
Web Servers and Security

• The Web is the most visible part of the net

• Two web servers — Apache (open source) and Microsoft’s IIS —
dominate the market
☞ (Apache has 70%; IIS has 20%)

• Both major servers have lots of functionality

• Are they secure? Let’s look at Apache.

Steven M. Bellovin February 27, 2007 1



Warning

• You’re going to hear about web server security issues — and
problems

• Many of these issues apply to www.cs.columbia.edu

• You do not have permission to explore these holes

Steven M. Bellovin February 27, 2007 2



Metanote on Program Complexity

• Both Apache and IIS are very large, complex programs

• Large, complex programs are often buggy; these are no exception

• Both have had security problems

• IIS used to be very insecure:

Using Internet-exposed IIS Web servers securely has a high
cost of ownership. Nimda has again shown the high risk of
using IIS and the effort involved in keeping up with Microsoft’s
frequent security patches.

—The Gartner Group, 2001

• (They canceled that warning in 2004)

• Web servers are still large and complex. . .

Steven M. Bellovin February 27, 2007 3



Important Web Server Features

• Access control

• User behavior

• CGI (Apache) or ASP (IIS) scripts (often via special scripting
languages)

• Plug-ins

• Back-end databases

• Cryptography

Steven M. Bellovin February 27, 2007 4



Access Control

• Many different forms

• Many different types of authentication

• Many interactions

Steven M. Bellovin February 27, 2007 5



Document Root

• All files served must reside under a certain directory

• Watch out for “..” in URLs (gee, we’ve seen that before)

• For convenience, some “subtrees” can reside somewhere else:

ScriptAlias /mailman/ "/usr/pkg/lib/mailman/cgi-bin/"

Alias /pipermail/ "/var/db/mailman/archives/public/"

Alias /mailman-icons/ "/usr/pkg/lib/mailman/icons/"

That looks familiar, too. . .

• If the Web server supports “virtual hosting”, each “host” gets its own
subtree
☞ With virtual hosting, a single machine and web server can offer
up several different web sites

Steven M. Bellovin February 27, 2007 6



Explicit Access Control

• Access control lists settable by the webmaster for any directory tree

• Passwords or certificates can be configured as well

• Permission can be granted or withheld based on client IP address

• If a directory has no index.html file, should the web server just list
its contents?

• All of these interact; combinations can be used

Steven M. Bellovin February 27, 2007 7



Operating System Access Control

• Can the web server benefit from OS access control?

• What UIDs does the server run under?

• What permissions can/should be used for the files being served?

Steven M. Bellovin February 27, 2007 8



“Privileged” Ports versus Security

• Most Unix systems reserve ports < 1024 for root

• Web servers listen on port 80; therefore, they have to run as root

• Do we really want such a large, complex program running as root?
Not if we can help it. . .

Steven M. Bellovin February 27, 2007 9



Shedding Privileges

• Apache starts as root

• Note: it is not setuid; it must be invoked by root

• It opens the socket and some log files, then forks and sheds privileges

• Serving web pages is done as non-privileged user “www”

Steven M. Bellovin February 27, 2007 10



File Permissions

• If the web server isn’t root, it can’t open protected files

• All pages served must be readable by the web server, its group, or
“other”

• Don’t make them owned by www; that way, a compromised web
server can’t overwrite them

• In other words, the web server itself has as few privileges as possible

Steven M. Bellovin February 27, 2007 11



Design Philosphy

• Use the OS to protect the system against the web server

• Assume the web server can enforce its own access control
mechanisms

Steven M. Bellovin February 27, 2007 12



User Behavior

• Who creates web content?

• Can ordinary users supply web pages?

• At many sites, the answer is yes

• This complicates things

Steven M. Bellovin February 27, 2007 13



User Directories

• Can users export things they shouldn’t?
☞ Is that a software problem or a management problem?

• Where does user content live? Under DocumentRoot, or under the
user’s home directory?

• Can user-configured access control (.htaccess) override system
access control settings?

• Scripts. . .

Steven M. Bellovin February 27, 2007 14



Users versus Web Access Control

• Suppose there’s a .htaccess file to restrict web access to some
directory

• The directory and its contents probably have to be world-readable

• Other users on that machine can read the files in that directory,
without satisfying the requirements of the .htaccess file

• Oops. . .

Steven M. Bellovin February 27, 2007 15



Can We Lock Things Away?

• We don’t want content owned by user www

• We could try putting user content under some lock directory, with a
setuid helper program to let people publish web pages

• That doesn’t work well if user-written scripts are allowed

• We can protect a few resources by using group read permissions —
make the content group-readable but not other-readable, and let the
web server run with several groups’ permissions

☞ Unfortunately, Apache doesn’t seem to support that

• There’s still a problem with scripts

Steven M. Bellovin February 27, 2007 16



Scripts

• Retrieving static files is ok, but scripts make life interesting

• Scripts are programs

• Each script is a separate network service

• Is each one correct?

• From the Apache Security Guide: “Always remember that you must
trust the writers of the CGI script/programs or your ability to spot
potential security holes in CGI, whether they were deliberate or
accidental.”

Steven M. Bellovin February 27, 2007 17



Script Permissions

• In general, all scripts run with the same permissions

• This uid shouldn’t own any files; see above for OS access controls

• Scripts can interfere with each other: “All the CGI scripts will run as
the same user, so they have potential to conflict (accidentally or
deliberately) with other scripts e.g. User A hates User B, so he writes
a script to trash User B’s CGI database.”

Steven M. Bellovin February 27, 2007 18



User-Written Scripts

• Can ordinary users supply scripts?

• Translation: can ordinary users write secure programs that will do the
right thing given arbitrary input?

• From the Apache Security Guide:

Allowing users to execute CGI scripts in any directory should
only be considered if:

1. You trust your users not to write scripts which will
deliberately or accidentally expose your system to an attack.

2. You consider security at your site to be so feeble in other
areas, as to make one more potential hole irrelevant.

3. You have no users, and nobody ever visits your server.

Steven M. Bellovin February 27, 2007 19



Restricting Scripts

• Allow scripts only in certain directories

• That way, the administrator has some control over what scripts are
run

• Use suEXEC to switch uids

Steven M. Bellovin February 27, 2007 20



suEXEC

• suEXEC runs user CGI scripts as that user

• A dangerous operation: let an unprivileged user — www — tell a
setuid-root program to run some arbitrary program as some user

• Very difficult to get right!

• suEXEC performs 20 different checks; see
http://httpd.apache.org/docs/2.0/suexec.html for
details

• Sample check: Is the directory NOT writable by anyone else?

• Make sure that suEXEC is only executable by group www

• Watch out for race condition attacks!

• Caution: the CGI script owns itself ; if subverted, it can overwrite itself
(and other files belonging to that user)

Steven M. Bellovin February 27, 2007 21



Design Philosophy

• Use Apache access controls to isolate the dangerous stuff

• Use OS permission mechanisms — as invoked by Apache — to
isolate CGI scripts from each other

• Separation isn’t as strong as for the base Apache system, because of
the overwrite scenario

Steven M. Bellovin February 27, 2007 22



Plug-Ins

• Scripting languages are often available as Apache modules

• This means that they run as part of the Apache process

• Modules are an efficiency hack: save the expense of fork()/exec()

• Modules run with the full permissions (and address space) of Apache

• Very dangerous!

Steven M. Bellovin February 27, 2007 23



User-Written Plug-in Scripts

• In the standard installation, user-written scripts run with the web
server’s permission

• Again, all such scripts, even if written by different, mutually hostile
users, run with the same UID

• Do the plug-in languages provide access control? Some do

Steven M. Bellovin February 27, 2007 24



PHP’s Safe Mode

• PHP, if safe mode is turned on, restricts scripts to opening files
owned by the script owner

• This in an application — PHP — enforcing something resembling OS
permissions

• Did they get it right? Are there race condition attacks?

• Still does not protect against attacks from on-machine

Steven M. Bellovin February 27, 2007 25



Other Script Languages

• Java can be configured to be secure

• To my knowleged, neither Perl nor TCL — two other languages that
can run as plug-ins — have such a feature

• There is no way to confine C or C++

Steven M. Bellovin February 27, 2007 26



Invoking Scripts

• Scripts are often invoked with client-supplied parameters

• Magic shell characters aren’t as big a problem for parameters,
because they’re passed to scripts via an environment variable, not on
the command line

• But — what about magic shell characters in the script name?

• Example: http://www.example.com/cgi-bin/‘rm-rf/‘

• After all, if it’s in cgi-bin it’s executable. . .

Steven M. Bellovin February 27, 2007 27



Administrator Strategy

• Use a complex local scheme

• Provide a setuid program to copy user content to the web server

• Do not allow user programs to execute on that server

• Permit only “safe” scripting languages with their own access control

• Do not permit execution of C or C++ programs!

• Use web server access controls to restrict other access

Steven M. Bellovin February 27, 2007 28



Uploading Files

• If all scripts run with the same permissions, and if local users have
read-access to user content, how can you do safe upload?

• Example: suppose I wanted to write a PHP script for homework
submission

• Create an upload directory owned by me that is mode rwx,-wx,-wx:
anyone can write to it or trace a search path, but not read it

• Use a true-random string for part or all of the filename

• For instance, store smb2132.0.tar as
158cb5864f2c7662b-smb2132.0.tar (generated from
/dev/urandom)

• No one will guess that to retrieve it or overwrite it

• Note: I’ll be able to list the directory and read the files (if I set the file
permissions correctly), but I won’t own the files; www will

Steven M. Bellovin February 27, 2007 29



Back-End Databases

• Scripts are often front-ends to databases

• Does the database have its own access control? Where is the
password stored?

• How does the script supply the password?

• Remember that any file on the server is readable by all other users or
script writers. . .

Steven M. Bellovin February 27, 2007 30



Design Issues

• Neither the OS nor Apache’s access controls can help us much

• We have to rely on the script language’s access controls

• Even that may not protect us from subverted scripts

Steven M. Bellovin February 27, 2007 31



Cryptography

• SSL encryption used for most e-commerce

• SSL uses hybrid public key/symmetric crypto

• Where does the web server get is private key?

• Again, how do we store a key on a computer?

Steven M. Bellovin February 27, 2007 32



Key Storage

• Ideally, it’s stored in encrypted form, or in some tamper-resistant
device

• We can’t store it encrypted — how is the decryption key supplied at
Apache startup?

• A few large sites use SSL front-end/load-balancer devices, but these
aren’t common

• We must store the key in the clear, on the web server machine

Steven M. Bellovin February 27, 2007 33



Protecting the Key

• Of course, it’s stored mode r--,---,---

• It’s also owned by root, and read in at startup before changing UIDs

• Why? To provide maximum OS protection against subversion

Steven M. Bellovin February 27, 2007 34



Authentication

• Two basic types: passwords and client-side certificates

• Passwords can be for the built-in Web browser authentication or for
application-specific authentication

• Passwords should never be used without encrypting the channel

• Client-side certificates are more secure, but they’re rare

• They’re also less convenient: how does the user carry around a
private key to multiple machines?

• Ultimately, the client’s identity feeds into Apache’s access control
mechanisms

Steven M. Bellovin February 27, 2007 35



Lessons

• Web servers are very hard to secure

• We need all of our tools: OS permissions, application ACLs, script
language security, cryptography, and more

• There are often residual issues even then

Steven M. Bellovin February 27, 2007 36


