
Privileges

Steven M. Bellovin September 21, 2009 1

Acquiring Privileges

• How can privileged operations be performed?

• More precisely, how can an unprivileged process request that
something privileged take place?

• What is privilege?

Steven M. Bellovin September 21, 2009 2

What is a Privileged Process?

• One that has access to some resource not generally available

• Doesn’t necessarily correspond to “root” or “Administrator”

• More secure systems have many types of privilege

Steven M. Bellovin September 21, 2009 3

File System-Related Privileges

• Who can write to certain devices?

• Example: print spooler

• Mailer daemon

Steven M. Bellovin September 21, 2009 4

Mailer Daemon: Sending Mail

• In principle, an unprivileged operation

• For convenience, have one well-written mail daemon per system

– Accept mail from mail user agents (MUAs)

– Add some header lines (MessageID, Received, maybe From)

– Attempt delivery; queue and retry if necessary

• Use “privilege” to protect its own queue files.
Which security attribute is invoked here?

Steven M. Bellovin September 21, 2009 5

Mailer Daemon: Sender Security

Confidentiality Protect the confidentiality of the email itself

Integrity Prevent mail from being tampered with

Availability Prevent mailer crashes and email deletion

Steven M. Bellovin September 21, 2009 6

The Lessons of Mailer Security

• There’s no “privilege” in the classical sense

• The mailer has no resources unavailable to other users

• Mailer protection is just another case of protecting one user from
another

Steven M. Bellovin September 21, 2009 7

What if Sending Mail is Privileged?

• Many sites block direct outbound access to port 25

• Why? Firewalls, spam senders, and “bots”

• How can we restrict which users can connect to which port?

• Either make network access go through the file system —
/dev/tcp/25/another.host — or add a separate permission
mechanism

Steven M. Bellovin September 21, 2009 8

What Are Other Privileges?

Steven M. Bellovin September 21, 2009 9

What Are Other Privileges?

• Override DAC (or override it for specific purposes)

• Mount a file system in a restricted fashion

• Mount a file system with no restrictions

• Operate on file as owner

• Change MAC label

• Set time

• Assign privileges

• Many more — IRIX (SGI’s Unix) has 48 different privileges

Steven M. Bellovin September 21, 2009 10

How Processes Get Privileges

• Inheritance

• File attributes

• Ask a privileged process to perform the operation for you

Steven M. Bellovin September 21, 2009 11

Inheritance

• Many privileges are inherited from parent process (necessary in Unix,
where almost every command is run in a separate process)

• Example: Unix uid

• Sometimes associated with username: the login mechanism sets
initial privileges, and your shell inherits them

• Obviously, child processes cannot inherit privileges the parent doesn’t
possess

Steven M. Bellovin September 21, 2009 12

File Attributes: SUID

• Fundamental privilege acquisition mechanism in Unix

• Invented in 1973 by Dennis Ritchie

• Patented — U.S. Patent 4,135,240, issued January 1979

• Major step towards principle of least privilege

• A serious security risk if used improperly

Steven M. Bellovin September 21, 2009 13

What is the Principle of Least Privilege

• No subject should have more privileges than it needs

• Obvious reason: it can’t misuse abilities it doesn’t have
☞Very important in case of application compromise

• Difficult to do properly, since one privilege often implies another

• Example: if I can overide the DAC “write” privileges, I can overwrite
an executable that a more privileged user will invoke, and thus get
that user’s privileges

Steven M. Bellovin September 21, 2009 14

What is SUID?

• When the program is executed, it acquires the privileges of the owner

• This feature is available for all uids

• Similar feature for groups: setgid

• If a file is setuid “root”, it executes with “root” privileges

Steven M. Bellovin September 21, 2009 15

Steven M. Bellovin September 21, 2009 16

Setting and Querying the SUID Bit

• Set:
chmod u+s file

• Query:
ls -l file

The “x” for owner is replaced by a “s”

Steven M. Bellovin September 21, 2009 17

What Does This Do?

$ cp /bin/sh .

$ ls -l sh

-r-xr-xr-x 1 smb smb 131167 Sep 18 22:49 sh

$ chmod u+s sh

$ ls -l sh

-r-sr-xr-x 1 smb smb 131167 Sep 18 22:49 sh

Steven M. Bellovin September 21, 2009 18

Oops!

• It created a setuid shell

• Anyone who executed that shell would have all of my privileges

• Not a good thing to do. . .

Steven M. Bellovin September 21, 2009 19

How Did I Do That Safely?

$ (umask 077; mkdir f)

$ cd f

$ ls -ld .

drwx------ 2 smb smb 512 Sep 18 22:49 .

Steven M. Bellovin September 21, 2009 20

Safely Doing Dangerous Things

• Create a directory that no one else can access

• Use umask to do it atomically

• Create the dangerous file in a locked directory

• Only “root” and I can get to that directory

Steven M. Bellovin September 21, 2009 21

Combining Permission Settings

• Use some permissions to restrict acccess

• Use SUID or SetGID to grant more authority to invoker

• What does this do?

$ ls -l shutdown

-r-sr-xr-- 1 root operator 14463 Sep 2 01:38 shutdown

Steven M. Bellovin September 21, 2009 22

The NetBSD shutdown Command

Note the permissions:

-r-sr-xr-- 1 root operator

r-s SUID “root”

r-x Executable by group “operator”

r-- Readable but not executable by others

The command runs with “root” permissions, but only a select few can get
those permissions

Steven M. Bellovin September 21, 2009 23

Why is SUID Good?

• Available to all users; does not require special privilege

• Used by mailers, printer daemons, games, etc

• Conceptually simple way to provide controlled interface to some
resources

Steven M. Bellovin September 21, 2009 24

Why is SUID Bad?

• Available to all users; does not require special privilege

• Writing secure SUID programs is hard

• Too easy to give away permissions

• Per-user permissions aren’t granular enough

Steven M. Bellovin September 21, 2009 25

Peter Neumann on SUID

It is precisely BECAUSE it allows easy implementation that it is so
frequently misused — by people who don’t know better. Use of “setuid”
opens up the possibility of a variety of security flaws, including Trojan
horses, search-path traps, etc., and tends to substantially widen the
perimeter of trust. I’m not sure that anyone knows how to characterize
“proper use” completely — if it is indeed possible at all.

RISKS Digest 4:53, 1 March 1987

Steven M. Bellovin September 21, 2009 26

Fred Grampp and Robert Morris on SUID

SUID programs should be used only when there is no other way to get a
desired result. On most UNIX systems, perhaps a dozen SUID programs,
excluding games, are really needed. A lax attitude about SUID programs,
combined with a ‘quick and dirty’ programming style, can produce
disasters. . .

It is difficult, when users are writing all but the most trivial programs, to
determine in advance that the program will be correct. Programs
sometimes do the most amazing things in unforeseen circumstances.

UNIX Operating System Security
AT&T Bell Laboratories Technical Journal 63:8, Part 2, October 1984

Steven M. Bellovin September 21, 2009 27

Linux and SUID

• Grampp and Morris: “ On most UNIX systems, perhaps a dozen
SUID programs . . . are really needed.”

• My home Ubuntu machine has about 50 (plus games). . .

• But — about 10 are for network utilities. Is a new privilege
mechanism needed instead?

Steven M. Bellovin September 21, 2009 28

What is the Problem with SUID?

• The bad guy is running the program and supplying the inputs

• The bad guy controls the environment

• Many subtle traps!

Steven M. Bellovin September 21, 2009 29

Confusing a Program

$ PS1=’% ’ ksh

% ulimit -f 0

% echo foo >/tmp/foo

File size limit exceeded

$ ls -l /tmp/foo

-rw-r--r-- 1 smb wheel 0 Sep 19 00:04 /tmp/foo

What if this happens to the passwd command?

We’ll talk a lot more about others during the semester

Steven M. Bellovin September 21, 2009 30

The Alternative: Message-Passing

• A program runs with certain permissions

• It sets up some sort of local communications channel

• Other programs send messages to that channel, and receive
responses

• Used by Windows, some Unix subsystems

Steven M. Bellovin September 21, 2009 31

Practical Difficulties

• How does the initial program start?

• What sorts of channels are available?

• Can you control access to those channels?

• What are the messages and responses like?

Steven M. Bellovin September 21, 2009 32

Initial Startup

• Very much OS-dependent

• On some systems, any user can have a program started at boot time:
$ crontab -l

@reboot echo ‘hostname‘ reboot | mail smb

• Sometimes invoked automatically when channel is contacted

• Often that requires certain privileges. (Why?)

Steven M. Bellovin September 21, 2009 33

Types of Channels

• Local sockets (“UNIX-domain sockets”)

• Message-passing queues

• Controlled RPC

Steven M. Bellovin September 21, 2009 34

Access Control

• Different channels have different permission mechanisms

• Very much OS-dependent

• Getting these right is just as important as file permissions

Steven M. Bellovin September 21, 2009 35

System V Shared Memory

$ ipcs -b

Message Queues:

T ID KEY MODE OWNER GROUP QBYTES

Shared Memory:

T ID KEY MODE OWNER GROUP SEGSZ

Semaphores:

T ID KEY MODE OWNER GROUP NSEMS

s 19398656 0 --rw------- www www 1

Steven M. Bellovin September 21, 2009 36

UNIX-Domain Sockets

• Appear in file system

• Not accessed like regular files; use “socket” primitives instead

• Permissions on this “file” not always honored — version-depenent!

• Solution: set directory permissions instead

ls -ld private

drwx------ 2 postfix wheel 512 Sep 10 23:31 private

ls -ld private/maildrop

srw-rw-rw- 1 postfix wheel 0 Sep 10 23:31 private/maildrop

Steven M. Bellovin September 21, 2009 37

Why is Message-Passing Good?

• Bad guys can’t invoke the privileged commands

• No opportunity to control the environment

• Less opportunity for certain harmful programming mistakes

Steven M. Bellovin September 21, 2009 38

Why is Message-Passing Bad?

• Fundamentally, you’re writing network servers

• We know from experience how hard it is to get them right!

• You have to design a language for the channel, and perhaps
marshall/unmarshall arguments

Steven M. Bellovin September 21, 2009 39

Capabilities

• Capability: a bit-string that gives access to some resource

• Can be copied

• Effectively attribute-based access control

• Issues: acquisition, forgery, revocation

• Rarely used in practice

Steven M. Bellovin September 21, 2009 40

What is the Real Issue?

• Granting selective access is hard

• Never trust anything that can be controlled by the enemy

• Make sure you know the enemy’s powers. . .

Steven M. Bellovin September 21, 2009 41

