
“I’m paranoid, but am I

paranoid enough?”

Steven M. Bellovin October 18, 2007 1

Special Techniques for Secure Programs

• Buffer overflows are bad in any case

• Some problems are only a risk for secure programs

• But what is a “secure program”?

• A secure program is one that runs with one set of permissions and
accepts input from somone with lesser permissions

• Includes most network servers and setUID programs, and many
system daemons

Steven M. Bellovin October 18, 2007 2

SetUID Programs Are More Sensitive

• Anyone on the local machine can invoke them

• Many environmental influences that can be controlled by the invoker

• On the other hand, network daemons can be accessed remotely

Steven M. Bellovin October 18, 2007 3

Macro Injection Attacks

• Suppose a program is querying an SQL database based on valid
userID and query string:

sprintf(buf, "select where user=\"\%s\" &&

query=\"%s\"", uname, query);

• What if query is

foo" || user="root

• The actual command passed to SQL is

select where user="uname" && query = "foo" ||

user="root"

• This will retrieve records it shouldn’t have

• Stored SQL procedures are much safer

Steven M. Bellovin October 18, 2007 4

What Was Wrong with That Slide?

Steven M. Bellovin October 18, 2007 5

Did You Notice?

• I wrote sprintf instead of snprintf

• I was mostly trying to save room on a complex slide

• I was also curious to see who’d notice. . .

Steven M. Bellovin October 18, 2007 6

More Generally

• If you invoke an external program, be aware of its parsing rules

• Especially serious for languages like Shell, Perl, and Python, where
data can be converted to statements and executed

• Example: what delimits different arguments to the shell?

• Blank, tab, newline? Why?

Steven M. Bellovin October 18, 2007 7

IFS

• The shell variable IFS lists the delimiters used when parsing
command lines

• If you can change it, you can control the shell’s parsing

• (The exact effects are subtle, because of the risks of just accepting it
blindly — know your semantics!)

Steven M. Bellovin October 18, 2007 8

Other Sensitive Environment Variables

• PATH Search path for finding commands

– If “.” is first,, you’ll execute a command in the current directory.
What if it’s booby-trapped?

– Secure programs should always use absolute paths or reset PATH

• ENV With some shells, a file to execute on startup

• LD LIBRARY PATH The search path for shared libraries

• LD PRELOAD Extra modules loaded at runtime

Some of these are disabled for setUID programs, to minimize the risks

Steven M. Bellovin October 18, 2007 9

File Descriptors

• Normally, file descriptor 0 is stdin, 1 is stdout, and 2 is stderr

• The open() system call allocates the first available file descriptor,
starting from 0

• Suppose you close fd 1, then invoke a setUID program that will open
some sensitive file for output

• Anything it prints to stdout will overwrite that file

• Similar tricks for fd 0

Steven M. Bellovin October 18, 2007 10

Some Other Inherited Attributes

current directory
root directory see chroot()
resource limits see getrlimit()
umask
timers see getitimer()
signal mask
open files See the FIOCLEX option to ioctl
Current uid
Effective uid

Steven M. Bellovin October 18, 2007 11

Process Creation on Windows

• The CreateProcess call creates processes on Windows

• Executing a new program is part of the process creation mechanism

• 10 parameters control the program to be executed, window creation,
priority, security attributes, file inheritance, and much more

• The Windows call does more for you, but is it simpler?

• Do programmers have a better understanding of what is inherited,
and the implications of those things?

Steven M. Bellovin October 18, 2007 12

Why Do These Matter?

• Will such a program misbehave?

• Will it core dump after having read a sensitive file? (Some systems
prevent core dumps of setUID programs.)

• If the program terminates prematurely, will it leave some crucial
resource locked?

Steven M. Bellovin October 18, 2007 13

Access Control

• Some privileged programs need to read or write user-specified files

• Example: web server (remote), lpr (setUID)

• Very tricky. . .

Steven M. Bellovin October 18, 2007 14

Remote Access Control

• Don’t want to offer all system files to, say, web users

• Operating system doens’t help — too many files are world-readable

• Web server must implement its own access control

• Several different levels

Steven M. Bellovin October 18, 2007 15

Filename Parsing

• User supplies pathname; application must check for validity

• Administrator specifies list of accessible files and/or directories

• Sometimes, wildcards — *, ?, and more — are permitted

• Application must parse supplied filename

• Remarkably difficult

Steven M. Bellovin October 18, 2007 16

The “ ..” Problem

• Attackers try to get at other files

• Simplest attack: put .. in the path

• http://example.com/../../../../etc/passwd

• The .. can occur later:

• http://example.com/a/b/../../../../etc/passwd

• If directory /dir is legal, what about /dir/../dir/file? Do you
want to count levels?

• Watch out for /dir///../../file — replicated /’s counts as a
single one

Steven M. Bellovin October 18, 2007 17

Application Syntax Issues

• Applications can have their own weird syntax

• Example: in URLs, %xx can specify two hex digits for the character.
%2F is the same as /

• When is that expanded?

Steven M. Bellovin October 18, 2007 18

Unicode

• Standard for representing (virtually) all of the world’s scripts
☞ There are proposals for Klingon and Tengwar (“Elvish”) codepoints

• Many problems!

• Some symbols look the same, but have different values: ordinary / —
technically called “solidus” — is U+002F, but U+2044, “fraction
slash”, looks the same

• “Combining characters” and “grapheme joiners” make life even more
complicated. Thus, á can be U+00C1 or the two-character sequence
U+0041,U+0301

• Comparison rules have to be application-dependent — and watch out
for false visual equivalences; these have already been used for
attacks, especially with Cyrillic domain names

Steven M. Bellovin October 18, 2007 19

Operating Systems Don’t Have Such Problems

• Conceptually, you’re trying to permit certain subtrees.

• The application is trying to map a string into a subtree

• The OS has one mapping function; the application has another

• The OS doesn’t care about the tree structure for access control; it
uses its own mechanisms

• The OS stores permissions with the data; no separate parse is
needed

Steven M. Bellovin October 18, 2007 20

File Access by SetUID Programs

• Some commands — lpr, for example — need to write to restricted
places, but also read users’ files

• Need permissions to write to spool directory; need user permissions
to read users’ files

• How can this be done?

Steven M. Bellovin October 18, 2007 21

First Attempt: Access() System Call

if (access(file, R_OK) == 0) {

fd = open(file, O_RDONLY);

ret = read(fd, buf,s sizeof buf);

....

}

else {

perror(file);

return -1;

}

What’s wrong?

Steven M. Bellovin October 18, 2007 22

Several Problems

• Only useful if setUID root – other UIDs can’t open read-protected files.

• (I didn’t check the return code on the open() call. . .)

• Race conditions

• Generic name: TOCTTOU (Time of Check to Time of Use)

Steven M. Bellovin October 18, 2007 23

Race Conditions

• There is a window between the access() call and the open() call

• The attack program can create a link to a readable file, invoke lpr in
the background, then remove the link and replace it with a link to a
protected file

• The probability of success is low but not zero — and the attacker only
has to win once

Steven M. Bellovin October 18, 2007 24

Temporary Files

• The same attack can happen on files in /tmp

• The standard C library subroutine mktemp() is vulnerable to this

• Alternatives: mkstemp() or mktemp() with the O CREAT | O EXCL

flags to open()

• Caution: if open() is used that way, generate a new template if
EEXIST is returned

Steven M. Bellovin October 18, 2007 25

Shedding SetUID

• A setUID program can give up and then regain its setUID status:

save_uid = geteuid();

seteuid(getuid());

fd = open(file, O_RDONLY);

seteuid(save_uid);

• Better alternative: run unprivileged most of the time, but assume
setUID status only when doing privileged operations

☞ But — watch for SIGINT, buffer overflows; injected code can
reassume privileges, too

Steven M. Bellovin October 18, 2007 26

Lock Directories

• Have a parent directory that’s mode 700, and a 777 subdirectory

• While privileged, do a chdir() to the subdirectory

• Give up privileges; write files in this subdirectory

Steven M. Bellovin October 18, 2007 27

Use a Subprocess

• Fork, and have a subprocess open the user’s files

• Option 1: copy the file contents to the parent process over a pipe —
safe but slow

• Option 2: send the file descriptor via sendmsg()/recvmsg() over a
Unix-domain socket

Steven M. Bellovin October 18, 2007 28

Issues with Message-Passing Systems

• File-opening permissions

• Authentication

• Other issues?

Steven M. Bellovin October 18, 2007 29

Opening Files

• How does the server open a private file? Two ways. . .

• The client opens the file and passes the open file descriptor

• The client sends some sort of access right — a capability — to the
server

Steven M. Bellovin October 18, 2007 30

Authentication

• Who is allowed to send messages to the server?

• How does the server know the client’s identity?

• Two solutions: support from the OS or cryptographic authentication

Steven M. Bellovin October 18, 2007 31

Other Issues?

• The buggy code problem doesn’t go away

• It’s very similar to the network security problem; it hasn’t been solved,
either

Steven M. Bellovin October 18, 2007 32

The Fundamental Problem

• The real issue: interaction

• To be secure, a program must minimize interactions with the outside

• All interactions must be controlled

Steven M. Bellovin October 18, 2007 33

RASQ

• RASQ: Relative Attack Surface Quotient

• Microsoft metric of how vulnerable an application is

• Roughly speaking, it measures how many input channels it has

• Must reduce RASQ

Steven M. Bellovin October 18, 2007 34

Not All Channels Are Equal

• Some channels are easier to exploit

• Some are more accessible to attackers

• Some have a bad track record

Steven M. Bellovin October 18, 2007 35

RASQ Examples

• Weak ACLs on shared files: .9 — names are generally known; easy
to attack remotely

• Weak ACLs on local files: .2 — only useful to attacker after initial
compromise

• Open sockets: 1.0 — potential target

Steven M. Bellovin October 18, 2007 36

Generic Defenses

• Better OS

• What’s a secure OS? One that makes it easy to write secure
programs

• Most don’t qualify. . .

Steven M. Bellovin October 18, 2007 37

Minimize Chances for Mistakes

• Eliminate unnecessary interactions

• Example: per-process or per-user /tmp

• Avoid error-prone primitives

• Tight specification of input and environment — and check that it’s all
true

Steven M. Bellovin October 18, 2007 38

