
Security Architecture

• We’ve been looking at how particular applications are secured

• We need to secure not just a few particular applications, but many
applications, running on separate machines

• We need a few more primitives first

Steven M. Bellovin November 1, 2007 1

Confining an Application

• For Web security, we used OS permissions to protect the system
against compromise via a compromised Web server

• Suppose we want to isolate the Web server still further

• More precisely, we want to limit the Web server to a small subset of
the system’s resources

Steven M. Bellovin November 1, 2007 2

Rationale

• We wish to run powerful, complex applications that we do not
completely trust

• Neither Unix nor Windows file permissions are flexible enough to do
what we want

• There are other resources besides files that need to be protected

Steven M. Bellovin November 1, 2007 3

Couldn’t We Use MAC?

• MAC usually does not have negative permissions

• We’d have to find and change the protections of every file on the
system that was writable/readable/searchable by other

• We’d have to ensure that no other such files were created

• This is all possible but difficult

• More seriously, it is not high assurance

Steven M. Bellovin November 1, 2007 4

Other Resources

• What other resources need to be protected?

• CPU time

• Memory, real and virtual

• Disk space

• Network identity

• Network access rights

Steven M. Bellovin November 1, 2007 5

Some Are Easy

• Operating systems already regulate access to some resources

• Unix examples: setrlimit(), file system quotas

Steven M. Bellovin November 1, 2007 6

Network Identity and Access Rights

• A machine has an IP address

• A compromised application can use this address to exploit
address-based access control

• If nothing else, it can confuse intrusion detection systems

Steven M. Bellovin November 1, 2007 7

Bypassing File Permissions

• Suppose the attacker gains root privileges

• This permits overriding file permissions

• Also allows evasion of other resource limits, plus changes to network
identity
☞ Change the IP address and hide from the system administrator!

Steven M. Bellovin November 1, 2007 8

Goals

• Security

• High assurance

• Simple setup

• General-purpose mechanism

• Available to all applications

• We can’t get them all. . .

Steven M. Bellovin November 1, 2007 9

Change Root: chroot()

• Oldest Unix isolation mechanism

• Make a process believe that some subtree is the entire file system

• File outside of this subtree simply don’t exist

• Sounds good, but. . .

Steven M. Bellovin November 1, 2007 10

Chroot

bin

usr

jail

/

binetc

passwd sh

passwd sh

binetc usr

bin

Steven M. Bellovin November 1, 2007 11

Limitations of Chroot

• Only root can invoke it. (Why?)

• Setting up minimum necessary environment can be painful

• The program to execute generally needs to live within the subtree,
where it’s exposed

• Still vulnerable to root compromise

• Doesn’t protect network identity

Steven M. Bellovin November 1, 2007 12

Root versus Chroot

• Suppose an ordinary user could use chroot()

• Create a link to the su command

• Create /etc and /etc/passwd with a known root password

• Create links to any files you want to read or write

• Besides, root can escape from chroot()

Steven M. Bellovin November 1, 2007 13

Escaping Chroot

• What is the current directory? If it’s not under the chroot() tree, try
chdir("../../..")

• Better escape: create device files

• On Unix, all (non-network) devices have filenames

• Even physical memory has a filename

• Create a physical memory device, open it, and change the kernel
data structures to remove the restriction

• Create a disk device, and mount a file system on it. Then chroot()

to the real root

Steven M. Bellovin November 1, 2007 14

Trying Chroot

mkdir /usr/jail /usr/jail/bin

cp /bin/sh /usr/jail/bin/sh

chroot /usr/jail /bin/sh

chroot: /bin/sh: Exec format error

mkdir /usr/jail/libexec

cp /libexec/ld.elf_so /usr/jail/libexec

chroot /usr/jail /bin/sh

Shared object "libc.so.12" not found

mkdir /usr/jail/lib

cp /lib/libc.so.12 /usr/jail/lib

chroot /usr/jail /bin/sh

Shared object "libedit.so.2" not found

Steven M. Bellovin November 1, 2007 15

Trying Chroot (Continued)

cp /lib/libedit.so.2 /usr/jail/lib
chroot /usr/jail /bin/sh
Shared object "libtermcap.so.0" not found
cp /lib/libtermcap.so.0 /usr/jail/lib
chroot /usr/jail /bin/sh
ls
ls: not found
echo jailed >/jail
ˆD
ls -l /usr/jail
total 4
drwxr-xr-x 2 root wheel 512 Nov 1 21:50 bin
-rw-r--r-- 1 root wheel 7 Nov 1 22:31 jail
drwxr-xr-x 2 root wheel 512 Nov 1 22:31 lib
drwxr-xr-x 2 root wheel 512 Nov 1 22:30 libexec

Steven M. Bellovin November 1, 2007 16

Summary of Chroot

• It’s a good, but imperfect means of restricting file access

• It’s fairly useless against root

• it doesn’t provide other sorts of isolation

Steven M. Bellovin November 1, 2007 17

FreeBSD “Jail”

• Like chroot() on steroids

• Assign a separate network identity to a jail partition

• Restrict root’s abilities within a jail

• Intended for nearly-complete system emulation

• Network interactions with main system’s daemons

Steven M. Bellovin November 1, 2007 18

Sandboxes

• Very restricted environment, especially for network daemons

• Assume that the daemon will do anything

• Example: Janus traps each system call and validates it against policy

• Can limit I/O to certain paths

Steven M. Bellovin November 1, 2007 19

The Java Virtual Machine

• Java executables contain byte code, not machine language

• Java interpreter can enforce certain restrictions

• Java language prevents certain dangerous constructs and operations
(unlike, for example, C)

• In theory, it’s safe enough that web browsers can download byte code
from arbitrary web sites

Steven M. Bellovin November 1, 2007 20

Is the JVM Secure?

• Heavy dependency on the semantics of the Java language

• The byte code verifier ensures that the code corresponds only to
valid Java

• The class loader ensures that arguments to methods match properly

• Very complex process — not high assurance

• Bugs have been found, but they’re fairly subtle

• But — there have been buffer overflows in the C support library

Steven M. Bellovin November 1, 2007 21

Using the JVM For Servers

• The dangers come from untrusted executables

• If you write your applications in Java, you don’t have to worry about
that

• The strict type system, the array bounds-checking, and the (optional)
file access control all protect you from your own bugs

• Java is a very secure language for applications (if, of course, you’re
not too fussy about performance)

Steven M. Bellovin November 1, 2007 22

Virtual Machines

• Give the application an entire “machine”, down to the (virtual) bare
silicon

• Run an entire operating system on this

• Run the untrusted application on that OS

• It can be very safe

Steven M. Bellovin November 1, 2007 23

How VMs Work

• Recall the hardware access control mechanisms: privileged
operations and memory protection

• Run the guest operating system unprivileged

• Any time the guest OS issues a privileged operation, it traps to the
virtual machine monitor

• The VMM emulates the operation. For example, an attempt at disk
I/O is mapped to I/O to a real file that represents the virtual disk

Steven M. Bellovin November 1, 2007 24

Virtual Devices

• Virtual disks (or part or all of a real disk)

• Virtual screens, keyboards, and mice

• Virtual Ethernets

• Other virtual devices as needed

Steven M. Bellovin November 1, 2007 25

Virtual Machine Security

• Very strong isolation

• Very high overhead. . .

• Must set up and administer an entire OS

☞ Guest copies of Microsoft Windows require just as many patches as
do native copies

• Performance can be bad

Steven M. Bellovin November 1, 2007 26

Using Virtual Machines

• Great for testing OS changes

• Great for student use

• Internet hosting companies

• Can use them for executing suspected viruses and worms — but
some viruses detect the presence of the VMM and hide

Steven M. Bellovin November 1, 2007 27

Interacting with a Virtual Machine

• Often don’t want perfect isolation.

• Example: cut-and-paste between windows

• Performance can be dramatically enhanced if the guest OS signals
the VMM

• Example: add a virtual “graphics” driver that calls the VMM, via the
equivalent of a system call

Steven M. Bellovin November 1, 2007 28

Limitations of Virtual Machines

• They can be too real

• Would you let your enemy put a machine inside your data center?

• VMs can spread viruses, launch DoS attacks, etc.

• VMs require just as much care, administration, and monitoring as do
real machines

• In many situations, they represent an economic mechanism rather
than a security mechanism

Steven M. Bellovin November 1, 2007 29

Other Isolation Mechanisms

• Light-weight VM systems, such as Solaris Zones

• Domain and type enforcement: limit file accesses by each executable

• Systrace (on some BSD operating systems) is similar

• Sub-operating system: permission overlay on top of file system,
based on subUIDs

• All require fairly complex permission-setting

Steven M. Bellovin November 1, 2007 30

The Limits of Isolation

• All of the mechanisms we’ve described are complex (but canned
scripts can help)

• Most of them require root privileges

• As a consequence, they’re useful for complex system designs, but not
for general application isolation

Steven M. Bellovin November 1, 2007 31

Covert Channels

• We can block ordinary file accesses and network communication

• Are there other ways to leak information?

• Yes — covert channels

• Very important issue in a MAC world

Steven M. Bellovin November 1, 2007 32

MAC and Covert Channels

• One goal of MAC is to prevent leakage of information between a
high-security process and a low-security process

• It’s (relatively) easy to close the explicit communication channels,
such as shared files or network connections

• There are more subtle ways to communicate

• Two types: storage channels and timing channels

Steven M. Bellovin November 1, 2007 33

Storage Channels

• Modulate some shared resource

• Example: create and delete files in a shared directory

• The files themselves need not be readable

• MAC systems often have per-level /tmp directories, to help avoid this
problem

Steven M. Bellovin November 1, 2007 34

Timing Channels

• Modulate system timing in detectable way

• Example: do heavy disk I/O or refrain

• Receiver times how long it takes to do I/O operations

Steven M. Bellovin November 1, 2007 35

The Password-Checking Channel

• An old operating system (Tenex, for the PDP-10) checked (unhashed)
passwords one byte at a time.

• Locate the password overlapping the end of virtual memory; ask the
OS to check it

• If the first byte was wrong, it would return “fail”.

• If the byte was right, it would try to fetch the next byte, but take a page
fault because it was past the edge

• Repeat as needed

Steven M. Bellovin November 1, 2007 36

Falling Off the Edge of the Earth

e

s e c

s e c

r

r e

s 3 c r

t

e

s 3 c r

Steven M. Bellovin November 1, 2007 37

Defeating Covert Channels

• One approach — find them and eliminate them

• Bandwidth-limit them — cap the rate at which certain operations can
be done

• Add noise to the channel

Steven M. Bellovin November 1, 2007 38

Defense Limits

• They’re hard to find

• Will bandwidth limits interfere with legitimate use?

• Shannon showed that noise can’t completely block a channel, just
reduce its bandwidth

Steven M. Bellovin November 1, 2007 39

