
Analyzing Systems

• When presented with a system, how do you know it’s secure?

• Often, you’re called upon to analyze a system you didn’t design —
application architects and programmers build it; security people get to
pick up the pieces. . .

• It’s better to build security in from the start, but that doesn’t happen
nearly as often as it should

Steven M. Bellovin November 26, 2007 1



When to Analyze

• The earlier, the better

• Some design decisions are very hard to correct later on

• Better yet, have frequent reviews

• Early reviews concentrate on the broad architecture; later reviews can
look at the pieces

Steven M. Bellovin November 26, 2007 2



Types of Analysis

• Individual programs

• Overall system flow

• Usually, a faulty program means a faulty system, but sometimes faults
are containable

Steven M. Bellovin November 26, 2007 3



Individual Programs

• Look for typical errors: buffer overflow, race conditions, etc.

• Not as easy as it sounds — buffer sizes not always obvious:

void buildmsg(char *dst, char *s, char *msg)

{

sprintf(dst, "Error: %s: %s\n", s, msg);

return;

}

Steven M. Bellovin November 26, 2007 4



Which Programs to Check?

• Only check security-sensitive programs

• Which are those?

• Invoking date can be — how much output does it produce?

$ date

Mon Apr 23 18:44:27 EDT 2007

$ TZ=/usr/share/zoneinfo/Pacific/Guam date

Tue Apr 24 08:44:11 ChST 2007

$ TZ=/usr/share/zoneinfo/Pacific/Tahiti date

Mon Apr 23 12:44:19 TAHT 2007

• Time zones aren’t always 3 characters. . . (and remember the
International Date Line)

Steven M. Bellovin November 26, 2007 5



Another Lesson About Testing

• Blind testing, even in multiple time zones, wouldn’t have found it

• Example: EEST — Eastern European Summer Time — applies
during the summer

• Other time zones are in effect only during certain years

• You can write test cases if and only if you know there’s something to
test for

• What is the length of a time zone? At least three characters;
maximum length is not specified

Steven M. Bellovin November 26, 2007 6



What To Look For

• Dangerous or potentially functions, i.e., gets(), strcpy(),
sprintf(), etc.

• TOCTTOU races — look for access(), stat() instead of
fstat(), etc.

• Trusting user input

Steven M. Bellovin November 26, 2007 7



This Isn’t Easy!

• First step — grep for suspect functions

• Each hit requires investigation — and a large program will have
hundreds of hits

• Most are obviously and trivially ok

• Most of the rest are ok anyway — but not obviously, and not trivially

Steven M. Bellovin November 26, 2007 8



Why is it Hard?

• Subprocedures make life difficult for the analyst

• Most routines are called from many different places, with different
arguments

• The arguments passed may themselves be arguments from a
higher-level procedure

• Buffers may be dynamically allocated, and of uncertain length

Steven M. Bellovin November 26, 2007 9



Flow Analysis

• We need to understand the paths to each suspect call

• Compilers already do that, albeit intra-module

• We can use compiler technology to help us understand complex
paths

Steven M. Bellovin November 26, 2007 10



Is That Necessary?

• If it’s very hard to understand, perhaps the analyst got it wrong, too

• There is little downside to using safe functions if there is any doubt at
all

• There may be a slight performance hit — but the hit tends to be
localized, and most sections of code are a very small part of total
system performance

Steven M. Bellovin November 26, 2007 11



TOCTTOU is Harder

• Race conditions are generally part of multi-statement sequences

• Necessary to look for patterns — much more difficult

• Note: grep can only point to functions that are frequently involved in
race conditions

Steven M. Bellovin November 26, 2007 12



We Need Tools

• Simple tools such as grep are just a starting point

• Custom-built tools can do a better job

• The benefit of tools is that they reduce the search space — they
eliminate the many false alarms that grep will produce

Steven M. Bellovin November 26, 2007 13



Inappropriate Trust

• Some scans are relatively easy

• Example: look at fopen() calls and see if the input ultimately came
from untrusted data

• The trick is knowing the sensitive destinations; depending on the
program, it may or may not be easy

Steven M. Bellovin November 26, 2007 14



Digression: Run-Time Checks

• Sometimes, it’s easier to do the checks at run-time

• Best example: Perl’s “taint mode”

• Data from untrustworthy sources — command-line arguments,
environment variables, file input, etc. — is marked as “tainted”

• Any variable derived from a tainted variable is marked “tainted”

• Certain operations cannot be performed with tainted input; a run-time
exception is generated

• You can produce untainted variables by a regular expression memory
reference; Perl assumes that you know what you’re doing

Steven M. Bellovin November 26, 2007 15



Other Checks

• See how user inputs are read

• Is the data examined and, if necessary, rejected immediately?

• Are fixed-length buffers used or is malloc() called?

• For C++, is String used?

Steven M. Bellovin November 26, 2007 16



Analyzing Systems

• Both easier and harder

• Easier, because there are fewer components than lines of code

• Harder, because many of the details are abstracted away

Steven M. Bellovin November 26, 2007 17



Overall Flow

• Identify the separate system elements

• Identify the data flows

• Look for security barriers

• Look for untrusted inputs

Steven M. Bellovin November 26, 2007 18



System Elements

• System elements are things like web servers, database engines, etc.

• Each of these is itself a complex system that needs to be analyzed

• Establish the properties of each element: where its inputs come from,
what its outputs are, what can happen if something is corrupted

Steven M. Bellovin November 26, 2007 19



Protecting Elements

• What are the forms of access?

• What sorts of access controls are there?

• What is logged? To where? (Who looks at the logs?)

Steven M. Bellovin November 26, 2007 20



Data Flows

• Who talks to whom?

• How do they talk?

• Is the link exposed to the outside? Is it encrypted? Authenticated?

• Is the protocol otherwise safe?

Steven M. Bellovin November 26, 2007 21



Security Barriers

• Do they block all attack vectors?

• Are they strong enough?

• Are they flexible enough?

Steven M. Bellovin November 26, 2007 22



Input Filtering

• Where can enemy input enter the entire system?

• Is it properly checked?

• What about back channels, such as DNS?

Steven M. Bellovin November 26, 2007 23



System Management

• How will the elements be managed?

• Is more connectivity needed?

• Are other network services used?

• How do system management functions authenticate themselves?

Steven M. Bellovin November 26, 2007 24



Backups

• How are disks backed up?

• Again, is more connectivity needed?

• How are the backup media protected?

Steven M. Bellovin November 26, 2007 25



Drilling Down

• Is there other connectivity, such as to the organization?

• If there isn’t now, might there be in the future? (The answer to that
one is usually “yes”. . . ) What provisions are made for such
connectivity?

• What parts of the design seem more vulnerable?

Steven M. Bellovin November 26, 2007 26



Weak Spots

• What parts of the design seem problematic?

• Some pieces are weaker than others

• Experience counts here — “trust your feelings, Luke”

Steven M. Bellovin November 26, 2007 27



Weak Spots: Web Server

• Web servers are quite complex

• CGI or ASP scripts are often locally written, and may have received
less scrutiny

• How is the web server checked for intrusions?

• What are the consequences if it falls?

Steven M. Bellovin November 26, 2007 28



Outcomes of a Review

• All is cool (don’t be afraid to say so, but it rarely happens. . . )

• A few fixable flaws

• Serious, unfixable problems

• Not deployable

Steven M. Bellovin November 26, 2007 29



Serious, Unfixable Problems

• There may be flaws that can’t easily be fixed

• Example: a piece of vital third-party software that does stupid things

• Can you layer on something else to provide necessary protection?

• Example: to protect a vendor product that used plaintext passwords,
you could add firewalls or a VPN

Steven M. Bellovin November 26, 2007 30



Not Deployable

• Sometimes, that’s the right answer

• However — how important is the project?

• What is the business cost of not deploying it?

• It’s important to be both honest and realistic — and that’s a delicate
balancing act

Steven M. Bellovin November 26, 2007 31



Software Engineering Code of Ethics

1. PUBLIC - Software engineers shall act consistently with the public
interest.

2. CLIENT AND EMPLOYER - Software engineers shall act in a manner
that is in the best interests of their client and employer consistent with
the public interest.

3. PRODUCT - Software engineers shall ensure that their products and
related modifications meet the highest professional standards
possible.

4. JUDGMENT - Software engineers shall maintain integrity and
independence in their professional judgment.

. . .

(See http://www.acm.org/serving/se/code.htm for the rest.)

Steven M. Bellovin November 26, 2007 32



Making “No” Stick

• Be prepared to back up your assessment

• Demonstrate exactly how an enemy could get in

• Estimate the likelihood of the attack

• Estimate the business loss if it happens

• If you can’t do that, it’s more likely the previous category

Steven M. Bellovin November 26, 2007 33



Bad Excuses You’ll Hear

• It’s closed source; no one knows how it works

☞ It’s a lot easier to figure such things out than it appears to those
who have never done it

☞ What about corrupt insiders?

• Who’d attack us?
☞ Some people will attack anything

• No one would try that
☞ Some people will try anything

Steven M. Bellovin November 26, 2007 34



Making Recommendations

• This is often a political process

• Concrete suggestions for improvement are better than “this rots”

• Suggestions should be realistic in terms of cost, benefit, and
business situation

• Security is engineering; it’s not an absolute goal to be pursued at any
cost

• There are always legacy systems you can’t touch

Steven M. Bellovin November 26, 2007 35


