Security Analysis Il

QOB

CSw#v Steven M. Bellovin __ November 28,2009 __ 1
CU

Analyzing Systems

e When presented with a system, how do you know it’'s secure?

e Often, you're called upon to analyze a system you didn’t design —

application architects and programmers build it; security people get to
pick up the pieces...

e It's better to build security in from the start, but that doesn’t happen
nearly as often as it should

CSw#v Steven M. Bellovin __ November 28, 2009 __ 2
CU

When to Analyze

e The earlier, the better
e Some design decisions are very hard to correct later on
e Better yet, have frequent reviews

e Early reviews concentrate on the broad architecture; later reviews can
look at the pieces

CSw#v Steven M. Bellovin __ November 28, 2009 __ 3
CU

Types of Analysis

e Individual programs

e Overall system flow

e Usually, a faulty program means a faulty system, but sometimes faults
are containable

CSw#v Steven M. Bellovin __ November 28, 2009 ___ 4
CU

Individual Programs

e Look for typical errors: buffer overflow, race conditions, etc.

e Not as easy as it sounds — buffer sizes not always obvious:
voi d buildnsg(char *dst, char *s, char *nsQ)

{

sprintf(dst, "Error: %: %\n", s, nsgQ);
return;

CSw#v Steven M. Bellovin __ November 28,2009 __ 5
CU

Which Programs to Check?

e Only check security-sensitive programs
e Which are those?

e Invoking dat e can be — how much output does it produce?

$ date

Mon Nov 17 21:51: 03 EST 2008

$ TZ=/usr/share/ zonei nf o/ Paci fi ¢/ Guam dat e
Tue Nov 18 12:51:11 ChST 2008

$ TZ=/usr/sharel/ zonei nfo/ Paci fic/ Tahiti date
Mon Nov 17 16:51:20 TAHT 2008

e Time zones aren’t always 3 capital letters. .. (and remember the
International Date Line)

e Also note: the invoker controls the time zone and hence the length

CSw#v Steven M. Bellovin __ November 28, 2009 __ 6
CU

Another Lesson About Testing

e Blind testing, even in multiple time zones, wouldn’t have found it

e Example: EEST — Eastern European Summer Time — applies
during the summer

e Other time zones are in effect only during certain years

e You can write test cases if and only if you know there’s something to
test for

e What is the length of a time zone? At least three characters;
maximum length is not specified

CSw#v Steven M. Bellovin __ November 28, 2009 ___ 7
CU

What To Look For

e Dangerous or potentially functions, i.e., gets(), strcpy(),
sprintf(), etc.

e TOCTTOU races — look for access(), st at () instead of
fstat (), etc.

e Trusting user input

Steven M. Bellovin __ November 28, 2009 ___ 8

CS¥
CU

This Isn’t Easy!

e First step — gr ep for suspect functions

e Each hit requires investigation — and a large program will have
hundreds of hits

e Most are obviously and trivially ok

e Most of the rest are ok anyway — but not obviously, and not trivially

CSw#v Steven M. Bellovin __ November 28, 2009 __ 9
CU

Why is it Hard?

e Subprocedures make life difficult for the analyst

e Most routines are called from many different places, with different
arguments

e The arguments passed may themselves be arguments from a
higher-level procedure

e Buffers may be dynamically allocated, and of uncertain length

CSw#v Steven M. Bellovin __ November 28,2009 ___ 10
CU

Flow Analysis

e \We need to understand the paths to each suspect call
e Compilers already do that, albeit intra-module

e \We can use compiler technology to help us understand complex
paths

CSw#v Steven M. Bellovin __ November 28,2009 ___ 11
CU

A Call Graph

$ cflow env/*.c
main() <int main (int argc,char *+xargv) at env/env.c: 55>
set| ocal e()
getopt ()
usage() <void usage (void) at env/env.c: 94>:
fprintf()
exit()
strchr()
setenv()
execvp()
err()
printf()
exit()
CSw#v Steven M. Bellovin __ November 28,2009 12
CuU

A Graphical Call Graph via Cflow

(oS (o o)) Com) V) o)

CSw#v Steven M. Bellovin __ November 28,2009 __ 13
CU

A Partial Reverse Call Graph

$ cflow --reverse env/*.c
err():
main() <int main (int argc,char *+xargv) at env/env.c.
execvp():
main() <int main (int argc,char **argv) at env/env.c.
exit():
main() <int main (int argc,char *xargv) at env/env.c.
usage() <void usage (void) at env/env.c: 94>:
main() <int main (int argc,char *+xargv) at env/el
fprintf():
usage() <void usage (void) at env/env.c: 94>:
main() <int main (int argc,char *+xargv) at env/el

CSw#v Steven M. Bellovin __ November 28, 2009 __ 14
CU

Simple Tools Don’t Always Work

= S
— | CEDL DI EE) G ED) O ED) DR CED CD)

D

/ N R

=g < ﬁ@(f@%':’ S F e :’
e - RGeS =
e\ = ==
S — R

— & [St Sde2n e

TB 7R i\‘u# /@@«
P

- S __—— e —
== Q‘é‘t@g =—____=—— \ [——=obt1 7

S —— ATt o O ae — S
TS) &
e

CSw#v Steven M. Bellovin __ November 28,2009 __ 15
CU

Data Flow Analysis
Int 1=1, j=2, *pi;
pi = subr(&, &);
printf("%l", =*pi); [+ What wll be printed? -

Int xsubr(int xvl, int xv2)

{
Int m
scanf ("%", &m;
If (m> 0) return vli;
el se return v2;
t

CSw#v Steven M. Bellovin __ November 28,2009 __ 16
CU

Is This Analysis Necessary?

e If it's very hard to understand, perhaps the programmer got it wrong,
too

e There is little downside to using safe functions if there is any doubt at
all

e There may be a slight performance hit — but the hit tends to be
localized, and most sections of code are a very small part of total
system performance

CSw#v Steven M. Bellovin __ November 28,2009 ___ 17
CU

TOCTTOU iIs Harder

e Race conditions are generally part of multi-statement sequences
e Necessary to look for patterns — much more difficult

e Note: gr ep can only point to functions that are frequently involved in
race conditions

CSw#v Steven M. Bellovin __ November 28,2009 ___ 18
CU

We Need Tools

e Simple tools such as gr ep are just a starting point
e Custom-built tools can do a better job

e The benefit of tools is that they reduce the search space — they
eliminate the many false alarms that gr ep will produce

CSw#v Steven M. Bellovin __ November 28,2009 ___ 19
CU

Inappropriate Trust

e Some scans are relatively easy

e Example: look at f open() calls and see if the input ultimately came
from untrusted data

e The trick is knowing the sensitive destinations; depending on the
program, it may or may not be easy

CSw#v Steven M. Bellovin __ November 28, 2009 ___ 20
CU

Digression: Run-Time Checks

e Sometimes, it’s easier to do the checks at run-time
e Best example: Perl’s “taint mode”

e Data from untrustworthy sources — command-line arguments,
environment variables, file input, etc. — is marked as “tainted”

e Any variable derived from a tainted variable is marked “tainted”

e Certain operations cannot be performed with tainted input; a run-time
exception is generated

e You can produce untainted variables by a regular expression memory
reference; Perl assumes that you know what you're doing

CSw#v Steven M. Bellovin __ November 28,2009 ___ 21
CU

Other Checks

e See how user inputs are read
e |s the data examined and, if necessary, rejected immediately?
e Are fixed-length buffers used or is nal | oc() called?

e The declaration
char buf[1024];
Is a danger flag

e For C++,is St ri ng used?

CSw#v Steven M. Bellovin __ November 28, 2009 ___ 22
CU

Analyzing Systems

e Both easier and harder
e Easier, because there are fewer components than lines of code

e Harder, because many of the details are abstracted away

CSw#v Steven M. Bellovin __ November 28, 2009 ___ 23
CU

Overall Flow

e |dentify the separate system elements
e |dentify the data flows
e Look for security barriers

e Look for untrusted inputs

CSw#v Steven M. Bellovin __ November 28, 2009 ___ 24
CU

System Elements

e System elements are things like web servers, database engines, etc.
e Each of these is itself a complex system that needs to be analyzed

e Establish the properties of each element: where its inputs come from,
what its outputs are, what can happen if something is corrupted

CSw#v Steven M. Bellovin __ November 28, 2009 ___ 25
CU

Protecting Elements

e What are the forms of access?
e \What sorts of access controls are there?

e What is logged? To where? (Who looks at the logs?)

CSw#v Steven M. Bellovin __ November 28, 2009 __ 26
CU

Data Flows

e Who talks to whom?
e How do they talk?

e Is the link exposed to the outside? Is it encrypted? Authenticated?

e Is the protocol otherwise safe?

CSw#v Steven M. Bellovin __ November 28, 2009 ___ 27
CU

Security Barriers

e Do they block all attack vectors?
e Are they strong enough?

e Are they flexible enough?

CSw#v Steven M. Bellovin __ November 28, 2009 ___ 28
CU

Input Filtering

e \Where can enemy input enter the entire system?
e Is it properly checked?

e \What about back channels, such as DNS?

CSw#v Steven M. Bellovin __ November 28, 2009 ___ 29
CU

System Management

e How will the elements be managed?
e IS more connectivity needed?
e Are other network services used?

e How do system management functions authenticate themselves?

CSw#v Steven M. Bellovin __ November 28, 2009 __ 30
CU

Backups

e How are disks backed up?
e Again, is more connectivity needed?

e How are the backup media protected?

CSw#v Steven M. Bellovin __ November 28, 2009 ___ 31
CU

Drilling Down

e Is there other connectivity, such as to the organization?

e If there isn’t now, might there be in the future? (The answer to that
one is usually “yes”...) What provisions are made for such

connectivity?

e What parts of the design seem more vulnerable?

CSw#v Steven M. Bellovin __ November 28, 2009 ___ 32
CU

Weak Spots

e What parts of the design seem problematic?
e Some pieces are weaker than others

e EXxperience counts here — “trust your feelings, Luke”

CSw#v Steven M. Bellovin __ November 28, 2009 ___ 33
CU

Weak Spots: Web Server

e \Web servers are quite complex

e CGI or ASP scripts are often locally written, and may have received
less scrutiny

e How is the web server checked for intrusions?

e What are the consequences if it falls?

CSw#v Steven M. Bellovin __ November 28, 2009 __ 34
CU

Outcomes of a Review

e Allis cool (don’t be afraid to say so, but it rarely happens...)
e A few fixable flaws
e Serious, unfixable problems

e Not deployable

CSw#v Steven M. Bellovin __ November 28, 2009 __ 35
CU

Serious, Unfixable Problems

e There may be flaws that can’t easily be fixed
e Example: a piece of vital third-party software that does stupid things
e Can you layer on something else to provide necessary protection?

e Example: to protect a vendor product that used plaintext passwords,
you could add firewalls or a VPN

CSw#v Steven M. Bellovin __ November 28, 2009 ___ 36
CU

Not Deployable

e Sometimes, that’s the right answer
e However — how important is the project?
e What is the business cost of not deploying it?

e It's important to be both honest and realistic — and that’s a delicate
balancing act

CSw#v Steven M. Bellovin __ November 28, 2009 ___ 37
CU

Software Engineering Code of Ethics

1. PUBLIC - Software engineers shall act consistently with the public
Interest.

2. CLIENT AND EMPLOYER - Software engineers shall act in a manner
that is in the best interests of their client and employer consistent with
the public interest.

3. PRODUCT - Software engineers shall ensure that their products and
related modifications meet the highest professional standards
possible.

4. JUDGMENT - Software engineers shall maintain integrity and
independence in their professional judgment.

(See http://ww. acm or g/ servi ng/ se/ code. ht mfor the rest.)

CSw#v Steven M. Bellovin __ November 28, 2009 ___ 38
CU

Making “No” Stick

e Be prepared to back up your assessment

e Demonstrate exactly how an enemy could get in
e Estimate the likelihood of the attack

e Estimate the business loss if it happens

e If you can’t do that, it's more likely the previous category

CSw#v Steven M. Bellovin __ November 28, 2009 ___ 39
CU

Bad Excuses You'll Hear

e It's closed source: no one knows how it works

[] It's a lot easier to figure such things out than it appears to those
who have never done it

[What about corrupt insiders?

e Who'd attack us?
[Some people will attack anything

e No one would try that
[Some people will try anything

CS¥
CU

Steven M. Bellovin __ November 28, 2009 __ 40

Making Recommendations

e This is often a political process
e Concrete suggestions for improvement are better than “this rots”

e Suggestions should be realistic in terms of cost, benefit, and
business situation

e Security is engineering; it's not an absolute goal to be pursued at any
cost

e There are always legacy systems you can’t touch

CSw#v Steven M. Bellovin __ November 28,2009 ___ 41
CU

