Network Security
Web Security and SSL/TLS

Angelos Keromytis
Columbia University



Web security i1ssues

* Authentication (basic, digest)

e Cookies

e Access control via network address
* Multiple layers

« SHTTP
* SSL (TLS)

* |Psec



Vulnerabilities

* Revealing private information on server
* | nformation about host
* Server logs

* |Intercept of client information (passwords, credit card numbers)

*D0S
e Confusion
* User interface exploits

* Program execution
* Javascript vulnerabilities
* Cross-site scripting



cgi-bin problems

* cgi-bin, server-side includes
* Server starts privileged, switches to non-privileged mode

* Random/hand-crafted arguments to cgi-bin
e Usually scripts, meta-characters

 Perl in "taint" mode
* SQL injection



HTTP access control - basic

* Client attempts GET/PUT...

e Server returns

HTTP/1.0 401 Unauthorized

WWW:-Authenticate: Basic realm="Columbia CS Pages"
- Client tries again with

Authorization: Basic base64(user:password)

- Passwords in the clear

* Repeat for each access



HTTP access control - digest

* Agan, client attempts GET/PUT...
* Server declines, provides:

* Realm: displayed to user
* Domain: URIs, remembered by client
* Nonce: calculated by server, H(client-IP, timestamp, server
secret)
* Does not require server state
* Opague: returned unchanged by client
* Algorithm: digest, checksum (MD5)



HTTP access control - digest (2)

* Client tries again, providing response:
e Same nonce, opague data

* Response: H(H(A1), nonce, H(A2))
* Digest: H(H(A1), nonce, method, data, info, H(body))
* info = H(URI, type, length, coding, modified, expires)
* Al = (user, realm, password)
* A2 = (method, URI)
* Digest useful for POST/PUT operations
* Server only needs H(A 1), not password itself
* Stolen H(A1) good for realm only



HTTP access control - digest (3)

* On successful request, client Is given next nonce, digest
* Avoid 401 on next request

* Protects digest of HT TP body

* Subject to man-in-the-middle by proxy

* Hash is sufficient to gain access (to one realm only)
* Must have unique realms

* No server authentication



SSL overview

* Secure Socket Layer
* SSL 3.0 has become TL S standard (RFC 2246) with small

changes
* Provide secure channel (byte stream)
* Any TCP-based protocol
* https:// URIs, port 443

* NNTP, SIP, SMTP...
* Optional server authentication with public key certificates

e Common on commercial sites



SSL overview (cont.)

* Optional client authentication

* Hash: combined MD5 and SHA 1
* Encryption optional (with session key)

* Default algorithms: DES40, DES, RC2, RC4, 3DES



SSL cipher suites

* Diffie-Hellman key exchange
* RSA
* Fortezza



SSL basics

* |_ayered protocol
* Application-layer fragmentation, blocks of max 16KB

e Data compression
* MIC is H(message, session key)
* Encryption with client or server "write" key

* Transmit over TCP
e Stateful
* Handshake to setup keys, algorithms

* Different encryption/MAC keys in each direction



SSL messages

* Alert: notification of error
* ApplicationData: actual data

* Certificate: sender’s X.509 certificate/public key

* CertificateRequest: request that client sends certificate
* CertificateVerify: digital signature

* ChangeCipherSpec: start using agreed-upon algorithms



SSL messages (2)

* ClientHello: here’ swhat | want and can do (algorithms)
* ClientKeyExchange: client’s keys

* Finished: all done
* HelloRequest: server asks client to start negotiation

* ServerHello: server capabilities (algorithms)

* ServerHelloDone: server done
* ServerKeyExchange: server’s key




SSL handshake

* Client->Server: Supported ciphers, nonce
* Server->Client: chosen cipher, nonce, certificate(s)

* Client->Server: Encrypted pre-master key
* Compute keys

* Client->Server: MAC of previous messages
* Server->Client: MAC of previous messages



SSL handshake

* Server->Client: HelloRequest (*)
* C->S:. ClientHéello
* S->C: ServerHello, Certificate (*), ServerKeyExchange (*),

CertificateReguest (*), ServerHelloDone

e C->S: Certificate (*), ClientKeyExchange, CertificateVerify (*)
ChangeCipherSpec, Finished

* S->C: ChangeCipherSpec, Finished

* "Hnished" messages are encrypted
* (*) optional payload



Session keys

* 48-byte pre-master key Sp generated by client
* Compute:

* MD5(Sp, SHA1("A", Sp, Nc, Ns))
* MD5(Sp, SHA1("BB", Sp, Nc, Ns))
* MD5(Sp, SHA1("CCC", Sp, Nc, Ns))
* Concatenate to get master secret
* Session key
* Do the above again (replace Sp with master key)
* Cut out pieces for server/client MAC/encryption keys and 1V




Record protocol

e Used to transfer actual data
* (Type, Version, Length) header, followed by data

* MIC follows, and any padding (if encryption is used)

* At the end of data exchange, close notify alert is sent



More advanced features

* Session resumption
e Session VS. connection
* Ephemeral RSA

* Create temporary key, sign with long-term key
* Include Iin ServerK eyExchange message to client
* Remnant from export-restriction days

* Re-handshake
* Change ciphers, re-authenticate

* Handshake protected by existing SSL session



More advanced features (2)

* Server-gated cryptography
e Again, remnant from export-restriction days

* Client can do full crypto If talking to properly authorized
server

* Special indication in server certificate

* Hacked...



More advanced features (3)

* Diffie-Hellman
* Perfect forward secrecy

* Needed with non-encrypting PK algorithms (e.g., DSA)

* Ephemeral DH keys

* Sign with RSA/DSA key

* Send with ServerKeyExchange

* Client sends DH value in ClientKeyExchange
* Long-term DH keys (embedded in certificate)



More advanced features (4)

* Kerberos support
* ClientKeyExchange also contains ticket

* Fortezza
* Hardware cryptographic accelerator with key escrow



SSL security

* Good randomness
* Netscape used rand(getpid() + gettimeofday())...

* Protect server’s private key

* Check the certificate chain
* Domain name embedded in certificate (hack!)

* Revocation!
* Algorithm selection



Client authentication

e Username/password over SSL

e Client certificate authentication
* Not common



