large team on a LAN

e Large, distributed team, spread among several organizations

CSe Steven M. Bellovin __ September 28, 2013 __ 3

CU



Roles

e Developer (i.e., can commit changes)
o Tester

e Code reviewer

CSe Steven M. Bellovin __ September 28, 2013 __ 4

CU




Permissions

e We want the technical mechanisms to reflect the organizational roles

e The real challenge: mapping the organizational structure to OS
primitives

e Why?

CSe Steven M. Bellovin __ September 28,2013 __ 5

CU




Why Enforce Access Controls?

e Protect software from outsiders reading/stealing it
e Protect against unauthorized changes
= That can include internal rivalries

e Know who made certain changes?

CSe Steven M. Bellovin __ September 28, 2013 __ 6

CU




Classic Unix Setup

e Assume you just have user/group/other permissions, with no ACLs.
How would you set things up?

e Put all developers in a certain group
e Make files and directories group readable/writable

e Decision to turn off “other” read access is site-dependent

CSe Steven M. Bellovin __ September 28,2013 ___ 7

CU




ACL Setup

e Could add each developer individually

e Bad idea — if a developer leaves or joins the group, many ACLs must
be updated

e Still want to use groups; vary group membership instead

e Advantage: can have multiple sets of group permissions — why?

CSe Steven M. Bellovin __ September 28,2013 __ 8

CU




Reviewer/Tester Access

e Reviewers and testers need read access
e They do not need write access
e No good, built-in solution on classic Unix

e With ACLs, one group can have r/w permissions; another can have r
permissions

e Or: let them use “other” read permission? But is that safe?

CSe Steven M. Bellovin __ September 28,2013 __ 9

CU



Medium-Size Group

e No longer on single file system with simple file permissions
e More need for change-tracking

e More formal organizational structure

CSe Steven M. Bellovin __ September 28,2013 __ 10

CU




Basic Structure

e Basic permission structure should be the same
e Again: use group permissions as the fundamental permission unit

e Limits of non-ACL systems become more critical

CSe Steven M. Bellovin __ September 28, 2013 ___ 11

CU




Version Control Systems

e For medium-size projects, use of a version control system (i.e., CVS,
Subversion, Mercurial, RCS, etc.) is mandatory

o (Why?)

e What are the permission implications of a version control system?

CSe Steven M. Bellovin __ September 28, 2013 __ 12

CU




Why use a VCS?

e Auditability — who made which change?
e When was a given change made?
e Can you roll back to a known-clean version of the codebase?

e What patches have been applied to which versions of the system?

CSe Steven M. Bellovin __ September 28,2013 __ 13

CU




Note Well

e All of those features are important just for manageability

e Security needs are strictly greater — we have to deal with active
malfeasance as well as ordinary bugs and failures

CSe Steven M. Bellovin __ September 28, 2013 __ 14

CU



Structure of a VCS

Repository Master copy; records all changes, versions, etc.

Working copies Zero or more working copies. Developers check out a
version from the repository, make changes, and commit the changes

CSe Steven M. Bellovin __ September 28,2013 __ 15

CU




Permission Structure

Here are the Unix client commands for RCS, CVS, Mercurial, and
Subversion. What are the security implications?

$ 1s -1 /usr/bin/ci /usr/bin/cvs \
/usr/pkg/bin/hg /usr/pkg/bin/svn
—-r—-xXr-xr—-x 1 root wheel /usr/bin/ci
-r—-xr—-xr-x 1 root wheel /usr/bin/cvs
—rwxr—-xr—-x 1 root wheel /usr/pkg/bin/hg
—rwxr—-xr—-x 1 root wheel /usr/pkg/bin/svn

CSe Steven M. Bellovin __ September 28,2013 __ 16

CU




They’re Not SetUID!

e They execute with the permissions of the invoker

e They could try to do access control, but it's meaningless — anyone
else could write code to do the same things

e The permission structure of the repository is what's important

CSe Steven M. Bellovin __ September 28,2013 __ 17

CU




The Repository

e Essential feature: developers must have write permission on the
directories

e File permissions are irrelevant; old files can be renamed and unlinked
instead of being overwritten

e (Potential for annoyance if new directories are created with the wrong
permission — must set umask properly)

e But — what prevents a developer with write permission on the
respository from doing nasty things?

e Nothing...

CSe Steven M. Bellovin __ September 28,2013 __ 18

CU



Repository Security Without Privilege

e Create a repository directory with mode 711

e Create a subdirectory with random characters in the name; make it
mode 777.

e The random characters must be kept secret, to protect the actual
repository data

e To do that, the working copy directories should be mode 700

CSe Steven M. Bellovin __ September 28,2013 __ 19

CU




Large Organization

e Use client/server model for repository access

e Most users (including developers) have no direct access to the VCS
repository

e Either build access control into VCS server or layer on top of
underlying OS permissions

e But — must restrict what commands can be executed on repository
by developers

CSe Steven M. Bellovin __ September 28, 2013 __ 20

CU




Complications

e If you rely on OS permissions, something has to have root
privileges, to let the repository part of the process run as that user

e |f the VCS itself has a root component, is it trustable?
e If you use, say, ssh, is the command restriction mechanism trustable?

e If you rely on VCS permissions, you need to implement a reliable
authentication and ACL mechanism

e All of this is possible — but is it secure?

CSe Steven M. Bellovin __ September 28, 2013 ___ 21

CU



Mailers

e Issue of interest: local mail delivery and retrieval

e Surprisingly enough, network email doesn’t add (too much) security
complexity

CSe Steven M. Bellovin __ September 28, 2013 __ 22

CU



Issues

e Email must be reliable

e Users must be able to send email to any other users

e The system should reliably identify the sender of each message
e All emails should be logged

e Locking is often necessary to prevent race conditions when reading
and writing a mailbox

e Authentication

CSe Steven M. Bellovin __ September 28, 2013 __ 23

CU



Accepting Mail

e Must accept mail from users

e Copy it, either to protected spool directory for network delivery or
directly to recipient’s mailbox

CSe Steven M. Bellovin __ September 28, 2013 __ 24

CU




Spool Directory

e |f the mailer is setuid, it can copy the email to a protected directory
with no trouble

e |f the directory is world-writable but not world-readable, you don’t
even need setuid — add a random component to the filenames to
prevent overwriting

e (Homework submission script does this)

e File owner is automatically set correctly, for use in generating From:
line

CSe Steven M. Bellovin __ September 28,2013 __ 25

CU



However...

e Cannot securely write metadata for such directories — others could
overwrite the metadata file

e Cannot prevent users from overwriting their own pending email

e Listing the mail queue still requires privilege

CSe Steven M. Bellovin __ September 28, 2013 __ 26

CU



Local Access or Client/Server?

e For client/server, issues are similar to VCS: authentication, root
programs, restricting actions, etc

e For local access, must confront permission issues

e This is complicated by the many different versions of Unix over the
years

CSe Steven M. Bellovin __ September 28, 2013 __ 27

CU




Client/Server

e Standardized, (relatively) simple access protocols, POP and IMAP

e For ISP or large enterprise, neither need nor want general shell-type
access to mail server

e Large system mailers have their own authentication database
e Does not rely on OS permissions
e But — a mail server bug exposes the entire mail repository

e Also — how do users change their passwords?

CSe Steven M. Bellovin __ September 28, 2013 __ 28

CU



Bug Containment

e Separate programs into two sections:

— Small, simple section that does authentication and changes uid
(must run as root)

— Large section that runs as that user

e Major advantage: security holes in large section don’t matter, since it
has no special privileges

e Much more on program structure later in the semester

CSe Steven M. Bellovin __ September 28, 2013 __ 29

CU



Local Mail Storage

e Where is mail stored? Central mailbox directory or user’s home
directory?

e Note that mail delivery program must be able to (a) create, and (b)
write to mailboxes

e |f mailbox is in the user’s directory, mail delivery program must have
root permissions

CSe Steven M. Bellovin __ September 28, 2013 __ 30

CU



Central Mail Directory

e We can put all mailoboxes in, say, /var/mail
e What are the permissions on it?

e [f it's writable by group mail, delivery daemon can create new
mailboxes

e Make mailboxes writable by group mail, and owned by the recipient?

e Permits non-root delivery — but how do new mailboxes get created
and owned by the user?

CSe Steven M. Bellovin __ September 28,2013 __ 31

CU



Dangers of User-Writable Mailbox Directories

Permission ln -s /etc/passwd /var/mail/me
escalation
Vandalism rm /var/mail/you
Denial of touch /var/mail/does-not-exist-yet
service
CSd2 Steven M. Bellovin __ September 28, 2013 __ 32

CU



Defending Against These Attacks

Escalation Check mailbox permissions and ownership before writing
(note: watch for race conditions)

Vandalism Set “sticky bit” on directory

DoS Remove (or change ownership of) mailboxes with wrong ownership

Note well: most of these are trickier than they seem

CSe Steven M. Bellovin __ September 28, 2013 __ 33

CU




Delivering Mail to a Program

e Most mail systems permit delivery of email to a program
e Must execute that program as the appropriate user

e (Who is the “appropriate” user? Note that on Solaris, you may
(depending on system configuration) be able to give away files)

e Implies the need for root privileges by the local delivery program

CSe Steven M. Bellovin __ September 28, 2013 __ 34

CU




Privileged Programs

e What must be privileged?

e What privileges?

e Local delivery needs some privileges, frequently root
e Delivery to a program always requires root

e The mail reader?

CSe Steven M. Bellovin __ September 28, 2013 __ 35

CU




Privileged Mail Readers

e The System V mail reader was setgid t0 group mail
e Could delete empty mailboxes

e More importantly, could create lock files by linking in the mailbox
directory

e But — note the danger if the mailer was buggy
“You don’t give privileges to a whale” (about 21K lines of code. . .)

CSe Steven M. Bellovin __ September 28, 2013 __ 36

CU




Many More Subtleties

e Writing a mailer is hard

e |'ve barely scratched the surface of the design decisions, even the
permission-related ones

e Complicated by varying system semantics

CSe Steven M. Bellovin __ September 28, 2013 __ 37

CU




Why is it Hard?

e Mailers cross protection boundaries

e Thatis, they copy data from one permission context to another
e Both can be arbitrary userids

e Simply importing data to a userid is a lot easier

e |n addition, a lot of functionality is needed

e Not surprisingly, mailers have a very poor security record

CSe Steven M. Bellovin __ September 28, 2013 __ 38

CU




