

 Network Security
 Web Security and SSL/TLS

 Angelos Keromytis
 Columbia University

 Web security issues

 Authentication (basic, digest)
 Cookies
 Access control via network address
 Multiple layers

 SHTTP
 SSL (TLS)
 IPsec

 Vulnerabilities

 Revealing private information on server
 Information about host
 Server logs

 Intercept of client information (passwords, credit card numbers)

 DoS
 Confusion
 User interface exploits

 Program execution

 Javascript vulnerabilities

 Cross-site scripting

 cgi-bin problems

 cgi-bin, server-side includes
 Server starts privileged, switches to non-privileged mode

 Random/hand-crafted arguments to cgi-bin

 Usually scripts, meta-characters

 Perl in "taint" mode
 SQL injection

 HTTP access control - basic

 Client attempts GET/PUT...
 Server returns
 HTTP/1.0 401 Unauthorized
 WWW-Authenticate: Basic realm="Columbia CS Pages"
 Client tries again with

 Authorization: Basic base64(user:password)
 Passwords in the clear

 Repeat for each access

 HTTP access control - digest

 Again, client attempts GET/PUT...
 Server declines, provides:

 Realm: displayed to user

 Domain: URIs, remembered by client

 Nonce: calculated by server, H(client-IP, timestamp, server
secret)

 Does not require server state

 Opaque: returned unchanged by client

 Algorithm: digest, checksum (MD5)

 HTTP access control - digest (2)

 Client tries again, providing response:
 Same nonce, opaque data

 Response: H(H(A1), nonce, H(A2))

 Digest: H(H(A1), nonce, method, data, info, H(body))

 info = H(URI, type, length, coding, modified, expires)

 A1 = (user, realm, password)

 A2 = (method, URI)
 Digest useful for POST/PUT operations

 Server only needs H(A1), not password itself

 Stolen H(A1) good for realm only

 HTTP access control - digest (3)

 On successful request, client is given next nonce, digest
 Avoid 401 on next request

 Protects digest of HTTP body

 Subject to man-in-the-middle by proxy

 Hash is sufficient to gain access (to one realm only)

 Must have unique realms

 No server authentication

 SSL overview

 Secure Socket Layer
 SSL 3.0 has become TLS standard (RFC 2246) with small

changes

 Provide secure channel (byte stream)

 Any TCP-based protocol

 https:// URIs, port 443

 NNTP, SIP, SMTP...
 Optional server authentication with public key certificates

 Common on commercial sites

 SSL overview (cont.)

 Optional client authentication
 Hash: combined MD5 and SHA1
 Encryption optional (with session key)

 Default algorithms: DES40, DES, RC2, RC4, 3DES

 SSL cipher suites

 Diffie-Hellman key exchange
 RSA
 Fortezza

 SSL basics

 Layered protocol
 Application-layer fragmentation, blocks of max 16KB

 Data compression

 MIC is H(message, session key)

 Encryption with client or server "write" key

 Transmit over TCP
 Stateful
 Handshake to setup keys, algorithms

 Different encryption/MAC keys in each direction

 SSL messages

 Alert: notification of error
 ApplicationData: actual data

 Certificate: sender’s X.509 certificate/public key

 CertificateRequest: request that client sends certificate

 CertificateVerify: digital signature

 ChangeCipherSpec: start using agreed-upon algorithms

 SSL messages (2)

 ClientHello: here’s what I want and can do (algorithms)
 ClientKeyExchange: client’s keys

 Finished: all done
 HelloRequest: server asks client to start negotiation

 ServerHello: server capabilities (algorithms)

 ServerHelloDone: server done
 ServerKeyExchange: server’s key

 SSL handshake

 Client->Server: Supported ciphers, nonce
 Server->Client: chosen cipher, nonce, certificate(s)

 Client->Server: Encrypted pre-master key

 Compute keys

 Client->Server: MAC of previous messages

 Server->Client: MAC of previous messages

 SSL handshake

 Server->Client: HelloRequest (*)
 C->S: ClientHello
 S->C: ServerHello, Certificate (*), ServerKeyExchange (*),

CertificateRequest (*), ServerHelloDone

 C->S: Certificate (*), ClientKeyExchange, CertificateVerify (*),
ChangeCipherSpec, Finished

 S->C: ChangeCipherSpec, Finished

 "Finished" messages are encrypted

 (*) optional payload

 Session keys

 48-byte pre-master key Sp generated by client
 Compute:

 MD5(Sp, SHA1("A", Sp, Nc, Ns))

 MD5(Sp, SHA1("BB", Sp, Nc, Ns))

 MD5(Sp, SHA1("CCC", Sp, Nc, Ns))

 Concatenate to get master secret

 Session key

 Do the above again (replace Sp with master key)

 Cut out pieces for server/client MAC/encryption keys and IVs

 Record protocol

 Used to transfer actual data
 (Type, Version, Length) header, followed by data

 MIC follows, and any padding (if encryption is used)

 At the end of data exchange, close_notify alert is sent

 More advanced features

 Session resumption
 Session vs. connection
 Ephemeral RSA

 Create temporary key, sign with long-term key

 Include in ServerKeyExchange message to client

 Remnant from export-restriction days

 Re-handshake
 Change ciphers, re-authenticate

 Handshake protected by existing SSL session

 More advanced features (2)

 Server-gated cryptography
 Again, remnant from export-restriction days

 Client can do full crypto if talking to properly authorized
server

 Special indication in server certificate

 Hacked...

 More advanced features (3)

 Diffie-Hellman
 Perfect forward secrecy

 Needed with non-encrypting PK algorithms (e.g., DSA)

 Ephemeral DH keys

 Sign with RSA/DSA key

 Send with ServerKeyExchange

 Client sends DH value in ClientKeyExchange

 Long-term DH keys (embedded in certificate)

 More advanced features (4)

 Kerberos support
 ClientKeyExchange also contains ticket

 Fortezza
 Hardware cryptographic accelerator with key escrow

 SSL security

 Good randomness
 Netscape used rand(getpid() + gettimeofday())...

 Protect server’s private key

 Check the certificate chain
 Domain name embedded in certificate (hack!)
 Revocation!
 Algorithm selection

 Client authentication

 Username/password over SSL
 Client certificate authentication
 Not common

