Access Control

©NoE

CSdw Steven M. Bellovin __ September 12, 2010 ___ 1

CU

Security Bedgins on the Host

e Even without a network, hosts must enforce the CIA trilogy

e Something on the host — the operating system aided by
the hardware — must provide those guarantees

CSGLD Steven M. Bellovin __ September 12, 2010 ___ 2

CU

Access Control

e Hardware

e Software

— Operating systems
— Databases
— Other multi-access programs

e Distributed

CSdw Steven M. Bellovin __ September 12, 2010 ___ 3

CU

Hardware

e \What is the minimum necessary?

e \What do other mechanisms buy us?

CSGLD Steven M. Bellovin __ September 12, 2010 ___ 4

CU

Minimum Functionality

e Protect the OS from applications
e Protect applications from each other
e Change state from application to OS

e [imer interrupt

CSdw Steven M. Bellovin __ September 12, 2010 ___ 5

CU

Why a Timer?

e Availability is a security feature

e Must prevent uncooperative applications from hogging CPU

e Not going to discuss this more here, but it's a major topic
in W4118 (Operating Systems)

CSdw Steven M. Bellovin __ September 12, 2010 ___ 6

CU

Historical Mechanisms

e Single privileged mode bit — restrict ability to execute
certain instructions

e Memory protection

e Interrupts — hardware and software — cause state
transition

CSdw Steven M. Bellovin __ September 12, 2010 ___ 7

CU

What Are Privileged Instructions?

e Ability to do I/O without the OS'’s intervention — allowing
that could bypass file permission checking

e Ability to manipulate timers

e ADbility to access other programs’ memory without OS
intervention

CSdw Steven M. Bellovin __ September 12, 2010 ___ 3

CU

Example: IBM System/360 Mainframe

e Designed in the early 1960s
e Much of the architecture still in use. ..

e 4-bit protection key associated with each 4K block of
memory, plus read-protect bit

e Single “supervisor mode” bit
e 4-bit state key of O can write to anything

e But — operating systems of that time didn’'t use the
hardware to its full capabilites

CSdw Steven M. Bellovin __ September 12, 2010 9

CU

Memory-Mapped Control

e On some machines, privileged operations work by memory
access

e If applications have no access to such memory, they can’t
do sensitive things

e But — must have way to enter privileged state

CSdw Steven M. Bellovin __ September 12, 2010 __ 10

CU

Multics

e Virtual memory

e “Ring"” structure — 8 different privilege levels (i386 has
rings, too)

e OS could use rings 0-3; applications could use 4-7.
e (Original design had 64 rings!)
e Special form of subroutine call to cross rings

e Most of the OS didn’t run in Ring O

CSdw Steven M. Bellovin __ September 12, 2010 ___ 11

CU

What is the Advantage of Rings?

CSGLD Steven M. Bellovin __ September 12, 2010 ___ 12

CU

What is the Advantage of Rings?

e A single bit is theoretically sufficient
e Assurance!
e Don't need to trust all parts of the system equally

e “Principle of Least Privilege”

CSGLD Steven M. Bellovin __ September 12, 2010 ___ 13

CU

Assurance

e How do you know something is secure
e Much harder to provide later than features

e A trustable secure system has to be designed that way from
the beginning: designed, document, coded, and tested —
and maybe proved

CSdw Steven M. Bellovin __ September 12, 2010 ___ 14

CU

Underlying Principles of Privilege

e [woO basic approaches to privilege: identity and attribute

e Hardware protection is attribute: the state of various
registers controls what can and cannot be done

e Easier to manage in a single system

CSGLD Steven M. Bellovin __ September 12, 2010 ___ 15

CU

What is the role of the OS~?

e Protect itself
e Separate different applications

e More?

CSGLD Steven M. Bellovin __ September 12, 2010 ___ 16

CU

Operating Systems and Hardware

e [he hardware provides the minimum functionality
e The OS has to provide its own services on top of that

e Must manage access to I/O devices as well

CSGLD Steven M. Bellovin __ September 12, 2010 ___ 17

CU

What Protections do Operating
Systems Provide?

e User authentication (why?)
e File protection
e Process protection

e Resource scheduling (CPU, RAM, disk space, etc)

CSGLD Steven M. Bellovin __ September 12, 2010 ___ 18

CU

User Authentication

e (Much more on this later)

e Why authenticate users?

e Most operating system privileges are granted by identity,
not attributes

e Procedure:
Authenticate user
Grant access based on userid

CSdw Steven M. Bellovin __ September 12, 2010 ___ 19

CU

File Permissions

e Besides user authentication, the most visible aspect of OS
security

e Read protection — provide confidentiality
e Write protection — provide integrity protection

e Other permissions as well

CSdw Steven M. Bellovin __ September 12, 2010 ___ 20

CU

Classical Unix File Permissions

e All files have “owners”

e All files belong to a ‘“‘group”

e Users, when logged in, have one userid and several groupids.
e 3 sets of 3 bits: read, write, execute, for user, group, other
e (512 possible settings. Do they all make sense?)

o Written rwxrwxrwx

e 111 101 001: User has read/write/exec; group has
read/exec; other has exec-only

e Some counter-intuitive settings are very useful

CSdw Steven M. Bellovin __ September 12, 2010 ___ 21

CU

Permission-Checking Algorithm

if curr_user.uid == file.uid
check_owner_permissions();
else if curr_user.gid == file.gid

check_group_permissions() ;

else
check_other_permissions();
fi
Note the else clauses — if you own a file, “group’” and "other”

permissions aren’'t checked

CSGLD Steven M. Bellovin __ September 12, 2010 ___ 22

CU

Execute Permission

e Why is it separate from ‘read”’ 7

e [0 permit only execution

e Cannot copy the file

e Readable only by the OS, for specific purposes

CSGLD Steven M. Bellovin __ September 12, 2010 ___ 23

CU

Directory Permissions

e ‘‘write": create a file in the directory
e ‘read’: list the directory

e ‘‘execute’: trace a path through a directory

CSGLD Steven M. Bellovin __ September 12, 2010 ___ 24

CU

Example: Owner Permissions

$ id

uid=54047 (smb) gid=54047 (smb) groups=0(wheel),h3(sys),54047 (smb)
$ 1s -1 not me

-——-r--r-—- 1 smb wheel 29 Sep 12 01:35 not me

$ cat not me

cat: not me: Permission denied

I own the file but don’t have read permission on it

CSdw Steven M. Bellovin __ September 12, 2010 ___ 25

CU

Example: Directory Permissions

$ 1s -1d oddball

dr--r--r-— 2 smb wheel 512 Sep 12 01:36 oddball
$ 1s oddball

cannot_get_at

$ 1s -1 oddball

ls: cannot_get_at: Permission denied

$ cat oddball/cannot get at

cat: oddball/cannot get at: Permission denied

I can read the directory, but not trace a path through it to
oddball/cannot get at

CSdw Steven M. Bellovin __ September 12, 2010 ___ 26

CU

Deleting Files

e \What permissions are needed to delete files?
e On Unix, you need write permission on the parent directory

e You can delete files that you can't write. You can also
write to files that you can neither create nor delete

e Other systems make this choice differently

CSdw Steven M. Bellovin __ September 12, 2010 ___ 27

CU

Historical Note

e Unix has never been fond of asking “do you really mean
that?”
e [hat said, at least as long ago as February 1973 the

original Bell Labs Unix rm command prompted if you tried
to delete a file you couldn’t write

e In other words, the Unix model is philosophically correct but
perhaps incorrect from a human factors perspective

CSdw Steven M. Bellovin __ September 12, 2010 ___ 28

CU

Access Control Lists

e 9-bit model not always flexible enough

e Many systems (Multics, Windows XP and later, Solaris,
some Linux) have more general Access Control Lists

e ACLs are explicit lists of permissions for different parties

e \Wildcards are often used

CSdw Steven M. Bellovin __ September 12, 2010 ___ 29

CU

Sample ACL

smb . * Trwx
4187-ta.* TWX

* . faculty rx

* .k X

Users “smb” and ‘4187-ta” have read/write/execute
permission. Anyone in group ‘faculty” can read or execute the
file. Others can only execute it.

CSdw Steven M. Bellovin __ September 12, 2010 __ 30

CU

Order is Significant
With this ACL:

* . faculty rx

smb. * rwx
4187-ta. * TrwX
X, *¥ X

I would not have write access to the file

CSGLD Steven M. Bellovin __ September 12, 2010 ___ 31

CU

(o SRR, WSS WS . W
OO M [#ackpdf Info

sor | Modified: Today 4:48 51PM

MacOS ACLs

5 acl.pdf 188 KB
.=

Default =

Default

[l » Spotlight Comments: |

¥ General:

Kind: Portable Document Format (FDF)
Size: 188 KB on disk (184,427 bytes}
Where: /Users/smb/facl
Created: Today 4:48 51PFM
Modified: Tq!:lz'.r 448 51PM
labelix| B W LU WSS B

[| Stationery pad
[l Locked

b More Info:

b MWame & Extension:

b Open with:

1 W Preview:

¥ Sharing & Permissions:

¥ou can read and write

. MName | Privilege
X webuserl Custom
nmw : Custom
X =mb Me) Read & Write
28 staff : Read only
E,l'j BVEryone Read only

+[=| (%8~

mallet:acl smb} ls -le acl.pdf

-rw-r--r--+ 1 smb

a:

user:webuserl allow read

1: group:w allow append
mallet:acl smb$ |:|

staff 184477 Sep 12 16:48 acl.pdf

¥l

™

Steven M. Bellovin __ September 12, 2010 ___ 32

CSe
CU

windows Vista ACLs

Object name: C:h\UsershembDeskioptacl pdf

Group or uzer names:;
52, 5YSTEM
& amb [mastodantamb)
Eé,.l‘-‘«dministratnrs [mastodonAdministrators]

Ta change permizzions, click Edit.

Permizzions for smb Al Deny

Full control vy
M adify

FRead & execute

Read

adrite

Special permizzions

For special permizsion: or advanced settings,
click Advanced.

Learn about access control and permizsions

0k ” Cancel] e uful{T

CSdw Steven M. Bellovin __ September 12, 2010 __ 33

CU

Linux/Solaris ACLs

$ getfacl acl.pdf

file: acl.pdf

owner: smb

group: smb

user: :rw-
user:postfix:-w-
group: :r—-
group:landscape:--Xx
mask: :rwx

other::r—-

The standard Unix permissions are translated into ACL entries

CSe

CU

Steven M. Bellovin __ September 12, 2010 ___ 34

Setting File Permissions

e \Where do initial file permssions come from?

e \Who can change file permissions?

CSdw Steven M. Bellovin __ September 12, 2010 __ 35

CU

Unix Initial File Permissions

e Unix uses “umask’” — a set of bits to turn off when a
program creates a file

e Example: if umask is 022 and a program tries to create a
file with permissions 0666 (rw for user, group, and other),
the actual permissions will be 0644.

e Default system umask setting has a great effect on system
file security

e Set your own value in startup script; value inherited by child
processes

CSdw Steven M. Bellovin __ September 12, 2010 __ 36

CU

wWhy Umask?

e Suppose files were always created with rw,r,r permissions

e \What's wrong with the application simply changing the file
permissions after creating the file?

e Race conditions

CSdw Steven M. Bellovin __ September 12, 2010 ___ 37

CU

Multics Initial File Permissions

e Directories contain “initial access control list” — values set
by default for new files

e Common setting:

smb.faculty rw
* . sysdaemon r
* , % -

o If group “sysdaemon” doesn’t have read permission, the file
can’'t be backed up!

e Linux and Solaris also have default ACLs for new files

CSdw Steven M. Bellovin __ September 12, 2010 ___ 38

CU

MAC versus DAC

e Who has the right to set file permissions?

e Discretionary Access Control (DAC) — the file owner can
set permissions

e Mandatory Access Control (MAC) — only the security
officer can set permissions

e Enforce site security rules

e Note: viruses and other malware change change DAC
permissions, but not MAC permissions

CSdw Steven M. Bellovin __ September 12, 2010 __ 39

CU

Implementing MAC

e Often side-by-side with DAC: system has both

e Processes need to pass both sets of permissions to access
files

e Or — can have a special ACL-changing attribute in an
ACL:

security officer.wheel p
e But — can security_officer give him/herself privileges?

e In reality, MAC is often used for classification levels (next
class), rather than ACLs

CSdw Steven M. Bellovin __ September 12, 2010 ___ 40

CU

Privileged Users

e Root Or Administrator can override file permissions

e [his is a serious security risk — there is no protection if a
privileged account has been compromised

e [here is also no protection against a rogue superuser. . .

e Secure operating systems do not have the concept of
superusers

CSdw Steven M. Bellovin __ September 12, 2010 ___ 41

CU

Database Access Control

e Often have their own security mechanisms
e Permit user logins, just like operating systems
e Some have groups as well

e Permissions are according to database concepts: protect
rows and columns

e Different types of operations: select, insert, update, delete,
and more

CSdw Steven M. Bellovin __ September 12, 2010 ___ 42

CU

Databases versus OS Security

e [he database has many objects in a single OS file
e [The OS can control access to the file
e The DBMS has to control access to objects within the file

e [he set of database users is not the same as the set of OS
users

CSdw Steven M. Bellovin __ September 12, 2010 ___ 43

CU

Access Control Formalisms

e Access control can be modeled formally. What does this
buy us?

e [here are theorems that can be proved

e For example, if ACLs permit negation there are undecidable
questions

CSGLD Steven M. Bellovin __ September 12, 2010 ___ 44

CU

Access Control Formalisms (cont.)

e For the general case:
e Model using a Turing machine.

e Turing machine enters a special state if the access control
is faulty.

e Contradiction!

CSGLD Steven M. Bellovin __ September 12, 2010 ___ 45

CU

