
Complex Access Control

Steven M. Bellovin September 16, 2009 1



Access Control Matrix

• List all proceses and files in a matrix

• Each row is a process (“subject”)

• Each column is a file (“object”)

• Each matrix entry is the access rights that subject has for that object

Steven M. Bellovin September 16, 2009 2



Sample Access Control Matrix

Subjects p and q
Objects f, g, p, q
Access rights r (read), w (write), x (execute), o (owner)

f g p q
p rwo r rwx w
q - r r rwxo

Steven M. Bellovin September 16, 2009 3



Other Permissions

• Append

• Delete file

• Owner (can change ACL)

Steven M. Bellovin September 16, 2009 4



Access Control Matrix Operations

• System can transition from one ACM state to another

• Primitive operations: create subject, create object; destroy subject,
destroy object; add access right; delete access right

• Transitions are, of course, conditional

Steven M. Bellovin September 16, 2009 5



Conditional ACM Changes

Process p wishes to give process q read access to a file f owned by p.

command grant read file(p, f, q)
if o in a[p, f ]

then
enter r into a[q, f ]

fi
end

Steven M. Bellovin September 16, 2009 6



Safety versus Security

• Safety is a property of the abstract system

• Security is a property of the implementation

• To be secure, a system must be safe and not have any access control
bugs

Steven M. Bellovin September 16, 2009 7



Undecidable Question

• Query: given an ACM and a set of transition rules, will some access
right ever end up in some cell of the matrix?

• Model ACM and transition rules as Turing machine

• Machine will halt if that access right shows up in that cell

• Will it ever halt?

• Clearly undecidable

• Conclusion: We can never tell if an access control system is safe
(Harrison-Ruzzo-Ullman (HRU) result)

Steven M. Bellovin September 16, 2009 8



Will This Program Halt?

main(int argc, char *argv[])

{

return 0;

}

We can sometimes tell if a program will do a certain thing.

Steven M. Bellovin September 16, 2009 9



Complex Access Control

• Simple user/group/other or simple ACLs don’t always suffice

• Some situations need more complex mechanisms

Steven M. Bellovin September 16, 2009 10



Temporal Access Control

• Permit access only at certain times

• Model: time-locks on bank vaults

Steven M. Bellovin September 16, 2009 11



Implementing Temporal Access Control

• Obvious way: add extra fields to ACL

• Work-around: timer-based automatic job that changes ACLs
dynamically

Steven M. Bellovin September 16, 2009 12



Problems and Attacks

Steven M. Bellovin September 16, 2009 13



Problems and Attacks

• Is your syntax powerful enough for concepts like holidays? On what
calendar? Do you support all relevant religious calendars? When is
Eid ul Fitr next year? (When is it this year?)

• What time zone are employees in? Do any of them travel to other
time zones?

• What if the clock is wrong?

• Can the enemy change the clock?

• How is the clock set? By whom or what?

Steven M. Bellovin September 16, 2009 14



Time Protocols

yellowstone.ntp > time.nist.gov.ntp: NTPv4 client, strat 0

time.nist.gov.ntp > yellowstone.ntp: NTPv4 server, strat 1

yellowstone.ntp > meow.febo.com.ntp: NTPv4 client, strat 0

meow.febo.com.ntp > yellowstone.ntp: NTPv4 server, strat 2

Steven M. Bellovin September 16, 2009 15



Changing the ACL

• Who changes it?

• What are the permissions on the clock daemon’s tables?

• Is there a race condition at permission change time?

• What if the daemon’s tables get out of sync with reality? Suppose a
new file or directory is added?

• We have introduced new failure modes!

Steven M. Bellovin September 16, 2009 16



Role-Based Access Control

• Permissions are granted to roles, not users

• Map users to roles

• “Any software problem can be solved by adding another layer of
indirection”

• Mapping can change; should be reasonably dynamic

• Example: substitute worker; replacement worker

Steven M. Bellovin September 16, 2009 17



Using RBAC

• RBAC is the mechanism of choice for complex situations

• Often, it isn’t used where it should be, because it’s more complex to
set up.

• Example: giving your administrative assistant your email password

• Does this create new weaknesses?

Steven M. Bellovin September 16, 2009 18



Using RBAC

• RBAC is the mechanism of choice for complex situations

• Often, it isn’t used where it should be, because it’s more complex to
set up.

• Example: giving your secretary your email password

• New attack: corrupt the mapping mechanism between users and
roles

Steven M. Bellovin September 16, 2009 19



Program-Based Control

• Sometimes, there’s no general enough model

• There are constraints that cannot be expressed in any table

• Common example: some forms of digital rights management (DRM),
which may include forcing a user to scroll through a license
agreement and then click “yes”

• It requires a program

Steven M. Bellovin September 16, 2009 20



All Bets are Off

• Is the program correct?

• Is it secure?

• Who wrote it?

• Who can change it?

• Who can change its data or configuration files?

• Does it do what you want?

Steven M. Bellovin September 16, 2009 21



Military Classification Model

• Documents are classified at a certain level

• People have certain clearances

• You’re only allowed to see documents that you’re cleared for

Steven M. Bellovin September 16, 2009 22



Classifications

• Levels: Confidential, Secret, Top Secret

• Compartments: Crypto, Subs, Planes, . . .

• To read a document, you must have at least as high a clearance level
and you must be cleared for each compartment

• Systems that support this are known as multi-level security systems

Steven M. Bellovin September 16, 2009 23



Examples

Pat is cleared for Secret , Subs
Chris is cleared for Top Secret , Planes

We have the following files:

warplan Top Secret Troops, Subs, Planes
runway Confidential Planes
sonar Top Secret Subs
torpedo Secret Subs

Who can read which file?

Steven M. Bellovin September 16, 2009 24



Examples

• Pat cannot read warplan; she isn’t cleared high enough and she
doesn’t have Troops or Planes clearance

• Chris can’t read it, either; he doesn’t have Troops or Subs clearance

• Chris can read runway; Pat can’t

• Pat can’t read sonar; she has Subs clearance but only at the Secret
level

• She can, however, read torpedo

Steven M. Bellovin September 16, 2009 25



Comparing Clearances

• Who has a higher clearance, Chris or Pat?

• Which is higher, 〈Secret , Subs〉 or 〈Top Secret , Planes〉

• Neither — they aren’t comparable

Steven M. Bellovin September 16, 2009 26



Formally Comparing Labels

• A label is the tuple 〈L, C〉, where L is the hierarchical level and C is
the set of compartments

• S ≥ O if and only if LS ≥ LO and CS ⊇ CO

Steven M. Bellovin September 16, 2009 27



Lattices

• Clearances here are represented in a lattice

• A lattice is a directed graph

• We say that label A dominates label B if there is a valid path down
from A to B

• Expressed differently, if A dominates B, information is allowed to flow
from B to A. We write B ≤ A.

• Known as the Bell-LaPadula model

Steven M. Bellovin September 16, 2009 28



Properties of Lattices

• Lattices are a partial ordering

• Lattice domination is transitive, reflexive, anti-symmetric:
If C ≤ B and B ≤ A, then C ≤ A

A ≤ A

B ≤ A and A ≤ B implies A = B

Steven M. Bellovin September 16, 2009 29



A Sample Lattice

high

Top: Subs Top: PlanesTop: Troops, Subs, Planes

Secret: subs

Confidential: Planes

Low

Top: Subs dominates Secret: Subs
Top: Planes dominates Confidential: Planes

Top: Subs and Top: Planes are not comparable

Steven M. Bellovin September 16, 2009 30



Using this Scheme

• Processes are subjects

• Files are objects

• A process can read a file if its label dominates the file’s label

• Known as “no read up”

• File labels are typically subject to mandatory access control (MAC)

Steven M. Bellovin September 16, 2009 31



Writing Files

• Suppose there are three labels, A, B, and C, such that A dominates
B and B dominates C

• A process with label A can read a file with label B or label C. A
process with label C can read a file labled C but not B

• Suppose that a process with label A reads B and then writes the
contents to a file labeled C.

• Can a C-labeled process now read this?

• No — a process can only write to a file if the file’s label dominates it

• Known as “no write down”

Steven M. Bellovin September 16, 2009 32



That Isn’t Right, Either

• Should a process at Confidential be able to overwrite a Top Secret
file?

• The usual rule is that a process can only write to a file whose label is
an exact match

Steven M. Bellovin September 16, 2009 33



Formal Version

Simple Security Condition S can read O if and only if lo ≤ ls

*-property S can write O if and only if ls ≤ lo

Basic Security Theorem If Σ is a system with secure inital state σ0 and
T is a set of state transitions that preserve the simple security
condition, every state σi, i ≥ 0 is secure

Steven M. Bellovin September 16, 2009 34



Combining MAC and DAC

• The Bell-LaPadula model includes DAC as well as MAC

• Users control DAC settings; the site security officer controls the MAC
values

• To read or write a file, both MAC and DAC conditions must be
satisfied

Steven M. Bellovin September 16, 2009 35



Confidentiality versus Integrity

• This scheme is geared towards confidentiality

• We can use it for integrity, too

• Make sure that all system files are labeled Low

• All labels dominate Low

• Thus, no process can write to it (“no write down”)

• Overwriting a system file appears to the access control mechanism
as a confidentiality violation!

• Known as Biba integrity

Steven M. Bellovin September 16, 2009 36



Floating Labels

• Instead of “no read up/no write down”, labels can float

• A process that reads a file acquires a label that dominates its original
label and the file’s label

• When a process writes to a file, the file’s label changes as well

• Subjects and objects can have limits; if the label can’t float high
enough, the output can’t take place

Steven M. Bellovin September 16, 2009 37



Thinking Semantically

• Simpler permission schemes protect objects

• Bell-LaPadula schemes protect information

• Information flow is a dynamic concept

Steven M. Bellovin September 16, 2009 38



Implementing Bell-LaPadula

• Does anyone actually use this stuff?

• First implemented in Multics

• Available today in Trusted Solaris

• Part of many DoD-certified systems

• But — such systems are rarely used outside of DoD, and not often
within it

• The assurance process is too slow and expensive

Steven M. Bellovin September 16, 2009 39



Exporting Labels

• Labels have to stay with the data

• Transmitted in network packets

• Printed on output

• Recorded on CDs, etc.

• What happens if a labeled CD is physically carried to — and from —
a non-MLS (or otherwise untrusted) machine?

Steven M. Bellovin September 16, 2009 40



Marking Classified Documents

Note the blacked-out security
labels at top and bottom and
the per-paragraph classification
level. Note also that the blacked-
out classification label occupies
a space too long for “S” or “TS”,
and hence presumably give a
compartment. . .

Steven M. Bellovin September 16, 2009 41



The Commercial Uselessness of Bell-LaPadula

• Most commercial data isn’t as rigidly classified as is military data

• Few commercial operating systems support it

• It’s hard to transfer labels across networks, among heterogeneous
systems

• Downgrading is hard

Steven M. Bellovin September 16, 2009 42



Downgrading Information

• Suppose we have a web server as a front end for a sensitive
database

• We can label the database Top Secret

• To read it, the web server needs to have Top Secret privileges

• But the end user — the web client — isn’t trusted to that level

• Where does the downgrade operation take place?

• Downgrade is a very sensitive operation and can only be done by a
trusted module. Is your web server that trusted?

Steven M. Bellovin September 16, 2009 43


