
Test Conditions

• Same as the midterm: closed book, no laptop, etc.

• Roughly 1/3 from the first half, 2/3 from the second half or combined
questions

• Remember to review readings

• Same style of questions
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Primary Themes

• Access control

• Structure

• Combining mechanisms
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Changing Passwords

• Controls all system access — very sensitive

• /etc/passwd must be world-readable — legacy effect

• Use read permission to protect hashed password

• Root has too much power via /etc/passwd

• Features used: access control, locking, authentication, setUID,
filtering
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Web Servers

• Large, complex programs

• Serve files, run scripts, run user-written programs

• How does access control work?
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Complex Application-Specific Access Control

• ACLs for subtrees, passwords, IP addresses, more

• OS access controls

• Access to “privileged” ports

• Does the code and/or the administrator get all this right?
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OS Permissions

• Server starts as root, but runs as www

• Files served are readable, but not owned, by www

• OS permission mechanisms protect the system against the web
server
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Scripts

• Scripts are programs, and hence can be buggy

• What permissions do scripts have?

• Plug-ins run with Apache’s permissions

• On-machine attacks can bypass script permissions
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Confining an Application

• Protect resources — files, CPU time, memory,disk space, network
identity, network access rights

• Protect some with OS mechanisms

• Can’t do things as well as we’d like; in particular, hard to permit easy
access to this for all applications

Steven M. Bellovin December 7, 2005 8



Chroot()

• Confine process to a subtree

• Only useable by root

• Vulnerable to root compromise within the confined application

• Not easy to set up
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Sandboxes

• Janus — traps system calls

• Java VM — relies on properties of Java language, plus verification by
byte code verifier and class loader

• Virtual machines
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Virtual Machines

• Emulate real machine

• Trap privileged operation; map to user’s resources: virtual disk, virtual
keyboard, virtual Ethernet, etc.

• Has strengths and weaknesses of a real machine

• Good for analyzing malware — but some such programs detect it
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Covert Channels

• Subtle way of passing information to violate MAC

• Storage and timing channels

• Noisy — use error-correcting codes
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Malware – Viruses

• Difference between viruses, worms, and Trojan horses

• Program, boot sector, and macro viruses

• Scanner, replicator, payload

• A-V software

• Encrypted and polymorphic viruses

• Viruses vs. DAC and MAC
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Trojan Horses

• Functions

• Spreading patterns

• “Legal” ones?
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Back Doors

• Ken Thompson’s C compiler trick

• Eric Allman’s Sendmail back door

• Source repositories
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Program Structure

• Strive for bug-resistance: inherently safe(r) software

• Program structure has a major impact

• Minimize the chances of a bug; minimize the impact
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Strategies

• Separate security-critical sections

• Use strong isolation between such (small) sections and the rest
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FTPD

• Uses YACC grammar to parse (simple) input

• YACC is fine, but the grammar is poorly structured

• Two-command sequences aren’t recognized by the grammar;
possible to get other commands in between

• Hole due to static buffers in getpwnam()

• Proper fix 1: restructure grammar

• Proper fix 2: split out login sequence into separate program
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Designing an E-Commerce Site

• Real systems are composed of many components

• Separation and connectivity count

• Many danger points
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Danger Points

• Component management

• Link to back-end systems

• NOCs need access to everything

• Customer care

• Backups

• Emergency operations
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The Database

• Most vital component

• Isolate to separate machine; use end-to-end authentication

• Actually, have several databases

• Limit information flow
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Log Files

• Easiest way to figure out what happened (and maybe if something
happened)

• Logs produced by many different components

• Need log file correlator

• Log files need to be protected

• Need automated log file scanner
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Analyzing a System

• Multiple levels of detail

• Program audits — look for usual error situations

• Use audit tools — grep isn’t sufficient

• Really need flow analysis
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Higher-level Audits

• Look for separate elements, flows, barriers, untrusted inputs

• Who talks to whom? How?

• What sorts of authentication and filtering are used?

• Different problem severities
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Attacking

• Tiger teams — benefits, limits, conditions

• Strace and ltrace

• Look for privileged operations, symbols, interesting strings
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Higher-leval Attacks

• Infiltration, physical, social

• (Are these in scope for your tiger team?)

• Process helps

• Try to spot or block reconnaissance
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Forensics

• Lots of information left lying around

• Hard to really delete data

• Main memory often has keys, plaintext
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