
Test Conditions

• Same as the midterm: closed book, no laptop, etc.

• Roughly 1/3 from the first half, 2/3 from the second half or combined
questions

• Remember to review readings

• Same style of questions

Steven M. Bellovin December 7, 2005 1



Primary Themes

• Access control

• Structure

• Combining mechanisms

Steven M. Bellovin December 7, 2005 2



Changing Passwords

• Controls all system access — very sensitive

• /etc/passwd must be world-readable — legacy effect

• Use read permission to protect hashed password

• Root has too much power via /etc/passwd

• Features used: access control, locking, authentication, setUID,
filtering

Steven M. Bellovin December 7, 2005 3



Web Servers

• Large, complex programs

• Serve files, run scripts, run user-written programs

• How does access control work?

Steven M. Bellovin December 7, 2005 4



Complex Application-Specific Access Control

• ACLs for subtrees, passwords, IP addresses, more

• OS access controls

• Access to “privileged” ports

• Does the code and/or the administrator get all this right?

Steven M. Bellovin December 7, 2005 5



OS Permissions

• Server starts as root, but runs as www

• Files served are readable, but not owned, by www

• OS permission mechanisms protect the system against the web
server

Steven M. Bellovin December 7, 2005 6



Scripts

• Scripts are programs, and hence can be buggy

• What permissions do scripts have?

• Plug-ins run with Apache’s permissions

• On-machine attacks can bypass script permissions

Steven M. Bellovin December 7, 2005 7



Confining an Application

• Protect resources — files, CPU time, memory,disk space, network
identity, network access rights

• Protect some with OS mechanisms

• Can’t do things as well as we’d like; in particular, hard to permit easy
access to this for all applications

Steven M. Bellovin December 7, 2005 8



Chroot()

• Confine process to a subtree

• Only useable by root

• Vulnerable to root compromise within the confined application

• Not easy to set up

Steven M. Bellovin December 7, 2005 9



Sandboxes

• Janus — traps system calls

• Java VM — relies on properties of Java language, plus verification by
byte code verifier and class loader

• Virtual machines

Steven M. Bellovin December 7, 2005 10



Virtual Machines

• Emulate real machine

• Trap privileged operation; map to user’s resources: virtual disk, virtual
keyboard, virtual Ethernet, etc.

• Has strengths and weaknesses of a real machine

• Good for analyzing malware — but some such programs detect it

Steven M. Bellovin December 7, 2005 11



Covert Channels

• Subtle way of passing information to violate MAC

• Storage and timing channels

• Noisy — use error-correcting codes

Steven M. Bellovin December 7, 2005 12



Malware – Viruses

• Difference between viruses, worms, and Trojan horses

• Program, boot sector, and macro viruses

• Scanner, replicator, payload

• A-V software

• Encrypted and polymorphic viruses

• Viruses vs. DAC and MAC

Steven M. Bellovin December 7, 2005 13



Trojan Horses

• Functions

• Spreading patterns

• “Legal” ones?

Steven M. Bellovin December 7, 2005 14



Back Doors

• Ken Thompson’s C compiler trick

• Eric Allman’s Sendmail back door

• Source repositories

Steven M. Bellovin December 7, 2005 15



Program Structure

• Strive for bug-resistance: inherently safe(r) software

• Program structure has a major impact

• Minimize the chances of a bug; minimize the impact

Steven M. Bellovin December 7, 2005 16



Strategies

• Separate security-critical sections

• Use strong isolation between such (small) sections and the rest

Steven M. Bellovin December 7, 2005 17



FTPD

• Uses YACC grammar to parse (simple) input

• YACC is fine, but the grammar is poorly structured

• Two-command sequences aren’t recognized by the grammar;
possible to get other commands in between

• Hole due to static buffers in getpwnam()

• Proper fix 1: restructure grammar

• Proper fix 2: split out login sequence into separate program

Steven M. Bellovin December 7, 2005 18



Designing an E-Commerce Site

• Real systems are composed of many components

• Separation and connectivity count

• Many danger points

Steven M. Bellovin December 7, 2005 19



Danger Points

• Component management

• Link to back-end systems

• NOCs need access to everything

• Customer care

• Backups

• Emergency operations

Steven M. Bellovin December 7, 2005 20



The Database

• Most vital component

• Isolate to separate machine; use end-to-end authentication

• Actually, have several databases

• Limit information flow

Steven M. Bellovin December 7, 2005 21



Log Files

• Easiest way to figure out what happened (and maybe if something
happened)

• Logs produced by many different components

• Need log file correlator

• Log files need to be protected

• Need automated log file scanner

Steven M. Bellovin December 7, 2005 22



Analyzing a System

• Multiple levels of detail

• Program audits — look for usual error situations

• Use audit tools — grep isn’t sufficient

• Really need flow analysis

Steven M. Bellovin December 7, 2005 23



Higher-level Audits

• Look for separate elements, flows, barriers, untrusted inputs

• Who talks to whom? How?

• What sorts of authentication and filtering are used?

• Different problem severities

Steven M. Bellovin December 7, 2005 24



Attacking

• Tiger teams — benefits, limits, conditions

• Strace and ltrace

• Look for privileged operations, symbols, interesting strings

Steven M. Bellovin December 7, 2005 25



Higher-leval Attacks

• Infiltration, physical, social

• (Are these in scope for your tiger team?)

• Process helps

• Try to spot or block reconnaissance

Steven M. Bellovin December 7, 2005 26



Forensics

• Lots of information left lying around

• Hard to really delete data

• Main memory often has keys, plaintext

Steven M. Bellovin December 7, 2005 27


