
Web Security

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

1 / 45

■ Crypto (SSL)
■ Client security
■ Server security



SSL

Web Security

SSL

SSL

Trusting SSL

The Server’s
Knowledge of the
Client
How Did That
Happen?

SET

The Failure of SET
Aside: The SET
Root Certificate
The Client’s
Knowledge of the
Server
Who Issues Web
Certificates?
Mountain America
Credit Union

A Fake Certificate

A Technical Attack

Conclusions on SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

2 / 45



SSL

Web Security

SSL

SSL

Trusting SSL

The Server’s
Knowledge of the
Client
How Did That
Happen?

SET

The Failure of SET
Aside: The SET
Root Certificate
The Client’s
Knowledge of the
Server
Who Issues Web
Certificates?
Mountain America
Credit Union

A Fake Certificate

A Technical Attack

Conclusions on SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

3 / 45

■ Mostly covered last time
■ Crypto is insufficient for Web security
■ One issue: linkage between crypto layer and

applications



Trusting SSL

Web Security

SSL

SSL

Trusting SSL

The Server’s
Knowledge of the
Client
How Did That
Happen?

SET

The Failure of SET
Aside: The SET
Root Certificate
The Client’s
Knowledge of the
Server
Who Issues Web
Certificates?
Mountain America
Credit Union

A Fake Certificate

A Technical Attack

Conclusions on SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

4 / 45

■ What does the server really know about the
client?

■ What does the client really know about the
server?



The Server’s Knowledge of the Client

Web Security

SSL

SSL

Trusting SSL

The Server’s
Knowledge of the
Client
How Did That
Happen?

SET

The Failure of SET
Aside: The SET
Root Certificate
The Client’s
Knowledge of the
Server
Who Issues Web
Certificates?
Mountain America
Credit Union

A Fake Certificate

A Technical Attack

Conclusions on SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

5 / 45

■ What has SSL told the server?
■ Unless client-side certificates are used,

absolutely nothing

■ SSL provides a secure pipe. Someone is at the
other end; you don’t know whom



How Did That Happen?

Web Security

SSL

SSL

Trusting SSL

The Server’s
Knowledge of the
Client
How Did That
Happen?

SET

The Failure of SET
Aside: The SET
Root Certificate
The Client’s
Knowledge of the
Server
Who Issues Web
Certificates?
Mountain America
Credit Union

A Fake Certificate

A Technical Attack

Conclusions on SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

6 / 45

■ In theory, we could have had digitally-signed
purchase orders linked to credit card accounts

■ That would have required that Netscape, when
it invented SSL, have some way to issue
client-side certificates that were linked to
credit card accounts and didn’t have the credit
card number in the cert

■ Netscape couldn’t have done that; only the
banks could have

■ Back in 1994, banks didn’t believe in this
new-fangled Internet thing (remember that
until Windows 95, TCP/IP wasn’t included in
Windows



SET

Web Security

SSL

SSL

Trusting SSL

The Server’s
Knowledge of the
Client
How Did That
Happen?

SET

The Failure of SET
Aside: The SET
Root Certificate
The Client’s
Knowledge of the
Server
Who Issues Web
Certificates?
Mountain America
Credit Union

A Fake Certificate

A Technical Attack

Conclusions on SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

7 / 45

■ A few years later, Visa and Mastercard (and
eventually Amex) tried

■ They developed a protocol called SET (Secure
Electronic Transactions)

■ It provided client-side certificates linked to
credit cards

■ In theory, merchants wouldn’t need to know
(and store) credit card numbers

■ Virtually no one used it
■ The reasons were both technical and financial



The Failure of SET

Web Security

SSL

SSL

Trusting SSL

The Server’s
Knowledge of the
Client
How Did That
Happen?

SET

The Failure of SET
Aside: The SET
Root Certificate
The Client’s
Knowledge of the
Server
Who Issues Web
Certificates?
Mountain America
Credit Union

A Fake Certificate

A Technical Attack

Conclusions on SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

8 / 45

■ It required client-side software
⇒ Very few people install extra software

■ Client-side certificates are hard to use — what
if you use several computers?

■ There was too little financial incentive for
merchants, so they couldn’t give customers a
discount for using SET

■ It still permitted merchants to store credit
card numbers; in fact, they were present, albeit
encrypted, in the certificate

⇒ Merchants use credit card numbers as
customer tracking keys for databases

■ Good crypto alone isn’t sufficient!



Aside: The SET Root Certificate

Web Security

SSL

SSL

Trusting SSL

The Server’s
Knowledge of the
Client
How Did That
Happen?

SET

The Failure of SET
Aside: The SET
Root Certificate
The Client’s
Knowledge of the
Server
Who Issues Web
Certificates?
Mountain America
Credit Union

A Fake Certificate

A Technical Attack

Conclusions on SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

9 / 45

■ Who should control the SET root certificate,
used to sign the Visa, Mastercard, etc.,
top-level certificates?

■ (SET certified Visa et al.; they certified banks,
who in turn issued customer certificates)

■ It would be catastrophic if the root’s private
key were compromised

■ Visa didn’t trust Mastercard, or vice-versa
■ Solution: a sacrificaal PC signed all of the

second-level certificates, at which point it was
physically smashed. Different organizations
took home different pieces. . .



The Client’s Knowledge of the Server

Web Security

SSL

SSL

Trusting SSL

The Server’s
Knowledge of the
Client
How Did That
Happen?

SET

The Failure of SET
Aside: The SET
Root Certificate
The Client’s
Knowledge of the
Server
Who Issues Web
Certificates?
Mountain America
Credit Union

A Fake Certificate

A Technical Attack

Conclusions on SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

10 / 45

■ The client receives the server’s certificate.
Does that help?

■ A certificate means that someone has attested
to the binding of some name to a public key.

■ Who has done the certification? Is it the right
name?



Who Issues Web Certificates?

Web Security

SSL

SSL

Trusting SSL

The Server’s
Knowledge of the
Client
How Did That
Happen?

SET

The Failure of SET
Aside: The SET
Root Certificate
The Client’s
Knowledge of the
Server
Who Issues Web
Certificates?
Mountain America
Credit Union

A Fake Certificate

A Technical Attack

Conclusions on SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

11 / 45

■ Every browser has a list of built-in certificate
authorities

■ The latest version of Firefox has 138 certificate
authorities!

■ Do you trust them all to be honest and
competent?

■ Do you even know them all?
■ (Baltimore Cybertrust is listed. It sold its PKI

business in 2003. Are the new owners
trustworthy?)



Mountain America Credit Union

Web Security

SSL

SSL

Trusting SSL

The Server’s
Knowledge of the
Client
How Did That
Happen?

SET

The Failure of SET
Aside: The SET
Root Certificate
The Client’s
Knowledge of the
Server
Who Issues Web
Certificates?
Mountain America
Credit Union

A Fake Certificate

A Technical Attack

Conclusions on SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

12 / 45

■ Early this year, someone persuaded a reputable
CA to issue them a certificate for Mountain
America, a credit union

■ The DNS name was
www.mountain-america.net

■ It looks legitimate, but the real credit union
site is at www.mtnamerica.org.

■ (There’s also www.mountainamerica.com, a
Las Vegas travel site)

■ Which site was intended by the user?



A Fake Certificate

Web Security

SSL

SSL

Trusting SSL

The Server’s
Knowledge of the
Client
How Did That
Happen?

SET

The Failure of SET
Aside: The SET
Root Certificate
The Client’s
Knowledge of the
Server
Who Issues Web
Certificates?
Mountain America
Credit Union

A Fake Certificate

A Technical Attack

Conclusions on SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

13 / 45



A Technical Attack

Web Security

SSL

SSL

Trusting SSL

The Server’s
Knowledge of the
Client
How Did That
Happen?

SET

The Failure of SET
Aside: The SET
Root Certificate
The Client’s
Knowledge of the
Server
Who Issues Web
Certificates?
Mountain America
Credit Union

A Fake Certificate

A Technical Attack

Conclusions on SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

14 / 45

■ Usually, you shop via unencrypted pages
■ You click “Checkout” (or “Login” on a bank

web site)
■ The next page — downloaded without SSL

protection — has the login link, which will use
SSL

■ What if an attacker tampers with that page,
and changes the link to something different?
Will you notice?

■ Note that some small sites outsource payment
processing. . .



Conclusions on SSL

Web Security

SSL

SSL

Trusting SSL

The Server’s
Knowledge of the
Client
How Did That
Happen?

SET

The Failure of SET
Aside: The SET
Root Certificate
The Client’s
Knowledge of the
Server
Who Issues Web
Certificates?
Mountain America
Credit Union

A Fake Certificate

A Technical Attack

Conclusions on SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

15 / 45

■ The cryptography itself seems correct
■ The human factors are dubious
■ Most users don’t know what a certificate is, or

how to verify one
■ Even when they do know, it’s hard to know

what it should say in any given situation
■ There is no rational basis for deciding whether

or not to trust a given CA



Protecting the Client

Web Security

SSL

Protecting the Client

Web Browser
Security

The Attackers’ Goals

Buggy Code

Why Are Browsers
So Insecure?

Active Content

Continuing
Authentication

Server-Side Security

16 / 45



Web Browser Security

Web Security

SSL

Protecting the Client

Web Browser
Security

The Attackers’ Goals

Buggy Code

Why Are Browsers
So Insecure?

Active Content

Continuing
Authentication

Server-Side Security

17 / 45

■ User interface
■ Buggy code
■ Active content



The Attackers’ Goals

Web Security

SSL

Protecting the Client

Web Browser
Security

The Attackers’ Goals

Buggy Code

Why Are Browsers
So Insecure?

Active Content

Continuing
Authentication

Server-Side Security

18 / 45

■ Steal personal information, especially financial
site passwords

■ Turn computers into “bots”
■ Bots can be used for denial of service attacks,

sending spam, hosting phishing web sites, etc.



Buggy Code

Web Security

SSL

Protecting the Client

Web Browser
Security

The Attackers’ Goals

Buggy Code

Why Are Browsers
So Insecure?

Active Content

Continuing
Authentication

Server-Side Security

19 / 45

■ All browsers are vulnerable, and getting worse
■ Browser bugs (Symantec):

Brower 1H2005 2H2005 1H2006
IE 25 25 38
Firefox 32 17 47
Opera 7 9 7
Safari 4 6 12

■ Exposure period (Symantec):
Browser 2H2005 1H2006
IE 25 9
Firefox -2 1
Safari 5
Opera 18 2



Why Are Browsers So Insecure?

Web Security

SSL

Protecting the Client

Web Browser
Security

The Attackers’ Goals

Buggy Code

Why Are Browsers
So Insecure?

Active Content

Continuing
Authentication

Server-Side Security

20 / 45

■ Their task is complex
■ They are dealing with many untrusted sites
■ By definition, browser inputs cross protection

domains

■ It is likely that no browser is signficantly better
than any other in this regard — they’re all bad



Active Content

Web Security

SSL

Protecting the Client

Active Content

Active Content

JavaScript

AJAX

ActiveX
Downloading
ActiveX Controls

Why ActiveX?

Continuing
Authentication

Server-Side Security

21 / 45



Active Content

Web Security

SSL

Protecting the Client

Active Content

Active Content

JavaScript

AJAX

ActiveX
Downloading
ActiveX Controls

Why ActiveX?

Continuing
Authentication

Server-Side Security

22 / 45

■ There’s worse yet for web users: active content
■ Typical active content: JavaScript, Java,

Flash, ActiveX
■ Web pages can contain more-or-less arbitrary

programs or references to programs
■ To view certain web pages, users are told

“please install this plug-in”, i.e., a program
■ “Given a choice between dancing pigs and

security, users will pick dancing pigs every
time.” (Ed Felten)



JavaScript

Web Security

SSL

Protecting the Client

Active Content

Active Content

JavaScript

AJAX

ActiveX
Downloading
ActiveX Controls

Why ActiveX?

Continuing
Authentication

Server-Side Security

23 / 45

■ No relationship to Java — originally called
LiveScript (EvilScript?)

■ Source of most recent security holes, in Firefox
and IE

■ No clear security model
■ Crucial link in cross-site scripting attacks



AJAX

Web Security

SSL

Protecting the Client

Active Content

Active Content

JavaScript

AJAX

ActiveX
Downloading
ActiveX Controls

Why ActiveX?

Continuing
Authentication

Server-Side Security

24 / 45

■ AJAX — Asynchronous JavaScript and
XHTML

■ Permits highly interactive web pages, i.e.,
Google Maps

■ Security implications for client and server are
still quite unclear (but are likely to be bad. . . )



ActiveX

Web Security

SSL

Protecting the Client

Active Content

Active Content

JavaScript

AJAX

ActiveX
Downloading
ActiveX Controls

Why ActiveX?

Continuing
Authentication

Server-Side Security

25 / 45

■ The biggest active content design error
■ Over 1,000 ActiveX controls on a typical new,

out-of-the box, machine
■ Translation: over 1,000 different pieces of code

that can be run by almost any web page
■ But wait, there’s more!



Downloading ActiveX Controls

Web Security

SSL

Protecting the Client

Active Content

Active Content

JavaScript

AJAX

ActiveX
Downloading
ActiveX Controls

Why ActiveX?

Continuing
Authentication

Server-Side Security

26 / 45

■ Any web page can download other controls
■ Translation: any web page can download an

arbitrary piece of code to run on a user’s
machine

■ The only protection is a digital signature on
the downloaded code

■ But at best that identifies the author — see
the previous discussion of certificates!

■ There is no restriction on what the code can
do



Why ActiveX?

Web Security

SSL

Protecting the Client

Active Content

Active Content

JavaScript

AJAX

ActiveX
Downloading
ActiveX Controls

Why ActiveX?

Continuing
Authentication

Server-Side Security

27 / 45

■ It can be used for some very beneficial things,
such as Windows Update

■ It can be used to “enhance” the user’s web
experience, i.e., provide dancing pigs

■ Business reasons? Tie web sites to Windows
and IE?

■ Only IE has ActiveX. This is the single biggest
security difference between IE and Firefox



Continuing Authentication

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Protecting
Identification
Information

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

Server-Side Security

28 / 45



Continuing Authentication

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Protecting
Identification
Information

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

Server-Side Security

29 / 45

■ Initial authentication is usually by password
■ How is continuing authentication done?
■ Two principal ways: cookies and hidden values
■ Both have their limits
■ Fundamental issue: both are sent by untrusted

clients



Untrusted Clients

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Protecting
Identification
Information

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

Server-Side Security

30 / 45

■ The web site is interested in identifying users
■ (Some) users have incentive to cheat
■ The goal of the web site is to make cheating

impossible
■ But the web site doesn’t control the client

software or behavior



Protecting Identification Information

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Protecting
Identification
Information

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

Server-Side Security

31 / 45

■ After the user logs in (somehow), create a
string that contains the userid

■ Encrypt (optional) and MAC this string, using
keys known only to the server; pass the string
to the client

■ When the string is sent to the server, validate
the MAC and decrypt, to see who it is

■ Only the server knows those keys, so only the
server could have created those protected
strings (similar to Keberos TGT)

■ Optional: include timestamp, IP address, etc.



Hidden Values

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Protecting
Identification
Information

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

Server-Side Security

32 / 45

■ Protected userid string can be embedded in
the web page, and returned on clicks

■ Embed in URLs — but then they’re visible in
log files

■ Make them hidden variables passed back in
forms:

<INPUT TYPE=HIDDEN NAME=REQRENEW>

<INPUT TYPE=HIDDEN NAME=PID VALUE="2378">

<INPUT TYPE=HIDDEN NAME=SEQ VALUE="20060928002359">

<P><INPUT TYPE=SUBMIT VALUE="Renew Items"><INPUT

</FORM>



Cookies

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Protecting
Identification
Information

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

Server-Side Security

33 / 45

■ More commonly used
■ Allow you to re-enter site
■ Are sometimes stored on user’s disks



Protecting Authentication Data

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Protecting
Identification
Information

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

Server-Side Security

34 / 45

■ Continuing authentication data is frequently
unencrypted!

■ Most sites don’t want the overhead of SSL for
everything

■ Credentials are easily stolen
■ Usual defenses: lifetime; reauthenticate before

doing really sensitive stuff



Sidebar: Cookies and JavaScript

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Protecting
Identification
Information

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

Server-Side Security

35 / 45

■ IE trusts local content more than it trusts
downloaded files

■ Content is “local” if it’s coming from a file on
the user’s disk

■ Each cookie is stored as a separate file
■ Suppose you put a script in a cookie, and then

referenced it by filename?
■ Now you know why browsers use random

characters in some of their filenames. . .
■ (Partially changed by Windows XP SP2)



Cross-Site Scripting (XSS)

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Protecting
Identification
Information

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

Server-Side Security

36 / 45

■ Problem usually occurs when sites don’t
sanitize user input to strip HTML

■ Example: chat room (or MySpace or blog
sites) that let users enter comments

■ The “comments” can include JavaScript code
■ This JavaScript code can transmit the user’s

authentication cookies to some other site



Why It Works

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Protecting
Identification
Information

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

Server-Side Security

37 / 45

■ A JavaScript program can only access data for
the current web site

■ But JavaScript from a site can access that
site’s cookies

■ Because of the XSS bug, the JavaScript from

that site contains malicious code
■ It can therefore steal cookies and send them to

some other site, via (say) an IMG URL



Sanitizing Input

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication
Continuing
Authentication

Untrusted Clients
Protecting
Identification
Information

Hidden Values

Cookies
Protecting
Authentication Data
Sidebar: Cookies
and JavaScript

Cross-Site Scripting
(XSS)

Why It Works

Sanitizing Input

Server-Side Security

38 / 45

■ Very hard to do properly
■ Whitelist instead of blacklist — accept <I>

instead of blocking <SCRIPT>

■ Watch for encoding: %3C
■ Watch for Unicode: &#x3C; or &#x003c; or

&#x00003c; or &#60; or . . .
■ Probably a way to write it in octal, too
■ Unicode is tricky — see RFC 3454. What do

all of your users’ browsers understand?



Server-Side Security

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

Protecting the
Server

Standard Defenses

Server-Side Scripts

Injection Attacks

Scrubbing Your Site

Users

39 / 45



Protecting the Server

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

Protecting the
Server

Standard Defenses

Server-Side Scripts

Injection Attacks

Scrubbing Your Site

Users

40 / 45

■ Servers are very tempting targets
■ Defacement
■ Steal data (i.e., credit card numbers)
■ Distribute malware to unsuspecting clients



Standard Defenses

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

Protecting the
Server

Standard Defenses

Server-Side Scripts

Injection Attacks

Scrubbing Your Site

Users

41 / 45

■ Check all inputs
■ Remember that nothing the client sends can

be trusted
■ Scrub your site



Server-Side Scripts

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

Protecting the
Server

Standard Defenses

Server-Side Scripts

Injection Attacks

Scrubbing Your Site

Users

42 / 45

■ Most interesting web sites use server-side
scripts: CGI, ASP, PHP, server-side include,
etc.

■ Each such script is a separate network service
■ For a web site to be secure, all of its scripts

must be secure
■ What security context do scripts run in? The

web server’s? How does the server protect its
sensitive files against malfunctioing scripts?

■ This latter is a particular problem with server
plug-ins, such as PHP

■ Partial defense: use things like suexec



Injection Attacks

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

Protecting the
Server

Standard Defenses

Server-Side Scripts

Injection Attacks

Scrubbing Your Site

Users

43 / 45

■ Often, user-supplied input is used to construct
a file name or SQL query

■ Bad guys can send bogus data
■ Example: a script that sends email collects a

username and executes
/usr/bin/sendmail username

■ The bad guy supplies foo; rm -rf / as the
username

■ The actual code executed is
/usr/bin/sendmail foo; rm -rf /

■ Oops. . .



Scrubbing Your Site

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

Protecting the
Server

Standard Defenses

Server-Side Scripts

Injection Attacks

Scrubbing Your Site

Users

44 / 45

■ What is really being served?
■ Web servers often come with default scripts —

some of these are insecure
■ Example: nph-test-cgi that used to come

with Apache
■ Example: proprietary documents; Google for

them:

filetype:pdf "company confidential"

■ (By the way, many document have other,
hidden data)

■ Can Google for some other vulnerabilities, too



Users

Web Security

SSL

Protecting the Client

Active Content

Continuing
Authentication

Server-Side Security

Protecting the
Server

Standard Defenses

Server-Side Scripts

Injection Attacks

Scrubbing Your Site

Users

45 / 45

■ If your site permits user web pages — this
deparment? — you have serious threats

■ Are the user CGI scripts secure?
■ Can users run PHP scripts in the browser’s

security context?
■ Are all of these secure?


	Web Security
	SSL
	SSL
	Trusting SSL
	The Server's Knowledge of the Client
	How Did That Happen?
	SET
	The Failure of SET
	Aside: The SET Root Certificate
	The Client's Knowledge of the Server
	Who Issues Web Certificates?
	Mountain America Credit Union
	A Fake Certificate
	A Technical Attack
	Conclusions on SSL

	Protecting the Client
	Web Browser Security
	The Attackers' Goals
	Buggy Code
	Why Are Browsers So Insecure?

	Active Content
	Active Content
	JavaScript
	AJAX
	ActiveX
	Downloading ActiveX Controls
	Why ActiveX?

	Continuing Authentication
	Continuing Authentication
	Untrusted Clients
	Protecting Identification Information
	Hidden Values
	Cookies
	Protecting Authentication Data
	Sidebar: Cookies and JavaScript
	Cross-Site Scripting (XSS)
	Why It Works
	Sanitizing Input

	Server-Side Security
	Protecting the Server
	Standard Defenses
	Server-Side Scripts
	Injection Attacks
	Scrubbing Your Site
	Users


