
Security Analysis II

Steven M. Bellovin November 28, 2009 1

Analyzing Systems

• When presented with a system, how do you know it’s secure?

• Often, you’re called upon to analyze a system you didn’t design —
application architects and programmers build it; security people get to
pick up the pieces. . .

• It’s better to build security in from the start, but that doesn’t happen
nearly as often as it should

Steven M. Bellovin November 28, 2009 2

When to Analyze

• The earlier, the better

• Some design decisions are very hard to correct later on

• Better yet, have frequent reviews

• Early reviews concentrate on the broad architecture; later reviews can
look at the pieces

Steven M. Bellovin November 28, 2009 3

Types of Analysis

• Individual programs

• Overall system flow

• Usually, a faulty program means a faulty system, but sometimes faults
are containable

Steven M. Bellovin November 28, 2009 4

Individual Programs

• Look for typical errors: buffer overflow, race conditions, etc.

• Not as easy as it sounds — buffer sizes not always obvious:

void buildmsg(char *dst, char *s, char *msg)

{

sprintf(dst, "Error: %s: %s\n", s, msg);

return;

}

Steven M. Bellovin November 28, 2009 5

Which Programs to Check?

• Only check security-sensitive programs

• Which are those?

• Invoking date can be — how much output does it produce?

$ date

Mon Nov 17 21:51:03 EST 2008

$ TZ=/usr/share/zoneinfo/Pacific/Guam date

Tue Nov 18 12:51:11 ChST 2008

$ TZ=/usr/share/zoneinfo/Pacific/Tahiti date

Mon Nov 17 16:51:20 TAHT 2008

• Time zones aren’t always 3 capital letters. . . (and remember the
International Date Line)

• Also note: the invoker controls the time zone and hence the length

Steven M. Bellovin November 28, 2009 6

Another Lesson About Testing

• Blind testing, even in multiple time zones, wouldn’t have found it

• Example: EEST — Eastern European Summer Time — applies
during the summer

• Other time zones are in effect only during certain years

• You can write test cases if and only if you know there’s something to
test for

• What is the length of a time zone? At least three characters;
maximum length is not specified

Steven M. Bellovin November 28, 2009 7

What To Look For

• Dangerous or potentially functions, i.e., gets(), strcpy(),
sprintf(), etc.

• TOCTTOU races — look for access(), stat() instead of
fstat(), etc.

• Trusting user input

Steven M. Bellovin November 28, 2009 8

This Isn’t Easy!

• First step — grep for suspect functions

• Each hit requires investigation — and a large program will have
hundreds of hits

• Most are obviously and trivially ok

• Most of the rest are ok anyway — but not obviously, and not trivially

Steven M. Bellovin November 28, 2009 9

Why is it Hard?

• Subprocedures make life difficult for the analyst

• Most routines are called from many different places, with different
arguments

• The arguments passed may themselves be arguments from a
higher-level procedure

• Buffers may be dynamically allocated, and of uncertain length

Steven M. Bellovin November 28, 2009 10

Flow Analysis

• We need to understand the paths to each suspect call

• Compilers already do that, albeit intra-module

• We can use compiler technology to help us understand complex
paths

Steven M. Bellovin November 28, 2009 11

A Call Graph

$ cflow env/*.c

main() <int main (int argc,char **argv) at env/env.c:55>:

setlocale()

getopt()

usage() <void usage (void) at env/env.c:94>:

fprintf()

exit()

strchr()

setenv()

execvp()

err()

printf()

exit()

Steven M. Bellovin November 28, 2009 12

A Graphical Call Graph via Cflow

main

usage

exit

err getopt setlocale execvp setenv printf strchr

fprintf

Steven M. Bellovin November 28, 2009 13

A Partial Reverse Call Graph

$ cflow --reverse env/*.c

err():

main() <int main (int argc,char **argv) at env/env.c:55>

execvp():

main() <int main (int argc,char **argv) at env/env.c:55>

exit():

main() <int main (int argc,char **argv) at env/env.c:55>

usage() <void usage (void) at env/env.c:94>:

main() <int main (int argc,char **argv) at env/env.c:55>

fprintf():

usage() <void usage (void) at env/env.c:94>:

main() <int main (int argc,char **argv) at env/env.c:55>

Steven M. Bellovin November 28, 2009 14

Simple Tools Don’t Always Work

main

sourcerc

getenv

printdircounter

who_am_i

CAR

cleanup

fprintf

init

posix_output_handler

getopt_long

error

textdomain

errf

printf

CDR

bindtextdomain

report

g

f

append_to_list

yyparse

select_output_driver

register_output

output

exit

gnu_output_handler

output_init

pp_option atoi setlocale getopt argp_parse source

hash_insert

check_tuning

allocate_entry

hash_rehash

abort

hash_find_entry

dirdcl

putbackfile_error

dcl

nexttoken

maybe_parm_list skip_to

free

expand_argcv

parse_rc

strlen

xmalloc

malloc

argcv_get

strcpy

alloca

find_stack_direction

ADDRESS_FUNCTION

memory_full

perror

isdirclosedir putcharchdirignorent readdir opendir getcwd

declare

install_ident

get_symbol

finish_save_stackerror_at_line

undo_save_stack

install

getword

iswordCOUNT feofgetc

isalpha

xreallocfopen fclose

perrf

move_parms

hash_do_for_each move_parm_processor

xref_output

collect_symbols compare

print_type

is_varqsortprint_function

calloc

xalloc_die

collect_processor

print_errno_message

strerror

error_print

vfprintf

tree_output

separator

lookup

direct_treeinverted_tree

scan_tree

beginend

handler

geteuidgetpwuid

argcv_scan

isdelim strchr isws

is_function

markrestore

hash_initialize

xalloc_oversized obstack_initnext_prime

strcmp

parse_variable_declaration

skip_struct

initializer_list func_body

tokpush

parse_dclexpression

cleanup_processor

print_level error_tail

va_endmbsrtowcs putc memsetputwc fflush

init_parseinit_lex

clearstack

delete_symbol

unlink_symbol

hash_lookup

print_symbol

is_printable

set_activeclear_activenewline

include_symbol

is_lastset_level_mark

cleanup_stack

parse_declaration

delete_autos

memmove

xtonum

to_num

fake_struct

xnrealloc_inline

realloc

stat S_ISDIR

print_function_name print_symbol_type

delete_parms

parse_function_declaration

obstack_free free_entry

delete_parm_processor

va_start

save_token

obstack_1grow

obstack_finish

obstack_grow

print_token

auto_processor

cleanup_symbol_refsfread strtok

save_stackreference call

declare_type add_reference

globals_only

parse_knr_dcl

h

alloc_cons

parse_typedef

xnmalloc_inline

get_token

hash_symbol_hasher

hash_string

HASH_ONE_CHAR

alloc_new_bucket

strdup

hash_symbol_compareargcv_unquote_copy

is_prime

print_refs

isdigit argcv_unquote_char

symbol_in_list

alloc_cons_from_bucket

Steven M. Bellovin November 28, 2009 15

Data Flow Analysis

int i=1, j=2, *pi;

pi = subr(&i, &j);

printf("%d", *pi); /* What will be printed? *
...

int *subr(int *v1, int *v2)

{

int m;

scanf("%d", &m);

if (m > 0) return v1;

else return v2;

}

Steven M. Bellovin November 28, 2009 16

Is This Analysis Necessary?

• If it’s very hard to understand, perhaps the programmer got it wrong,
too

• There is little downside to using safe functions if there is any doubt at
all

• There may be a slight performance hit — but the hit tends to be
localized, and most sections of code are a very small part of total
system performance

Steven M. Bellovin November 28, 2009 17

TOCTTOU is Harder

• Race conditions are generally part of multi-statement sequences

• Necessary to look for patterns — much more difficult

• Note: grep can only point to functions that are frequently involved in
race conditions

Steven M. Bellovin November 28, 2009 18

We Need Tools

• Simple tools such as grep are just a starting point

• Custom-built tools can do a better job

• The benefit of tools is that they reduce the search space — they
eliminate the many false alarms that grep will produce

Steven M. Bellovin November 28, 2009 19

Inappropriate Trust

• Some scans are relatively easy

• Example: look at fopen() calls and see if the input ultimately came
from untrusted data

• The trick is knowing the sensitive destinations; depending on the
program, it may or may not be easy

Steven M. Bellovin November 28, 2009 20

Digression: Run-Time Checks

• Sometimes, it’s easier to do the checks at run-time

• Best example: Perl’s “taint mode”

• Data from untrustworthy sources — command-line arguments,
environment variables, file input, etc. — is marked as “tainted”

• Any variable derived from a tainted variable is marked “tainted”

• Certain operations cannot be performed with tainted input; a run-time
exception is generated

• You can produce untainted variables by a regular expression memory
reference; Perl assumes that you know what you’re doing

Steven M. Bellovin November 28, 2009 21

Other Checks

• See how user inputs are read

• Is the data examined and, if necessary, rejected immediately?

• Are fixed-length buffers used or is malloc() called?

• The declaration

char buf[1024];

is a danger flag

• For C++, is String used?

Steven M. Bellovin November 28, 2009 22

Analyzing Systems

• Both easier and harder

• Easier, because there are fewer components than lines of code

• Harder, because many of the details are abstracted away

Steven M. Bellovin November 28, 2009 23

Overall Flow

• Identify the separate system elements

• Identify the data flows

• Look for security barriers

• Look for untrusted inputs

Steven M. Bellovin November 28, 2009 24

System Elements

• System elements are things like web servers, database engines, etc.

• Each of these is itself a complex system that needs to be analyzed

• Establish the properties of each element: where its inputs come from,
what its outputs are, what can happen if something is corrupted

Steven M. Bellovin November 28, 2009 25

Protecting Elements

• What are the forms of access?

• What sorts of access controls are there?

• What is logged? To where? (Who looks at the logs?)

Steven M. Bellovin November 28, 2009 26

Data Flows

• Who talks to whom?

• How do they talk?

• Is the link exposed to the outside? Is it encrypted? Authenticated?

• Is the protocol otherwise safe?

Steven M. Bellovin November 28, 2009 27

Security Barriers

• Do they block all attack vectors?

• Are they strong enough?

• Are they flexible enough?

Steven M. Bellovin November 28, 2009 28

Input Filtering

• Where can enemy input enter the entire system?

• Is it properly checked?

• What about back channels, such as DNS?

Steven M. Bellovin November 28, 2009 29

System Management

• How will the elements be managed?

• Is more connectivity needed?

• Are other network services used?

• How do system management functions authenticate themselves?

Steven M. Bellovin November 28, 2009 30

Backups

• How are disks backed up?

• Again, is more connectivity needed?

• How are the backup media protected?

Steven M. Bellovin November 28, 2009 31

Drilling Down

• Is there other connectivity, such as to the organization?

• If there isn’t now, might there be in the future? (The answer to that
one is usually “yes”. . .) What provisions are made for such
connectivity?

• What parts of the design seem more vulnerable?

Steven M. Bellovin November 28, 2009 32

Weak Spots

• What parts of the design seem problematic?

• Some pieces are weaker than others

• Experience counts here — “trust your feelings, Luke”

Steven M. Bellovin November 28, 2009 33

Weak Spots: Web Server

• Web servers are quite complex

• CGI or ASP scripts are often locally written, and may have received
less scrutiny

• How is the web server checked for intrusions?

• What are the consequences if it falls?

Steven M. Bellovin November 28, 2009 34

Outcomes of a Review

• All is cool (don’t be afraid to say so, but it rarely happens. . .)

• A few fixable flaws

• Serious, unfixable problems

• Not deployable

Steven M. Bellovin November 28, 2009 35

Serious, Unfixable Problems

• There may be flaws that can’t easily be fixed

• Example: a piece of vital third-party software that does stupid things

• Can you layer on something else to provide necessary protection?

• Example: to protect a vendor product that used plaintext passwords,
you could add firewalls or a VPN

Steven M. Bellovin November 28, 2009 36

Not Deployable

• Sometimes, that’s the right answer

• However — how important is the project?

• What is the business cost of not deploying it?

• It’s important to be both honest and realistic — and that’s a delicate
balancing act

Steven M. Bellovin November 28, 2009 37

Software Engineering Code of Ethics

1. PUBLIC - Software engineers shall act consistently with the public
interest.

2. CLIENT AND EMPLOYER - Software engineers shall act in a manner
that is in the best interests of their client and employer consistent with
the public interest.

3. PRODUCT - Software engineers shall ensure that their products and
related modifications meet the highest professional standards
possible.

4. JUDGMENT - Software engineers shall maintain integrity and
independence in their professional judgment.

. . .

(See http://www.acm.org/serving/se/code.htm for the rest.)

Steven M. Bellovin November 28, 2009 38

Making “No” Stick

• Be prepared to back up your assessment

• Demonstrate exactly how an enemy could get in

• Estimate the likelihood of the attack

• Estimate the business loss if it happens

• If you can’t do that, it’s more likely the previous category

Steven M. Bellovin November 28, 2009 39

Bad Excuses You’ll Hear

• It’s closed source; no one knows how it works

☞ It’s a lot easier to figure such things out than it appears to those
who have never done it

☞ What about corrupt insiders?

• Who’d attack us?
☞ Some people will attack anything

• No one would try that
☞ Some people will try anything

Steven M. Bellovin November 28, 2009 40

Making Recommendations

• This is often a political process

• Concrete suggestions for improvement are better than “this rots”

• Suggestions should be realistic in terms of cost, benefit, and
business situation

• Security is engineering; it’s not an absolute goal to be pursued at any
cost

• There are always legacy systems you can’t touch

Steven M. Bellovin November 28, 2009 41

