
Program Structure

• We’ve seen that program bugs are a major contributor to security
problems

• We can’t build bug-free software

• Can we build bug-resistant software?

• Let’s look at a few examples, good and bad

Steven M. Bellovin November 13, 2007 1

What Are Our Goals?

• What makes software “bug-resistant”?

• We want to do two things:

☞ Minimize the chances that a bug will occur

☞ Minimize the consequences of any bugs that do occur

Steven M. Bellovin November 13, 2007 2

Minimizing the Chances of a Bug

• Keep the program small and simple

• Keep it well-structured

• Use proper modularization

• In other words, use all the tools we learn about in “how to program
well” courses

• This is the single most important thing we can do for security

Steven M. Bellovin November 13, 2007 3

Minimizing the Impact of Bugs

• If we can’t make the whole program bug-free, try to isolate the
security-critical sections

• Use strong isolation between the security-critical sections and the rest

• Use strong confinement to isolate the non-critical sections from the
rest of the system

Steven M. Bellovin November 13, 2007 4

Isolation and Confinement

• Forms of isolation:

– Separate computer

– Process boundary

– External program

– C++ or Java class

– C file

• We already discussed confinement

• Let’s look at a real-world example

Steven M. Bellovin November 13, 2007 5

The 4.3BSD FTP Daemon (1986)

• Implements the standard File Transfer Protocol

• Input defined by RFC 959; no ability to change it

• Ancestor to many of today’s FTP daemons, but smaller: 2600 lines of
code versus 5000 (Redhat) or 8600 (NetBSD)

• Small enough to understand; large enough to provide examples,
good and bad. . .

Steven M. Bellovin November 13, 2007 6

The FTP Protocol

• Download and upload files

• Sequence of simple, 3- and 4-letter commands

• Commands have zero or one operands

• Responses prefixed by 3-digit result code

• Must support anonymous ftp — unauthenticated access to restricted
set of resources

• Alternatively, permit login with username and password

Steven M. Bellovin November 13, 2007 7

Sample FTP Session

$ ftp ftp.netbsd.org

220 ftp.NetBSD.org FTP server (NetBSD-ftpd 20040809) read y.

USER anonymous

331 Guest login ok, type your name as password.

PASS anything

230 Guest login ok, access restrictions apply.

LIST

150 Opening ASCII mode data connection for ’/bin/ls’.

(data transferred on separate TCP connection)

226 Transfer complete.

FBAR

500 ’FBAR’: command not understood

Steven M. Bellovin November 13, 2007 8

Things to Notice

• USER and PASS are separate commands

• 331 indicates only one command can follow: PASS
(rename also uses a 300-class reply)

• 200-class replies indicate success

• 100-class replies are intermediate states

• 400- and 500-class replies are temporary and permanent failures

Steven M. Bellovin November 13, 2007 9

The Structure of FTPD

• Read a command line at a time

• Use a YACC grammar to parse input

• Add logged-in check as part of the grammar

• Use flag and state variables for multi-command sequences such as
USER/PASS and RNFR/RNTO

• Use chroot() to contain anonymous FTP users

Steven M. Bellovin November 13, 2007 10

What is a YACC Grammar?

• Formal grammar to specify input syntax:

cmd : USER SP username CRLF

| PASS SP password CRLF

| CWD SP pathname CRLF

| ...

• Parser-generator reads the grammar and generates C code to
“recognize” the grammar

• C code sequences can be associated with each rule

• Code is executed when that rule is recognized by the parser

Steven M. Bellovin November 13, 2007 11

A Simpler Sample Grammar

expr : NUMBER operator NUMBER;

operator : PLUS | MINUS | STAR | SLASH;

Steven M. Bellovin November 13, 2007 12

Are Parser Generators Good?

• That is, do they help security?

• Absolutely!

• By definition, a formal grammar specifies the precise input accepted;
we’ve already seen that poor input specification can lead to security
problems

• But — buffer overflows are more likely the result of lexical analysis,
such as recognizing command names and pathnames

• You could use a lexical analyzer generator. . .

Steven M. Bellovin November 13, 2007 13

The Issues Here

• The over-the-wire protocol is quite simple; a formal grammar is
probably overkill here

• The protocol is a poor match for the grammar implemented

• This is an implementation problem, not a problem with the concept of
using formal grammars

Steven M. Bellovin November 13, 2007 14

Consider This Command Sequence

USER anonymous

CWD ˜root

PASS anything

How is it processed?

Steven M. Bellovin November 13, 2007 15

Processing USER

• Set the anonymous login flag

• Retrieve the anonymous entry from /etc/passwd

• This will be needed for its home directory and uid

Steven M. Bellovin November 13, 2007 16

Processing PASS

• Check the anonymous login flag

• If set, accept any password; otherwise, check the password against
the retrieved /etc/passwd entry

• Do “login” processing: setuid to that user, chdir() to the home
directory

• If anonymous login, do a chroot() before giving up root privileges

• But there’s a problem in the grammar. . .

Steven M. Bellovin November 13, 2007 17

What’s Wrong with This Grammar?

• The legal sequence is

USER
PASS
session commands

• ftpd’s grammar treats all commands the same, including USER and
PASS

• This is a recipe for trouble. . .

Steven M. Bellovin November 13, 2007 18

A Closer Look at the Actual YACC Grammar

cmd : USER SP username CRLF

| PASS SP password CRLF

| CWD check_login SP pathname CRLF

| ...

The check login is a pseudo-rule; it’s just a hook for some C code that
checks the logged-in flag

Steven M. Bellovin November 13, 2007 19

What’s a “pathname”?

pathname : STRING
= {

if ($1 && strncmp((char *) $1, "˜", 1) == 0) {
$$ = (int) * glob((char *) $1);
if (globerr != NULL) {

reply(550, globerr);
$$ = NULL;

}
free((char *) $1);

} else
$$ = $1;

}
;

$1 is the pointer to character string for the filename.

Steven M. Bellovin November 13, 2007 20

What Does the Code Do?

• Only executed if the grammar rule is matched

• If the first character is ˜ , it tries to do home directory expansion.

• That is, it replaces ˜ smb by /home/smb

• To do that, glob() looks up smb’s record in /etc/passwd

• Hmm — two different routines are retrieving /etc/passwd entries. I
wonder if that could cause trouble. . .

Steven M. Bellovin November 13, 2007 21

The Evils of Static Buffers

• Note the following text from the getpwnam() man page:

The return value may point to static area, and may be
overwritten by subsequent calls.

• Processing “USER anonymous” calls

getpwnam("anonymous");

• Processing “˜ root” calls

getpwnam("root");

• The second call overwrites the buffer used by the first call

Steven M. Bellovin November 13, 2007 22

The Final Code Sequence

pw = getpwnam("anonymous");

if (user == "anonymous") guest = 1;

...

globpw = getpwnam("root");

...

if (!guest) { check password }

chdir(pw->pw_dir);

if (guest) chroot(pw->pw_dir);

setuid(pw->pw_uid);

In other words, it will do chdir("/"), chroot("/"), and setuid(0)!
Oops. . .

Steven M. Bellovin November 13, 2007 23

What Went Wrong

• The immediate problem is that the programmer forgot the semantics
of getpwnam()

• The obvious — and implemented — fix was to save and restore the
buffer before calling glob()

• But that ignores the real issue: improper modularization

Steven M. Bellovin November 13, 2007 24

Designing A Better Grammar

• All commands are not equal!

• USER can be followed only by PASS; no other commands are valid
until after logging in

• Why should the grammar accept anything else?

Steven M. Bellovin November 13, 2007 25

A Better Grammar

ftpsess : user pass cmdseq

user : USER SP username CRLF

pass : PASS SP password CRLF

cmdseq : cmd | cmdseq cmd

cmd : CWD SP pathname CRLF

| ...

This forces a login before any other code can executed

Steven M. Bellovin November 13, 2007 26

More Generally

• Any code can have a security vulnerability

• By limiting the code that can possible be executed as root, we limit
our exposure

• We then use strong confinement mechanisms — setuid() and
chroot() — to make the bulk of the code much less dangerous

Steven M. Bellovin November 13, 2007 27

Let’s Take it Further

• How do we know that no other code will be executed before login is
complete?

• Do we have sufficient confidence in YACC — and our understanding
of it — to be certain that nothing else can be executed?

• Let’s isolate things further

Steven M. Bellovin November 13, 2007 28

Breaking Up FTPD

• Split ftpd into two programs

• The first handles login: checking for anonymous ftp, validating the
password if needed, doing the setuid() and chroot()

• It then exec()s the other program

• This second program, which always executes unprivileged, handles
the bulk of the protocol

• The resulting ftpd is smaller — and the privileged section is only
about 125 lines

• We can now have an even simpler anonymous-only login program for
sites that don’t offer full ftp

Steven M. Bellovin November 13, 2007 29

There’s Another Problem. . .

• Under certain circumstances, ftpd is supposed to use TCP port 20

• Only root can bind to a low-numbered port

• If we’ve irrevocably given up root privileges in the login program, how
can we do this?

Steven M. Bellovin November 13, 2007 30

How Did it Ever Work?

• Traditional ftpd has a login procedure, too

• It doesn’t irrevocably give up root, it uses seteuid() instead

• It temporarily regains its privileges before binding to port 20, then
release them

• Ugly, dangerous, and creates risks in case of buffer overflows or the
like

Steven M. Bellovin November 13, 2007 31

Splitting Out Port 20

• Write a small setUID program that binds an open socket to port 20

• Create a socket, fork/exec() invoke this program

• When it returns, you have a socket; connec to the proper place

• That program is a bit tricky, because it has to verify that it’s only
invoked by ftpd

• It’s still quite small, and it’s better than uid-swapping

Steven M. Bellovin November 13, 2007 32

What Have We Done?

• We’ve divided the program into privileged and unprivileged sections

• We used strong isolation between the sections

• By getting rid of various flags, we simplified the program logic

Steven M. Bellovin November 13, 2007 33

It’s Really Helped

• There have been other ftpd vulnerabilities in the login code — see, for
one example,
http://www.cert.org/advisories/CA-1993-06.html

• Splitting out the port 20 access may prevent the race condition
attacks described in
http://www.cert.org/advisories/CA-1997-16.html

• The best way to win is to get out of the game!

Steven M. Bellovin November 13, 2007 34

rsh/rlogin/rcp

• For various complex reasons, rsh, rlogin, and rcp need to set
network connections as root

• (They’re horribly insecure for network reasons, but we won’t discuss
that here.)

• How should that be done? Make them setUID?

Steven M. Bellovin November 13, 2007 35

SetUID Root?

• No — requires trusting complex code.

• (rcp is especially problematic.)

• No — leaves facility unavailable to other applications

• Yes — avoid extra data copy?

Steven M. Bellovin November 13, 2007 36

Strategies

• We only need root privileges to set up the connection

• Use an external program for that

• Pass an open file descriptor back?

• Or fork and pay the price of extra data copies?

• Both work — avoid privilege in the large program

Steven M. Bellovin November 13, 2007 37

Again. . .

• We separated out the privileged part

• We gained flexibility

• We increased security

Steven M. Bellovin November 13, 2007 38

