
Cryptographic Engineering

• Last lecture, we touched on some real-world crypto issues, such as
how keys get into or out of secure devices

• Let’s look more at real-world cryptographic issues

Steven M. Bellovin October 11, 2007 1

Issues

• What to encrypt?

• Where should keys be stored?

• What is the tradeoff between availability and confidentiality?

Steven M. Bellovin October 11, 2007 2

Why Encrypt Files?

• Theft of files

• Theft of backup media

• Theft of computer

Steven M. Bellovin October 11, 2007 3

Bad Reasons and Good

• Is there a flaw in the operating system’s protection mechanisms?
Why can’t the OS keep bad guys from the file?

• You don’t trust the system administrator? Can the sysadmin steal the
decryption key?
☞But — if you’re using NFS, the file may reside on one
(untrustworthy) machine, while the decryption is done on another

• Laptops have feet — a remarkably high percentage are stolen

Steven M. Bellovin October 11, 2007 4

Laptop Theft

September 17, 2000

IRVINE – Qualcomm founder Irwin Jacobs’ laptop computer disappeared
during a conference yesterday in an apparent theft that could put some of
the company’s most sensitive secrets at risk.

. . .

Jacobs said his laptop contained ”everything,” secret corporate
information, including e-mail dating back years, financial statements and
even personal mementos.

. . .

Though Jacobs’ IBM ThinkPad PC is valued at about $3,700, the value of
the information it contained is incalculable to Qualcomm and to Jacobs.

Steven M. Bellovin October 11, 2007 5

Caveats

• Encrypting a file system provides confidentiality

• It generally does not provide integrity protection

• It may result in a loss of availability, if you lose the key

Steven M. Bellovin October 11, 2007 6

Encryption Options

• Manually encrypt/decrypt files

• Overlay encryption on top of the file system

• Encrypt an entire disk partition

Steven M. Bellovin October 11, 2007 7

Manual Encryption

• Very inconvenient to use

• Users are constantly supplying keys

• Most utilities won’t have direct interfaces to the decryption function;
you have to manually decrypt files before use

• Users will forget to re-encrypt files

Steven M. Bellovin October 11, 2007 8

File System Encryption

• Some sort of overlay on real file system

• Encryption and decryption operate on individual files, but
transparently to applications

• Directories are files, too, so filenames are encrypted

Steven M. Bellovin October 11, 2007 9

Problems With File System Encryption

• Metadata is not encrypted

• File lengths are not protected

• File name lengths are not well-protected

Steven M. Bellovin October 11, 2007 10

File Size Distribution

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

lo
g(

N
um

be
r

of
 F

ile
s)

log(File Size in megabytes)

Other
mp3

jpg

Steven M. Bellovin October 11, 2007 11

Population Count For a Few File Sizes

Type 1 MB 2 MB 3 MB
Other 2793 657 335
MP3 172 345 519
JPG 3095 1115 1800

Files of 2 MB or 3 MB are — on my disk — very likely to be JPGs; if not,
they’re almost certainly MP3s. Files over 3 MB are never JPGs.

Steven M. Bellovin October 11, 2007 12

Encryption Using CFS

$ cattach /usr/mab/secrets matt
Key:
$ ls -ld /crypt/matt
drwx------ 2 mab 512 Apr 1 15:56 matt
$ echo "murder" > /crypt/matt/crimes
$ ls -l /crypt/matt
total 1
-rw-rw-r-- 1 mab 7 Apr 1 15:57 crimes
$ cat /crypt/matt/crimes
murder
$ ls -l /usr/mab/secrets
total 1
-rw-rw-r-- 1 mab 15 Apr 1 15:57 8b06e85b87091124
$ cat -v /usr/mab/secrets/8b06e85b87091124
M-Z,k\x{02C6}]\x{02C6}B\x{02C6}VM-VM-6A\x{02DC}uM-L M-_M-DM-\x{

Steven M. Bellovin October 11, 2007 13

Doing the Encryption

• What mode of operation do you use?
☞CBC is a good choice

• Where does the IV come from? (Note: on Unix, must support seeks
to any byte)

• Partial solution: encrypt each block separately; use block number as
part of IV

• Must use some metafile for the rest of the IV. Solution must survive
file copies, dump/restore, etc. (CFS uses .pvect files.)

• What about never-written blocks? On Unix, these read as all 0s

Steven M. Bellovin October 11, 2007 14

Providing Keys for Encrypted File Systems

• File system encryption: can be supplied by user

• Can have fine-granularity keying, per sub-tree

• Disk Encryption: one key per encrypted partition. Shared?

• In either case, once the key is supplied, you rely on OS protection
mechanisms

• Bottom line: file system or disk encryption is useful if the threat is
compromise from outside the boundaries of the machine: physical
theft, remote file system, backup media, etc.

• It is not useful for intra-machine threats; an enemy who can bypass
access controls can steal the key or the plaintext

• Encryption is not a substitute for operating system access controls

Steven M. Bellovin October 11, 2007 15

Disk Encryption

• Encrypt an entire disk or disk partition

• Protects everything, even the free space

☞ Very important, given that “delete” operations do not delete the data

• Useful for protecting swap area

• But — free space in encrypted section is not available for plaintext
use, and vice-versa

Steven M. Bellovin October 11, 2007 16

Protecting a Key Database

• How does the (symmetric key) trusted party safeguard its database of
keys?

• Encrypt it? Where does the decryption key come from?

• One answer: supplied by operator at reboot time

• Another answer: store on a separate file system, so that the key and
the encrypted data won’t be on the same backup medium

• Tradeoff: availability versus confidentiality and integrity

• Use secure crypto hardware to decrypt database?

• Who has what sort of access, and what are their powers?

Steven M. Bellovin October 11, 2007 17

How Does a User Store a Key?

• Store key on disk, encrypted

• Generally decrypted with passphrase

• Passphrases are weak, but they’re a second layer, on top of OS file
access controls

Steven M. Bellovin October 11, 2007 18

Secure Cryptographic Hardware

• Can be used for users or servers

• More than just key storage; perform actual cryptographic operations

• Enemy has no access to secret or private keys

• Friends have no access, either

• Modular exponentiation can be done much faster with dedicated
hardware

Steven M. Bellovin October 11, 2007 19

Hardware Issues

• Hardware must resist physical attack

• Environmental sensors: detect attack and erase keys

• Example: surround with wire mesh of known resistance; break or
short circuit is detected

• Example: temperature sensor, to detect attempt to freeze battery

Steven M. Bellovin October 11, 2007 20

Limitations of Cryptographic Hardware

• Tamper-resistant, not tamper-proof

• Again: who is your enemy, and what are your enemy’s powers?

• How does Alice talk to it securely? How do you ensure that an enemy
doesn’t talk to it instead?

• What is Alice’s intent?

• What if there are bugs in the cryptographic processor software?
(IBM’s 4758 has a 486 inside. That can run complex programs. . .)

Steven M. Bellovin October 11, 2007 21

Summary of Key Management
and Key Handling

• Sharing cryptographic keys is a delicate business

• Protecting keying material is crucial

• There are no great solutions for general-purpose systems, though
proper hardware can prevent compromise (but not misuse) of
long-term keys

Steven M. Bellovin October 11, 2007 22

Random Numbers

• Random numbers are vital for cryptography

• They’re used for keys, nonces, primality testing, and more

• Where do they come from?

Steven M. Bellovin October 11, 2007 23

What is a Random Number?

• Must be unpredictable

• Must be drawn from a large-enough space

• Ordinary statistical-grade random numbers are not sufficient

• Distribution not an indication of randomness: loaded dice are still
random!

Steven M. Bellovin October 11, 2007 24

Generating Random Numbers

Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin.

—John von Neumann, 1951

Steven M. Bellovin October 11, 2007 25

Sources of Random Numbers

• Dedicated hardware random number sources

• Random numbers lying around the system

• Software pseudo-random generator

• Combinations

Steven M. Bellovin October 11, 2007 26

Hardware Random Number Generators

• Radioactive decay

• Thermal noise

• Oscillator pairs

• Other chaotic processes

Steven M. Bellovin October 11, 2007 27

Radioactive Decay

• Timing of radioactive decay unpredictable even in theory — it’s a
quantum process

• Problem: low bit rate from rational quantities of radioactive material

• Problem: not many computers have Geiger counters or radioactive
isotopes attached. . .

• See http://www.fourmilab.ch/hotbits/hardware.html for
a hardware description

Steven M. Bellovin October 11, 2007 28

Thermal Noise

• Any electronic device has a certain amount of random noise

• Example: Take a sound card with no microphone and turn up the gain
to maximum

• Or use a digital camera with the lens cap on
(http://www.lavarnd.org/)

• Problem: modest bit rate

Steven M. Bellovin October 11, 2007 29

Oscillator Pairs

• Have a free-running fast R-C oscillator (don’t use a crystal; you don’t
want it accurate or stable!)

• Have a second, much slower oscillator

• At each maximum of the slow oscillator, sample the value of the fast
oscillator

• Caution: watch for correlations or couplings between the two

Steven M. Bellovin October 11, 2007 30

Other Chaotic Processes

• Mouse movements

• Keystroke timing (low-order bits)

• Disk seek timing (air turbulence affects disk internals)

• Cameras and Lava Lites R©!

Steven M. Bellovin October 11, 2007 31

Problems

• Need deep understanding of underlying physical process

• Stuck bits

• Variable bit rate

• How do we measure their randomness?

Steven M. Bellovin October 11, 2007 32

Software Generators

• Again, ordinary generators, such as C’s random() function or Java’s
Random class are insufficient

• Can use cryptographic primitives — encryption algorithms or hash
functions — instead

• But — where does the seed come from?

Steven M. Bellovin October 11, 2007 33

Typical Random Number Generator

unsigned int

nextrand()

{

static unsigned int state = 1;

state = f(state);

return state;

}

What’s wrong with this for cryptographic purposes?

Steven M. Bellovin October 11, 2007 34

Problems

• The seed is predictable

• There are too few possible seeds

• The output is the state variable; if you learn one value, you can
predict all subsequent ones

Steven M. Bellovin October 11, 2007 35

A Better Version

unsigned int

nextrand()

{

static unsigned int state;

static int first = 1;

if (first) {first = 0; state = truerand(); }

state = f(state);

return md5(state);

}

Steven M. Bellovin October 11, 2007 36

Much Better

• State is initialized from a true-random source

• Can’t invert md5() to find state from return value

• Actually, we can: state is too short, and can can be found in 2
32

tries

Steven M. Bellovin October 11, 2007 37

Private State

• An application can keep a file with a few hundred bytes of random
numbers

• Generate some true-random bytes, mix with the file, and extract what
you need

• Write the file back to disk — read-protected, of course — for next time

Steven M. Bellovin October 11, 2007 38

OS Facilities

• Many operating systems can provide cryptographic-grade random
numbers

• /dev/random: True random numbers, from hardware sources

• /dev/urandom: Software random number generator, seeded from
hardware

• Windows has analagous facilities

Steven M. Bellovin October 11, 2007 39

A Well-Known Failure

• Wagner and Goldberg attacked Netscape 1.1’s cryptographic random
number generator

• Generator was seeded from process ID, parent process ID, and time
of day

• ps command gives PID and PPID

• Consult the clock for time of day in seconds

• Iterate over all possible microsecond values

• Note: they did this by reverse-engineering; they did not have browser
source code

• http:

//www.cs.berkeley.edu/˜daw/papers/ddj-netscape.html

Steven M. Bellovin October 11, 2007 40

Hardware Versus Software
Random Number Generators

• Hardware values can be true-random

• Output rate is rather slow

• Subject to environmental malfunctions, such as 60 Hz noise

• Software, if properly written, is fast and reliable

• Combination of software generator with hardware seed is usually best

Steven M. Bellovin October 11, 2007 41

Summary

• To paraphrase Knuth, random numbers should not be generated by a
random process

• In many systems, hardware and software, random number generation
is a very weak link

• Use standard facilities when available; if not, pay attention to RFC
4086

Steven M. Bellovin October 11, 2007 42

