Intrusion Detection Systems

(slides courtesy Prof. Stolfo)
Motivation

- We can't prevent all break-ins
- There will always be new holes, new attacks, and new attackers
- We need some way to cope
Defense in Depth

- More generically, most single defenses can fail
- We always need defense in depth – multiple layers, of different designs and philosophies
- One such layer: *Intrusion Detection Systems*
IDS Help

- An IDS alerted us to the sophisticated attack described last time
- We now know the machine had been penetrated at least as long ago as May
- But when the attacker tried to do more, he or she was detected – by an IDS
Just an Overview

- This is just a short overview of the subject
- For more details, take COMS E6185
Elements of Intrusion Detection

- **Primary assumptions:**
 - System activities are observable
 - Normal and intrusive activities have distinct evidence

- **Components of intrusion detection systems:**
 - From an algorithmic perspective:
 - Features - capture intrusion evidence from audit data
 - Models - piece evidence together; infer attack
 - From a system architecture perspective:
 - Audit data processor, knowledge base, decision engine, alarm generation and responses
Host-Based IDSs

- **Using OS auditing mechanisms**
 - E.G., BSM on Solaris: logs all direct or indirect events generated by a user
 - `strace` for system calls made by a program

- **Monitoring user activities**
 - E.G., Analyze shell commands

- **Monitoring execution of system programs**
 - E.G., Analyze system calls made by `sendmail`
Basic Audit Modules (Hosts)

Windows Registry sensor

EventLog - Uses the windows Event Logging system to track entries into all three of the windows event logs: System, Security, Application

Netstat - Uses the information from the program *netstat* to provide information about network usage on the machine

Health - Runs the program *health* to give current information about the system (CPU usage, mem usage, swap usage)

Ps - Uses information from the /proc virtual file system as a data source
System Call Traces

 11:33:27; [pid 1286] ioctl
Windows Registry Accesses

Smmc.exe SOpenKey
SHKLM\Software\Microsoft\Windows_NT\CurrentVersion\FontLink\SystemLink
SNOTFOUND S0 NORMAL
Smmc.exe SOpenKey
SHKLM\Software\Microsoft\Windows_NT\CurrentVersion\FontLink\SystemLink
SNOTFOUND S0 NORMAL
SREGMON.EXE SOpenKey
SHKLM\System\CurrentControlSet\Services\WinSock2\Parameters SSUCCESS
SKey: _0xE12F4580 NORMAL
SREGMON.EXE SQueryValue
SHKLM\System\CurrentControlSet\Services\WinSock2\Parameters\WinSock_Registry_Version SSUCCESS S"2.0" NORMAL
SREGMON.EXE SQueryValue
SHKLM\System\CurrentControlSet\Services\WinSock2\Parameters\WinSock_Registry_Version SSUCCESS S"2.0" NORMAL
SREGMON.EXE SOpenKey
SHKLM\System\CurrentControlSet\Services\WinSock2\Parameters\Protocol_Catalog9 SSUCCESS SKey: _0xE1F07580 NORMAL
SREGMON.EXE SQueryValue
SHKLM\System\CurrentControlSet\Services\WinSock2\Parameters\Protocol_Catalog9\Serial_Access_Num SSUCCESS S0x4 NORMAL
Network IDSs

- Deploying sensors at strategic locations
 - E.G., Packet sniffing via `tcpdump` at routers

- Inspecting network traffic
 - Watch for violations of protocols and unusual connection patterns

- Monitoring user activities
 - Look into the data portions of the packets for malicious command sequences

- May be easily defeated by encryption
 - Data portions and some header information can be encrypted

- Other problems …
Network Connections

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Port</th>
<th>Proto</th>
<th>Service</th>
<th>Type</th>
<th>Source Port</th>
<th>Destination Port</th>
<th>Target Port</th>
<th>State</th>
<th>Flags</th>
<th>Duration</th>
<th>Syn Flags</th>
<th>Timestamp</th>
<th>Event Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, tcp, http, SF, 181</td>
<td>5450</td>
<td>0</td>
<td>tcp</td>
<td>http</td>
<td>SF</td>
<td>181</td>
<td>5450</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0, tcp, http, SF, 239</td>
<td>486</td>
<td>0</td>
<td>tcp</td>
<td>http</td>
<td>SF</td>
<td>239</td>
<td>486</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0, tcp, http, SF, 235</td>
<td>1337</td>
<td>0</td>
<td>tcp</td>
<td>http</td>
<td>SF</td>
<td>235</td>
<td>1337</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0, tcp, http, SF, 219</td>
<td>1337</td>
<td>0</td>
<td>tcp</td>
<td>http</td>
<td>SF</td>
<td>219</td>
<td>1337</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0, tcp, http, SF, 217</td>
<td>2032</td>
<td>0</td>
<td>tcp</td>
<td>http</td>
<td>SF</td>
<td>217</td>
<td>2032</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0, tcp, http, SF, 217</td>
<td>2032</td>
<td>0</td>
<td>tcp</td>
<td>http</td>
<td>SF</td>
<td>217</td>
<td>2032</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0, tcp, http, SF, 212</td>
<td>1940</td>
<td>0</td>
<td>tcp</td>
<td>http</td>
<td>SF</td>
<td>212</td>
<td>1940</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0, tcp, http, SF, 159</td>
<td>4087</td>
<td>0</td>
<td>tcp</td>
<td>http</td>
<td>SF</td>
<td>159</td>
<td>4087</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0, tcp, http, SF, 210</td>
<td>151</td>
<td>0</td>
<td>tcp</td>
<td>http</td>
<td>SF</td>
<td>210</td>
<td>151</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0, tcp, http, SF, 212</td>
<td>786</td>
<td>0</td>
<td>tcp</td>
<td>http</td>
<td>SF</td>
<td>212</td>
<td>786</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0, tcp, http, SF, 210</td>
<td>624</td>
<td>0</td>
<td>tcp</td>
<td>http</td>
<td>SF</td>
<td>210</td>
<td>624</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Architecture of Network IDS

Policy Script Interpreter

Event Engine

libpcap

Network

Packet stream

Filtered packet stream

Event stream

Alerts/notifications

Policy script

Event control

tcpdump filters
Firewall Versus Network IDS

- **Firewall**
 - Active filtering
 - Fail-close

- **Network IDS**
 - Passive monitoring
 - Fail-open

FW -> IDS
Requirements of Network IDS

- High-speed, large volume monitoring
 - No packet filter drops
- Real-time notification
- Mechanism separate from policy
- Extensible
- Broad detection coverage
- Economy in resource usage
- Resilience to stress
- Resilience to attacks upon the IDS itself!
Eluding Network IDS

What the IDS sees may not be what the end system gets.

- Insertion and evasion attacks.
 - IDS needs to perform full reassembly of packets.
- But there are still ambiguities in protocols and operating systems:
 - E.G. TTL, fragments.
 - Need to “normalize” the packets.
Insertion Attack

End-System sees:

\[
\begin{array}{llll}
A & T & T & A \\
C & K
\end{array}
\]

IDS sees:

\[
\begin{array}{llllll}
A & T & X & T & A & C \\
K
\end{array}
\]

Attacker’s data stream

\[
\begin{array}{llllll}
T & X & T & C & A & A & K
\end{array}
\]

Examples: bad checksum, TTL.
Evasion Attack

End-System sees:

\[
\begin{array}{cccc}
A & T & T & A & C & K \\
\end{array}
\]

IDS sees:

\[
\begin{array}{cccc}
A & T & T & C & K \\
\end{array}
\]

Attacker’s data stream

\[
\begin{array}{cccc}
T & T & C & A & A & K \\
\end{array}
\]

Example: fragmentation overlap
DoS Attacks on Network IDS

- Resource exhaustion
 - CPU resources
 - Memory
 - Network bandwidth

- Abusing reactive IDS
 - False positives
 - Nuisance attacks or “error” packets/connections
Taxonomy of IDS’s
Intrusion Detection Approaches

■ Modeling
 ◆ Features: evidences extracted from audit data
 ◆ Analysis approach: piecing the evidences together
 ✦ Misuse detection (a.k.a. signature-based)
 ✦ Anomaly detection (a.k.a. statistical-based)

■ Deployment: Network-based or Host-based

■ Development and maintenance
 ◆ Hand-coding of “expert knowledge”
 ◆ Learning based on audit data
Components of Intrusion Detection System

- **Audit Data Preprocessor**
- **Audit Records**
- **Activity Data**
- **Detection Engine**
- **Alarms**
- **Decision Engine**
- **Action/Report**

- **Detection Models**
- **Decision Table**

system activities are observable

normal and intrusive activities have distinct evidence
A Generic IDS

Detector: Eliminates unneeded information from the audit trail.
Countermeasure: Takes corrective action to either prevent the actions from being executed or changing the state of the system back to a secure state.
Characteristics of IDS

- **Detection method**: The characteristics of the analyzer.
- **Behavior on detection**: the response of the IDS to attack.
- **Audit source location**: The kind of input information that IDS analyzes.
- **Detection paradigm**: Detection mechanism. Usage frequency: Real-time or off-line.
Detection Paradigm

- **State-based versus transition-based IDS**
 - State-based: Identifies intrusions on the states
 - Transition-based: Watches events that trigger transition from one state to another

- **Non-perturbing versus pro-active analysis of state or transition**
 - Non-perturbing: Consists of the vulnerability assessment side
 - Pro-active: Analysis by explicitly triggering events
IDS: Time aspect

- **Real-time IDS**
 - Analyzes the data while the sessions are in progress
 - Raises an alarm immediately when the attack is detected

- **Off-line IDS**
 - Analyzes the data after the information has been already collected
 - Useful for understanding the attackers’ behavior
Misuse Detection

Example: if (src_ip == dst_ip) then “land attack”

Can't detect new attacks
Misuse Detection

- The system is equipped with a number of attack descriptions ("signature"). Then matched against the audit data to detect attacks.
- Pro: less false positives (But there still some!)
- Con: cannot detect novel attacks, need to update the signatures often.
- Approaches: pattern matching, security rule specification.
Knowledge-based IDS

- Good accuracy, bad completeness
- Drawback: need regular update of knowledge
 - Difficulty of gathering the information
 - Maintenance of the knowledge is a time-consuming task
- Knowledge-based IDS
 - Expert systems
 - Signature analysis
 - Petri nets
 - State-transition analysis
Specification-based Detection

- Manually develop specifications that capture legitimate (not only previous seen) system behavior. Any deviation from it is an attack.
- Pro: can avoid false-positive since the specification can capture all legitimate behavior.
- Con: hard to develop a complete and detailed specification, and error-prone.
- Approach: state machine, extended finite state automata (EFSA)
 - Augment FSA with state variables
 - Make transition on event that may have arguments
Example of specification-based IDS

A gateway’s behavior at IP

ext_ifc is the network interface on which packet received, and p is the packet content
Today’s IT Security Tools

- We make lists of bad behavior
 - Virus definitions
 - SPAM filters and blacklists
 - IDS signatures
 - Policies
- We distribute the lists to applications and detection systems
- They flag behavior that fits the pattern
- The system is about to collapse
 - Delays
 - Administrative Overhead
 - False positives
Behavior-based IDS

- Good completeness, bad accuracy
- Detect intrusion by observing a deviation from the normal or expected behavior of the system or the users
- Can detect attempts to exploit new and unforeseen vulnerabilities

Behavior-based IDS
- Statistics
- Expert systems
- Neural networks
- User intention identification
- Computer immunology
Anomaly Detection

- Build models of “normal” behavior of a system using machine learning or data mining. Any large deviation from the model is thought as anomaly.
- Pro: can detect previous unseen attacks
- Con: have higher false positives, and hard to train a system for a very dynamic environment.
- Approaches: statistical methods, clustering, outlier detection, SVM
Anomaly Detection

Relatively high false positive rate - anomalies can just be new normal activities.
Data Mining System Perspective

1. Log system behavior in data warehouse
2. Mine data offline
3. Produce predictive detection model
4A. Integrate new model with existing IDS
4B. Produce new signature models
5. Detect new attacks with enhanced IDS

Real-time attack recognition

Knowledge Base of Signatures

Model Evaluation

Predictive Detection Model

Audit data

User activity

Host activity

LAN/NOC/Peering Center activity

Internet

Analyst

Alert on known attacks
Alert on new attacks

Step 1: Log system behavior in data warehouse
Step 2: Mine data offline
Step 3: Produce predictive detection model
Step 4A: Integrate new model with existing IDS
Step 4B: Produce new signature models
Step 5: Detect new attacks with enhanced IDS
Anomaly Detection

- **Model**
 - Generative / Discriminative

- **Algorithm**
 - Supervised / unsupervised
 - Compute online?

- **Data source / feature selection**
 - Depends on expert knowledge now

- **Cost**
 - Computation cost
 - Feature audit and construction cost
 - Damage cost

- **Goal**: detect attacks accurately and promptly
Data sources

- **Single packet**
 - src and dst ip, port (most commonly used)
 - All packet header fields (PHAD)

- **A sequence of packets**
 - Follow the automaton for the protocols (specification-based)

- **Reconstructed connections**
 - Connection status, frequency (commonly used)

- **Application data**
 - Character distribution, keywords, etc. (ALAD, www ids)

- **Traffic flows**
 - Volume / velocity. (signal analysis, k-ary sketch, PCAP)
Supervised Learning

- **Statistical tests**
 - Build distribution model for normal behavior, then detect low probability events

- **Outlier detection**
 - K-Nearest neighbor, Mahalanobis distance, LOF

- **Self-Organizing Map (SOM)** [Ramadas 03]

- **Nonstationary model - PHAD/ALAD** [Mahoney 02]

- **Probability AD (PAD)** [Stolfo, Eskin 04]

- **SVM / OCSVM**
Unsupervised Learning

- Outlier detection
- Clustering
- SmartSifter [Yamanishi 00]
 - Online learning
 - Histogram + Finite mixtures
- Wavelet analysis for change detection [Barford 02]
- OCSVM
- Most of them cannot used for real-time detection
Examples of IDS

- **Misuse detection**
 - SNORT: signature based commercial IDS
 - STAT: real time IDS using state transition analysis, attack scenarios specified by STATL. (Higher level signature, abstract from raw packet) [Vigna 03]
 - Bro: real time, events driven, security policy written in a specialized script language. [Paxson 99]

- **Anomaly detection**
 - MADAM ID: use RIPPER
 - ADAM: mining association rule + Bayes classifier

- **Specification-based detection** [Sekar 02]
Host-based Information Sources

- Must be real-time
- System sources
 - Commands of Operating Systems don’t offer a structural way of collecting and storing the audit information
- Accounting: Shared resources
 - Untrustworthy for security purposes
 - Syslog
- C2 security audit
 - Reliable
 - Trusted Computing Base (TCB)
Network-based information sources

- **Simple Network Management Protocol (SNMP)**
 - Management Information Base (MIB)
 - A repository of information

- **Network packets**
 - Detection of network-specific attacks
 - Can analyze the payload of the packet

- **Router NetFlow records**
 - Can speed up and create log
Evaluation of IDS

- **Accuracy**
 - Detection rate & false alarm

- **Performance**

- **Completeness**
 - To predict new attacks

- **Fault tolerance**

- **Timeliness**
Key Performance Metrics

- **Algorithm**
 - Alarm: A; Intrusion: I
 - Detection (true alarm) rate: $P(A|I)$
 - False negative rate $P(\neg A|I)$
 - False alarm rate: $P(A|\neg I)$
 - True negative rate $P(\neg A|\neg I)$
 - Bayesian detection rate: $P(I|A)$

- **Architecture**
 - Scalable
 - Resilient to attacks
Bayesian Detection Rate

\[P(I \mid A) = \frac{P(I)P(A \mid I)}{P(I)P(A \mid I) + P(\neg I)P(A \mid \neg I)} \]

- **Base-rate fallacy**
 - Even if false alarm rate \(P(A \mid \neg I) \) is very low, Bayesian detection rate \(P(I \mid A) \) is still low if base-rate \(P(I) \) is low
 - E.g. if \(P(A \mid I) = 1 \), \(P(A \mid \neg I) = 10^{-5} \), \(P(I) = 2 \times 10^{-5} \), \(P(I \mid A) = 66\% \)

- **Implications to IDS**
 - Design algorithms to reduce false alarm rate
 - Deploy IDS to appropriate point/layer with sufficiently high base rate
Problems with (Commercial) IDS

- Cost of update and keeping current is growing
 - Organizations lack internal expertise
 - MSSP industry also suffering
- IDS systems suffer from False Negative Problem
 - New augmented IDS with Anomaly Detectors are appearing in the commercial market
 - Initial focus on protocols
- IDS are inherently noisy and chatty and suffer from the False Positive problem
 - Volumes of alerts are crushing
 - Honing in on most serious threats is hard
- NIDS positioned at the perimeter
 - The most serious/predominant threat is the insider
 - Host and LAN-based IDS now more crucial
What new solutions are needed for these problems?

- Maintenance problem – Automatic Update
- Limited coverage problem – False Negative/Zero Day
- Data Reduction problem – Human can’t be in the loop
- Insider problem – Look inward, not only outward
Next Generation Detection Systems

- Behavior-based (like credit card fraud):
 - Automated analysis
 - Learn site specific characteristics (e.g., outbound traffic) and prioritize attacks per cost modeling
 - Reduce time to update and deploy
 - Increase analyst/security staff productivity
 - Discover New Attacks

- Offload and load balance detection tasks among separate specialized modules

- Correlation among distributed sites provides new opportunities for
 - Real-time global detection (early warning)
 - Detecting attackers (deterrent)
The Reusability Issue

Intrusion Detection exchange format Working Group (IDWG): Address the problem of communication between IDS and external components.

Common Intrusion-Detection Framework (CIDF): Coordinate different IDS projects.
Paradigm Shift
IN IDS

Signature-Based
Defense Strategy
Behavior-Based

Human Expertise
Data Analysis
Machine Expertise

Generic
System Architecture
Specific

Fragmented
Coverage
Distributed Cooperative

Attacks
Detection
Attacker
Provide information assurance through real-time sharing technology in a distributed, scalable and coordinated environment