Public Key Cryptography

e Ciphers such as AES and DES are known as conventional,
symmetric algorithms, or secret key algorithms

e In such algorithms, K = K1, i.e., the encryption key and the
decryption key are the same

e In public key or asymmetric cryptography, K %= K 1. Furthermore,
given K it is infeasible to find K —1

CS@ Steven M. Bellovin __ October 3,2005 ___ 1
CU

The History of Public Key Cryptography

e Generally credited to Diffie and Hellman’s paper “New Directions in
Cryptography” (1976)

e Remarkable paper — created the academic field of cryptography

e However — public key crypto was actually invented by the British in
1970, under the name “Non-Secret Encryption”

e Some claim that it was actually invented by the Americans in the
mid-1960s to control nuclear weapons

e See the reading list for today

CSwdo Steven M. Bellovin __ October 3, 2005 ___ 2
CuU

The Purpose of Public Key Cryptography

e If Alice and Bob want to exchange secret messages, they first have to
share a key

e What if they’ve never met?
e What if they have exchanged keys, but run out?

e Key-handling is hard

CSwdo Steven M. Bellovin __ October 3, 2005 ___ 3
CuU

Key-Handling

...the judge asked the prosecution’s expert witness: “Why is it necessary
to destroy yesterday’s ... [key] ... list if it's never going to be used again?”
The witness responded in shock: A used key, Your Honor, is the most

critical key there is. If anyone can gain access to that, they can read your
communications.”

CS@ Steven M. Bellovin __ October 3, 2005 ___ 4
CU

The Problem of Key-Handling

e Reusing keys is dangerous — many cryptanalytic attacks work by
looking for key reuse

e Friedman’s “Index of Coincidence” detects overlap from just the
ciphertext of conventional ciphers.

e One of the ways Enigma was attacked: the British captured a German
weather observation ship that had the next several months of keys
[] Note the other mistake: putting general-purpose keys in a
vulnerable place

e The “Venona” project: the U.S. read years of Soviet communications
when they discovered that the Soviets had reused one-time pads

CS@ Steven M. Bellovin __ October 3,2005 ___ 5
CU

One-Time Pads

e As noted last time for stream ciphers, must never be reused
e Producing so much true-random keying material is a strain
e During war-time, the Soviets couldn’t keep up

e Sometimes usable for point-to-point communication

e Doesn’t work well in groups: n?2 keying problem. Worse yet, every set
of keys for a one-time pad must be long enough to handle the
maximum length of messages you’ll ever send

e Theoretically unbreakable but practically useless

CSwdo Steven M. Bellovin __ October 3, 2005 ___ 6
CuU

The Solution: Public-Key Cryptography

e Alice publishes her encryption key K
e This isn’t secret; anyone can know it

e Glaring example: the Mossad—Israel’s Secret Intelligence

Service—has a web page you can use to talk to them. The server
uses public key cryptography

CS@ Steven M. Bellovin __ October 3,2005 ___ /
CU

A First Approximation

e Alice has a public key K 4, which she publishes, and a private key
KZl, which she keeps secret

e Bob wants to send her a message M
e Bob looks up her key and sends { M } i ,

e Alice uses KZl to calculate {{M}KA}KA_l =M

CSwdo Steven M. Bellovin __ October 3, 2005 ___ 8
CuU

That’s Too Expensive

e All known public key algorithms are far more expensive than
symmetric algorithms

e The most common ones rely on exponentiation of very large numbers

e New ones (elliptic curve cryptography) is cheaper, but still expensive

CSwdo Steven M. Bellovin __ October 3,2005 __ 9
CuU

A Better (But Not Good) Approach

e Alice has a public key K 4, which she publishes, and a private key
KZl, which she keeps secret

e Bob wants to send her a message M
e Bob looks up her key

e Bob generates a random symmetric session key K¢ and sends
{KS}KA’ {M}KS

e That is, you use public key cryptography only to encrypt the session
key. The session key is used for all bulk data.

- —1
e Alice uses K , - to calculate {{KS}KA}KA_l = Kg

e Alice uses K g to calculate {{M}KS}KS_l =M

CSwdo Steven M. Bellovin __ October 3, 2005 __ 10
CuU

Why Isn’t it Good?

e Bob doesn’t know who sent the message
e Bob doesn’t know that K g is fresh, i.e., not previously used

e (Actually doing public key encryption is tricky)

CS@ Steven M. Bellovin __ October 3,2005 11
CU

RSA

Pick two large primes, p and g

Let n = pq

Pick two keys, e and d, suchthated =1 mod (p —1)(g — 1)

e IS the encryption (or public) key; d is the decryption (or private) key
Encryption: C = M€® mod n

Decryption: M = C% mod n

Thatis, (M€)¢ = M mod n

Strength rests on difficulty of factoring n

Steven M. Bellovin __ October 3,2005 12

Huh?

e Remarkably, checking the primality of a large number can be done
efficiently

e However, there are no known efficient algorithms for factoring large
numbers

e For efficiency, usually e = 3

e Given e, p, q, calcuating d Is easy via Euclid’s Algorithm

e If we could factor n, it is therefore easy to find d

e It is unknown if there is a way to recover d without factoring n

e All of this follows from (reasonably) elementary number theory

CSwdo Steven M. Bellovin __ October 3,2005 _ 13
CuU

Turning it Around

e What if we encrypt with d?

e Why not? The equations are symmetric

e Only the possesor of the private key d can calculate M% mod n
e But e is public, so anyone can calculate (M%) mod n = M

e This is known as a digital signature

CS@ Steven M. Bellovin __ October 3, 2005 __ 14
CU

Digital Signatures

e Only the key owner can calculate them
e Anyone can verify them

e Any change to the message will result in a different signature value

CS@ Steven M. Bellovin __ October 3, 2005 __ 15
CU

History of Digital Signatures

e The British did not invent digital signatures, only public key encryption

e There is reason to suspect that the Americans invented digital
signatures but not public key encryption

e Diffie and Hellman invented both, but failed in an attempt to design
suitable algorithms

e They came agonizingly close — they had the equation, but with a
prime modulus

e It took Rivest, Shamir, and Adleman to solve both problems

CSwdo Steven M. Bellovin __ October 3,2005 __ 16
CuU

Non-Repudiation

e Digital signatures provide non-repudiation

e “protection against false denial of involvement in a communication”
[RFC 2828]

e Since anyone can verify the signature, a judge can, too

CS@ Steven M. Bellovin __ October 3, 2005 __ 17
CU

Digital versus Physical Signatures

e Physical signatures are strongly bound to the signer, and weakly
bound to the message

e Digital signatures are strongly bound to the message, and weakly
bound to the signer

e What if the private key leaks? What if the signer deliberately leaks
the private key, to provide deniability?

CSwdo Steven M. Bellovin __ October 3,2005 __ 18
CuU

Large Primes

e How large is “large”?
e Today, people commonly use 1024-bit moduli

e There are published designs for a $1,000,000 machine that can factor
a 1024-bit key in a year

e As far as is known, no one has built such a thing, but. ..

e How long must the information remain secret? How long must a
digital signature be verifiable? Mortgages commonly last for 30 years

e Prudence suggests 2048 or 3072-bit keys

CSwdo Steven M. Bellovin __ October 3, 2005 ___ 19
CuU

The RSA Challenge

e A challenge encryption appeared in Scientific American in 1977
e The modulus was 129 digits, or 429 bits

e A large distributed effort solved in in 1993:
THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE

CSwdo Steven M. Bellovin __ October 3, 2005 ___ 20
CuU

Actually Using RSA

e There are many traps here, both obvious and subtle
e Example: let“yes” =1, “n0” =0

e Encrypt your answer with RSA

e OOps...

e Must use mathematically sound padding. (Possible approach:
Encrypt 1023 random bits, plus one bit of message)

CSwdo Steven M. Bellovin __ October 3, 2005 ___ 21
CuU

Timing Attacks

e 1-bits in the exponent take longer than 0-bits (can shift over the 0-bits)

e By having your target decrypt suitable RSA messages, you can learn
where the 1-bits are

e Implemented in 2003 by Boneh and Brumley against web servers

CSwdo Steven M. Bellovin __ October 3, 2005 ___ 22
CuU

Common Objections

e The NSA can factor RSA moduli

e \Who knows? But they use RSA, too. Besides, factoring has been a
subject of mathematical attention for > 350 years

e The NSA can build a catalog of primes

e By the Prime Number Theorem, there are ~ n/logn primes less
than n. For 512-bit p and g, that is about 10121, Even NSA doesn'’t
have that much disk space.

e It's magic and can’t work. ..

CSwdo Steven M. Bellovin __ October 3, 2005 ___ 23
CuU

| Cheated

e For encryption, | said “use symmetric algorithms; use RSA for the
session key”

e For digital signatures, | said “sign the message”
e It's still too expensive to do that
e We need cryptographic hash functions

e We sign H(M), not M

CSwdo Steven M. Bellovin __ October 3, 2005 ___ 24
CuU

Cryptogrpaphic Hash Functions

e Must be reasonably cheap

e Must take an arbitrary-length message and produce a fixed-length
output

e Must be impossible to forge signatures by attacking the hash function

CSwdo Steven M. Bellovin __ October 3, 2005 ___ 25
CuU

Properties of Cryptogrpaphic Hash Functions

Collision resistance It is computationally infeasible to find x, y, x #= y
such that H(x) = H(y)

Preimage resistance Given an output value y, it is computationally
infeasible to find z such that H(z) = vy

Second preimage resistance Given an input z, it is computationally
infeasible to find =’ such that H(z) = H(2')

CSwdo Steven M. Bellovin __ October 3, 2005 ___ 26
CuU

Hash Function Failures

e Second preimage resistance: forge a new document or message to
match any hash

e Preimage resistance: similar, but you don’t get to see the input
message

e Collision: trick someone into signing one document; show the other to
the judge —see http://th.informati k. uni - mannhei m de/
peopl e/ | ucks/ HashCol | i si ons

CSwdo Steven M. Bellovin __ October 3, 2005 ___ 27
CuU

Modern Hash Functions

e MD5 (128 bits) — Invented by Rivest

e SHA-1 (160 bits) — Invented by NSA; standardized by NIST

[SHA-0 wasn'’t as strong as it should have been; NSA made a mistake
e SHA-256, SHA-384, SHA-512 — Stronger variants of SHA-1

e Other, less common ones: RIPEMD160 (160-bit), Whirlpool (512 bits)

CSwdo Steven M. Bellovin __ October 3, 2005 ___ 28
CuU

Status

e Only MD5 and SHA-1 are widely used
e SHA-256, SHA-384, SHA-512 are stronger (and slower) variants

e Last year, a collision-finding algorithm for MD5 was published by
Wang et al.

e This year, she showed that SHA-1 is much weaker than it should be

e Can we switch? Should we?

CSwdo Steven M. Bellovin __ October 3, 2005 ___ 29
CuU

Switching Hash Functions

e Do we need to switch now?
e Not quite — for many purposes, collision-resistance isn’t crucial
e We should immediately stop using MD5 for secure email

e But we can’t convert to anything stronger than SHA-1 — no one
supports it, and the network protocols weren’t properly designed for
upgrades

e There is as yet no agreement on what hash function to switch to

CSwdo Steven M. Bellovin __ October 3, 2005 __ 30
CuU

Other Important Algorithms

e Diffie-Hellman — used for key management

e Relies for its strength on the discrete logarithm problem: Given a and
ab® mod p, it is infeasible for find &

e DSA (Digital Signature Algorithm) — U.S. government standard for
digital signatures; cannot be used for encryption

e Based on discrete log

CSwdo Steven M. Bellovin __ October 3, 2005 __ 31
CuU

Algorithm Strengths

Hash functions need to have output twice as long as the symmetric key
size for proper collision resistance

Symmetric Key Size | Hash Output Size RSA or DH Modulus Size
70 140 947
80 160 1228
90 180 1553
100 200 1926
150 300 4575
200 400 8719
250 500 14596

(Source: RFC 3766)

Sizes based on estimated computational equivalence

CSwdo Steven M. Bellovin __ October 3, 2005 ___ 32
CuU

Cost of Increasing Modulus Size

For RSA, doubling the modulus length increases encryption time by ~ 4 x
and increases decryption time by ~ 8x.

Modulus

CPU Time

256
512
1024
2048

1.5 ms
8.6
55.4
387.

(Source: RFC 3766)
Tests run years ago, on a 350 Mhz machine

Steven M. Bellovin __ October 3, 2005 __ 33

CSi
CU

