Security Engineering of Hardware-Software Interfaces

Beng Chiew (Adrian) Tang

Submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2018

©2018
Beng Chiew (Adrian) Tang
All rights reserved

ABSTRACT
Security Engineering of Hardware-Software Interfaces

Beng Chiew (Adrian) Tang

Hardware and software do not operate in isolation. Neither should they be regarded as such
when securing systems. To seamlessly facilitate computing, they have to communicate via inter-
faces. Besides characterizing the means by which software can harness the exposed functionali-
ties of hardware, these hardware-software interfaces define the degree and granularity of control
and access that software possesses to the lower layers of the system stack. These mechanisms
provide a rich source of hardware assistive technologies that can be tapped to enhance security
as a full-system property. On the flip side, given the level of access software has to these hard-
ware features, security-oblivious designs of hardware and their interfaces can expose systems to
new vulnerabilities. Evidently, these hardware-software interfaces represent a crucial focal area
in systems for the formulation, review and refinement of security measures.

This dissertation advances the thesis that security as a full-system property can be improved
by examining and leveraging the interworking of hardware and software. It advocates a full-
system approach in architecture design by demonstrating how unanticipated ways in which
hardware and software co-operate can induce unintended computing behavior and pose secu-
rity risks. It develops novel techniques to repurpose commodity hardware support to create new
defense primitives that exploit the synergy between hardware and software. It shows how com-
modity hardware-software interfaces play an instrumental role in security with the hardware’s
well-positioned access to runtime information. All these interface-oriented design principles, as
this dissertation demonstrates, are widely applicable and practical as the highlighted three case
studies span the three primary stages of a typical security attack, namely the act of inducing unin-
tended system behavior, exploiting vulnerability to achieve initial system control, and executing
malicious code for nefarious goals.

First, the dissertation begins by scrutinizing the design of energy management mechanisms, a

prevalent class of hardware-software interfaces found in almost all commodity systems. It shows,

for the first time, that as we pursue increasingly aggressive cooperative hardware-software mech-
anisms to improve energy efficiency, doing so with no regard for security can create serious vul-
nerabilities. This dissertation highlights a multitude of issues in the current designs of energy
management mechanisms. It further demonstrates how, with fine-grained software-based con-
trol of underlying hardware voltage and frequency regulators, attackers can exploit these issues
to induce unintended computing behavior. It shows that beyond causing unintended system be-
havior, abusing these interfaces in security-oblivious energy management designs can violate all
three key security properties in spite of hardware-enforced isolation: confidentiality (extracting

AES keys), integrity (loading self-signed code), and clearly, availability (freezing the device).

Second, the dissertation addresses an advanced class of dynamic code reuse exploits that rely
on memory disclosure vulnerabilities to construct their initial payload code at runtime. This
class of exploits bypasses even the finest-grained randomization-based defenses. While the con-
cept of execute-only memory in existing defenses works well, it cannot be applied effectively in
closed-source systems where perfect disassembly of compiled binaries is not possible. To tackle
this problem, this dissertation first introduces the Destructive Code Read primitive—a defense
technique that randomizes executable memory as it is being read as data—as a means to thwart
memory disclosure exploits as well as to sidestep the problem of imperfect binary disassembly
in COTS systems. It leverages the virtualization assistive hardware feature to timely mediate
read operations into executable memory, thereby significantly lowering the cost of deploying
the Destructive Code Read defense primitive. Tapping into the unique strengths of functionality
closer to the hardware layer of the system stack, it extends the benefits of execute-only memory

defenses to COTS systems.

Finally, the dissertation builds on the insight that hardware, being the lowest part of the sys-
tem stack, is uniquely positioned to augment traditionally software-only techniques. Besides
being more performant and energy-efficient, hardware offers extensive visibility into code exe-
cution at the software layers. This dissertation shows that these hardware characteristics offer

unprecedented insights into code execution, both benign and malicious. It demonstrates that the

interaction of hardware and software can be modeled as microarchitectural events, which can in
turn be leveraged to detect anomalous malicious code execution in the latter stages of a security
attack. Using assistive debugging hardware features to efficiently audit these events, it further
develops novel techniques to make sense of the noisy and lower-level microarchitectural events

to detect in-flight shellcode execution and full-fledged anomalous malicious programs.

Contents

List of Figures vi
List of Tables ix
1 Introduction 1
1.1 Convergence of Attacks and Defenses at Interfaces. 3
1.1.1 Hardware-Oriented Defenses 3

1.1.2 Hardware-Oriented Attacks 3

1.2 Interface is the problem. Interface is the solution. 4
1.2.1 Full-System Security 4

1.2.2 Commodity Hardware Support for Security 5

1.2.3 Hardware-Software Interaction Matters 6

1.3 Thesis o 7
1.3.1 Thesis Statement Lo 7

1.3.2 Contributions L 7

1.3.3 Dissertation Roadmap 8

2 Background on Attacks and Defenses 9
2.1 Attack Model and Defense Principles 9
2.1.1 Generic Defense Principles 14

3 CLKscrRew: Motivating Security-Aware Energy Management 16

31 OVerview e e 17
3.2 Background 19
3.2.1 Energy Management Systems 20
3.2.2 Dynamic Voltage & Frequency Scaling 21
3.23 Hardware Supportfor DVFS 22
3.24 Software Support for DVES oL 24
3.3 Achieving the First CLKscRew Fault, 25
3.3.1 How Timing Faults Occur 25
3.3.2 Challenges of CLKscRew Attacks 28
3.3.3 Characterization of Regulator Limits 29
3.3.4 Containing the Fault withina Core 31
3.3.5 CLKscrRew Attack Steps 33
3.3.6 Isolation-Agnostic DVES 34
3.4 TZ Attack #1: Inferring AESKeys 35
3.4.1 Trustzone AES Decryption App 36
342 Timing Profiling 36
343 FaultModel 38
3.44 Puttingittogether. 39
3.5 TZ Attack #2: Loading Self-Signed Apps 40
3.5.1 Trustzone Signature Authentication 41
3.5.2 Attack Strategy and Cryptanalysis 43
3.53 Timing Profiling L 47
354 FaultModel 51
3.5.5 Puttingittogether. 51
3.6 Discussion and Related Works o Lo 52
3.6.1 Applicability to other Platforms 52

ii

4

5

3.6.2 Hardware-Level Defenses

3.6.3 Software-Level Defenses
3.6.4 Subverting Cryptography with Faults
3.6.5 Relation to Rowhammer Fault Attacks
3.6.6 Relation to Meltdown/Spectre Side-Channel Attacks
3.7 Conclusions

HEISENBYTE: Stemming Code Reuse Exploits with Destructive Code Reads

4.1 Introduction
42 Background
4.2.1 Dynamic Code Reuse Attacks
422 PreviousWorks
423 Assumptions.
43 Heisenbyte Design
43.1 Destructive CodeReads
432 Statically Separating CodeandData
44 System Implementation Lo oo
4.4.1 Offline Static Binary Rewriting
44.2 Heisenbyte Core Monitoring Components
45 Evaluation
45.1 Security Effectivenesso o oo
45.2 Performance Overhead
4.6 Related Work and Enhancements
4.7 DISCUSSION L e e
4.8 Conclusions

HaDEs: Detecting Malware with Microarchitectural Profiling

5.1 Introduction

iii

5.2 Background 97

5.3 Experimental Setup 99
5.3.1 Exploits 99

5.3.2 Measurement Infrastructure 100

5.3.3 Sampling Granularity 100

5.3.4 Labeling Measurements with ExploitData 101

5.3.5 Collection of Clean and Infected Measurements 102

54 Building Models 104
5.4.1 Feature Selection 105

55 Results 107
5.5.1 Anomalies Not Directly Detectable 107

5,52 Power Transform 108

5.5.3 Evaluation Metrics for Models 109

5.5.4 Detection Performance of Models 110

5.5.5 Results for Adobe PDFReader 114

5.6 Analysis of Evasion Strategies oL 114
5.6.1 Defenses e 118

57 Discussion e e 119

5.8 Architectural Enhancements for Malware Detection 121

59 Related Work 122
5.10 Conclusions 123

6 Conclusion 125
6.1 Future Directions 125
Bibliography 129
Appendix 146
A.1 Example Glitchin RSAModulus 146

iv

A.2 Deep Dive into Intel Power Management Controls 147

A.2.1 Preliminaries. 147
A.2.2 Review of Existing Intel PM Technologies 147
A.2.3 Recent PM AdvancesinHaswell 153
A.24 NewPMControlsinHaswell 154
A25 IntelPMMSRsinaNutshell 163
A3 Code Availability 163

List of Figures

2.1 Attack classes juxtaposed with key defense principles and goals. 10
3.1 Contemporary energy management system designs span across multiple layers in the
computing stack. 20
3.2 Shared voltage regulator for all Kraitcores. 22
3.3 Separate clock sources for each Kraitcore. 23
3.4 Timing constraint for error-free data propagation from input). to output Dy for
entire circuit. L 25
3.5 Bit-level fault due to overclocking: Reducing clock period Ty — 77, results in a
bitflipinoutput 1 — 0. 27
3.6 Glitch due to undervolting: Increasing propagation time of the critical path between
the two consecutive flip-flops, Thax path — Ty pan Tesults in a bit-flip in output 1 — 0. 27
3.7 Vendor-stipulated voltage/frequency Operating Performance Points (OPPs) vs. max-
imum OPPs achieved before computation fails. 29
3.8 Vendor-stipulated vs maximum voltage/frequency OPPs for Nexus6P. 31
3.9 Vendor-stipulated vs maximum voltage/frequency OPPs for Pixel. 32
3.10 Overview of CLKscRew fault injectionsetup. 33
3.11 Regulators operate across security boundaries. 0 0L L. 35
3.12 Execution duration (in clock cycles) of the victim and attack threads. 37

Vi

3.13

3.14

3.15

3.16

3.17

3.18

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.1

5.2

5.3

5.4

Fault model: Characteristics of observed faults induced by CLKscrRew on AES oper-

Controlling pre-fault delay, Fjdely, allows us to control which AES round the fault

affects. . . . L 40
Cache eviction profile snapshot with cache-based features. 49
Observed faults using the timing features. 50
Variability of faulted byte(s) position. 51

Histogram of observed faults and where the faults occur. The intended faulted posi-

tion is 141. e e e 52

TOP: Stages of a code reuse attack that constructs its payload on-the-fly using ex-
ecutable memory found with a memory disclosure bug. BOTTOM: Taxonomy of
defenses grouped by their defense strategy. 62

A typical execution of a jmp instruction using both code and data interleaved on the

Same MEMOIY PAZE. v v v vttt e e e e e e e e e e e e e e 66
Destructive code read process. 67
Flowchart of configuration of EPT for monitored executable pages.. 69

Nested paging structure using virtualization hardware support (using Intel-specific

LEIrmS). e e e 74
Overview of system architecture (Heisenbyte components are shaded grey). 77
Using EPT to maintain separate code and data views transparently. 80
SPEC2006 execution overhead. 84
Memory overhead in terms of peak RSS.o 84
Taxonomy of malware detection approaches and some example works. 95
Multi-stage exploit process. Lo 97
Labeled event counts (Sampled every 32kins.) 102
Distribution of events (after power transform) with more discernible deviations. . . . 109

vii

5.5 Top: ROC plots for Non-Temporal 4-feature models for IE. Bottom: ROC plots for
Temporal 16-feature modelsfor IE. 110
5.6 Detection AUC scores for different event sets using non-temporal and temporal mod-
elsforIE. 111
5.7 Trade-off between sampling overhead for different sampling rates versus detection
accuracy using set AM-1. e 112
5.8 Impact of inserting no-op segments on: (Left) The anomaly scores of Stage1 shellcode

and (Right) The detection efficacy of Stagel shellcode. 117

6.1.1 Intel clock distribution tree. 148

6.1.2 Empirical measurements of combinations of frequency and voltages across different

P-states. 150
6.1.3 Comparison of voltage regulator (VR) design in legacy vs Haswell+ processors. 153
6.1.4 Newly introduced MSR_0C_MATLBOX.. o o v v i ittt i e e e e et 155
6.1.5 Freq/Voltage in different voltagemodes. 159

viii

List of Tables

3.1 CLKscrew fault injection parameters. 33
5.1 Shortlisted candidate events to be monitored. Lo 104
5.2 Top 7 most discriminative events for different stages of exploit execution (Each event

set consists of 4 event names in BoLp. E.g, monitoring event set A-0 consists of

simultaneously monitoring RET, CALL_D, STORE and ARITH event counts.) 107
5.3 AUC scores for: (Left) Constrained scenarios for IE using set AM-1and (Right) Stand-

alone Adobe PDFReader. 114
6.1.1 Configuration fields in the MSR_0C_MAILBOX. (* - Only these two fields are valid for

use in the SA, IOA and IOD domains.) i i 156
6.1.2 Summary of PM-related Intel MSRs and corresponding fields. 162

ix

Acknowledgments

Pursuing a Ph.D. is a significant stage of my life, and is only made worthwhile and rewarding by
the people who surround me along the way. For that, I am beyond grateful.

First of all, I have had the immense fortune of being advised by Professor Salvatore Stolfo and
Professor Simha Sethumadhavan. Sal is a solid pillar of research inspiration and a fierce advocate
of research that makes its way to practice. Simha is a bottomless fountain of research optimism
and a tireless champion of research that revolutionizes the world. Both of them taught me the
value of aiming high and dreaming big. They have been excellent mentors and friends. No page
of this dissertation could be possible without them. Thank you Sal and Simha.

I benefited enormously from the knowledge and counsel of many more teachers. First and
foremost, I always enjoyed learning from Professor Steven Bellovin as he offered his security
insights, peppered with countless interesting stories, sometimes esoteric to say the least. I am
also extremely fortunate to work with Professor Suman Jana, as his dedication to concrete details
tremendously enriched our research and sharpened my acumen as a researcher. During my stint
as the Instructional Assistant (IA) coordinator, Professor Tal Malkin has been a valuable mentor as
we navigated the intricate maze of administrative IA matters. I thank Tal for her patient guidance
and advice. I would like to also thank Professor Fabian Monrose for all his priceless suggestions
and comments that shaped my dissertation to what it is today:.

I am indebted to all of my collaborators over the years for all the hard work, brilliant ideas and

fun times. John Demme, Matthew Maycock, Jared Schmitz and Adam Waksman took our first

plunge together into the world of hardware-based malware defenses, along with countless rounds
of beer at the 1020. Theofilos Petsio and I tackled the ambitious task of creating the multi-headed
Nezhabug-finder — Theo is a wonderful friend and the best research (and music) collaborator any-
one could ever hope for. Kanad Sinha is my fellow co-cartographer as we painstakingly mapped
out and systematized the large body of hardware-support research for software security and ex-
panded our research horizons — I could never hope for a better person to bounce ideas off, or for
that matter to debug our Chi Sao moves. I have also learned a lot from Professor Mingoo Seok,

Professor Jaehyuk Huh, Insu Jang and Sheng Zhang in our collaborations, and I am very grateful.

I owe a debt of gratitude to Professor Michael Sikorski for taking a chance on me as a teaching
assistant for his inaugural Malware Analysis and Reverse Engineering class. Michael gave me the
much-appreciated opportunity to meld my interest in binary analysis with my love for teaching,
and a blast it was for four years! I am also fortunate to work with several very talented people

along the way: Nick Harbour, Jonathan Ballone and Matthew Haigh, and I thank them for it.

Thank you to the Columbia undergraduates and exchange students who withstood my men-
toring: Abhishek Shah, Kevin Kwan, Alexander Bienstock, Aubrey Douglass Alston, Yifan Lu,

Ruoxin Jiang, Joshua Michael Zweig, Kevin Chen, Jennifer Lam. Their potential is limitless.

There are so many more colleagues and ex-colleagues whose presence have been a pillar
of support over these years. In no particular order, they are: Fang-Hsiang Su, Hiroshi Sasaki,
Yuan Kang, Preetam Dutta, Jill Jermyn, David Williams-King, Sebastian Zimmeck, Naser AlD-
uaij, Vaggelis Atlidakis, Marios Pomonis, Suphannee Sivakorn, Georgios Argyros, Vasileios P.
Kemerlis, Michalis Polychronakis, Miguel Arroyo, Yipeng Huang, Andrea Lottarini, Yinxiao Li,
Melanie Kambadur, Lianne Lairmore, John Koh, Chun-Yu Tsai, Ang Cui, Nathaniel Boggs, Peter

Du, David Tagatac, Hang Zhao.

Many friends have brightened up my life here in New York and offered the much-needed good
fun and distraction from work. I particularly like to thank Jun-Ping Ng and Yan Chen, Jessie Lee
and Jason Chen, Thidar Swe Tin and Jochen Weeber, Tsung-Yao Hsu, Sandy Shen, Alan Wu and

Vanessa Shyu, Eugene Ang and Rachma Lim.

bel

Much of who and what I am would not be possible without the unyielding support of my
nurturing family. Thank you to my parents, Tang Kim Poh and Tan Chuan Choo, for their selfless
and unwavering love, confidence and encouragement.

Finally, my most heartfelt thanks go to Lin Tian: my best friend and biggest fan. My life will
not be complete without her, much less doing a Ph.D. Her unconditional love and encouragement
have accompanied me through the brightest of moments and have supported me through the

darkest of times. She is a wonderful wife and a dream come true. Thank you Lin.

Beng Chiew (Adrian) Tang

Feb 22, 2018

xii

To my wife, Lin Tian
for the wonderful life we built for ourselves

in New York and Singapore

xiii

Introduction

Security research is a curious field. Rarely do we encounter the need to take on such vastly dis-
parate hats—attackers and defenders—in a field to do well. So intricately linked are these two
roles that one arguably has to be well-versed in one to be proficient in the other; to be a good
defender in securing systems, one has to think like an attacker. For years, the proverbial cat-and-
mouse game between attack and defense has been fought where the lowest-hanging fruit lies -
the relatively more exposed attack surface constituting the network, application and kernel layer
of systems. Many prevalent and prolific attacks target these layers where users interact most
with systems. It is thus no wonder that security engineering has traditionally taken a software-
oriented approach, top-down from the system computing stack. Many defenses naturally adopt
and maintain a purely software-only approach because compared to hardware, software is more
flexible and enables faster time-to-deployment. This broadly represents software-based defenses
adopting a top-down approach. On the other end of the spectrum is the body of hardware-based
defenses that espouse the bottom-up approach by designing secure hardware from the get-go.
Since hardware is relatively immutable’, this approach adopts a longer-term view in designing
security-oriented hardware primitives and developing hardware support for security. These soft-
ware top-down and hardware bottom-up approaches encapsulate the two prevailing schools of
philosophy towards engineering secure systems.

Despite progress made on the defense front, the increasing degree of heterogeneity (e.g. mo-

'Using microcode patches, modern commodity hardware possess some degree of mutability.

bile SoCs), ubiquity (e.g. IoT) and multi-layerness (e.g. disparate privilege and isolation execution
modes) in systems have complicated security engineering. Apart from having more components
to consider, system designers have to also examine how these components come together and
anticipate ways in which hardware and software interact. Towards this end, this dissertation
explores a third “middle-out” security engineering approach that can be more effectively tapped
to further security — somewhere that lies between the bottom-up and top-down approaches. This

requires the close examination of interfaces and the interaction between hardware and software.

This middle-out interface-oriented approach offers three benefits. One, it marries the
strengths of hardware-based and software-based approaches to create defenses that are deploy-
able in the immediate term. Software-only approaches have limits—performance penalty among
others—that hardware is well-positioned to overcome. By repurposing existing hardware fea-
tures not traditionally used for security, software-based defenses can be made more efficient and
effective. Two, adopting an architectural view when thinking about defenses allows defender to
uncovered untapped mechanisms for defense. Besides accelerating software security functions,
hardware can enable new security mechanisms due to its extensive visibility of program execu-
tion. This holds much potential for new approaches to secure software systems. Third, it places
emphasis on the cross-interaction between system components and motivates the security-aware

design of both the system components and their interfaces.

It is thus the broad theme of my research to advance system security using hardware-software
interfaces as a focal area to reformulate security measures and system designs. In this disserta-
tion, I present three case studies to demonstrate the value of security engineering of hardware-
software interfaces. Specifically, I motivate the redesign of existing security-oblivious energy
management systems and their interfaces, repurpose hardware virtualization support to create
an exploit prevention primitive, and adapt the traditional use of microarchitectural profiling in
benchmarking and system optimization to detecting malware. This interface-oriented approach
is practical and useful as the techniques demonstrated in this dissertation are applicable to all

three key lifecycle stages of attacks.

1.1 Convergence of Attacks and Defenses at Interfaces

Characterizing the interworking of hardware and software, hardware-software interfaces offer a
wealth of opportunities to both enhance as well as weaken systems. The focus on these interfaces

is motivated notably by two prevailing trends in the industry and academia.

1.1.1 Hardware-Oriented Defenses

In the last two decades or so, to address threats to software security, increasing attention has been
directed towards supporting security functions in hardware, both in academia and commercial
products. Hardware vendors have introduced security-driven primitives directly in hardware,
such as the Trusted Platform Module (TPM) to provide hardware-based root of trust, the hard-
ware NX bit to support the enforcement of Data Execution Prevention (DEP), cryptographic ac-
celerators [71] and random number generators [66]. Hardware-enforced isolation mechanisms
on commodity systems such as ARM TrustZone [89] and Intel SGX [69] also brought on fur-
ther research and development into Trusted Execution Environments. To thwart exploitation of
memory safety violation bugs, vendors have begun to adapt software-only conceptions of Con-
trol Flow Integrity (CFI) [4], shadow call stack and Code-Pointer Integrity (CPI) [85] to hardware
in the form of Intel Control Flow Enforcement (CET) [67] and Qualcomm ARMvS8.3 Pointer Au-
thentication [122]. There is also increasing support for hardware-based malware detection in
platforms such as Qualcomm SnapDragon 820 [119]. This trend gradually marks the end of a
long hiatus in hardware-oriented security research after robust research in the 1970’s that en-

abled hardware support in the form of rings and virtualization support in hardware.

1.1.2 Hardware-Oriented Attacks

As most defenses place emphasis in securing the upper application and kernel layers of the
system stack, it is not surprising to see a rising surge in recent years in attacks targeting the

lower hardware, firmware and hypervisor layers of the system stack. Since security is a full-

3

system property, every layer of the computing stack is fair game to attackers. At the hardware
layer, researchers have surfaced CPU bugs in chips [91] and reliability issues with DRAM mem-
ory [79]. The most prominent hardware-oriented attack in recent years is the “rowhammer”
issue with DRAM. Researchers have since exploited “rowhammer” to demonstrate the dangers
of such software-induced hardware-based transient bit-flips in practical scenarios ranging from
browsers [56], virtualized environments [123], privilege escalation on Linux kernel [126] and
from Android apps [156]. Besides exploiting hardware issues, attackers have also found and ex-
ploited bugs in esoteric firmware in Intel BIOS [173], Apple UEFI [152], networked printers [35]
and ARM TEE [17]. As popularity of virtualized environments rises, attacks on hypervisors also
emerge. Lower-privileged attack code running within virtualized environments can break out of
isolation [171], cause the host systems to fail or even attack other virtual machines [111]. This
trend clearly suggests that attackers are determined to attack any weak link, regardless of where

in the computing stack the target is at.

1.2 Interface is the problem. Interface is the solution.

Interfaces allow users to interact with a system and also enable system components to interact
with one another. So naturally, from the perspective of an attacker, interfaces constitute the
attack surface of a system. All of the aforementioned hardware-oriented attacks involve attackers
exploiting the system via some form of interface, however esoteric it may be. Interfaces are, thus,
commonly associated with security risks or threats. In this work, I hope to offer a contrarian
view of interfaces and discuss how approaching security oriented at these interfaces can lead to

refreshing security insights and defenses.

1.2.1 Full-System Security

Security is a full-system property. As systems become more complex (e.g. increasingly heteroge-

neous hardware and software running with ever-increasing number of abstraction and privilege

4

levels), it becomes increasingly harder to think and review security in a piecemeal manner. This
means that system design should improve in two ways. One, designers and architects of all sys-
tem components, however minute, should include security as a design consideration. Two, the
conventional approach to designing system components in silos should change. In other words,
a coordinated full-system approach is likely required to further security moving forward.

To imbue urgency to the importance of such full-system design approach, this dissertation
presents the first security review of an ubiquitous and indispensable system feature — energy
management. Energy management is deliberately picked as a target for two reasons. First, despite
the ubiquity of energy management mechanisms on commodity systems, security is rarely a
consideration in the design of these mechanisms. Second, the design of energy management
mechanisms demands design and optimizations that span across the entire computing stack. By
demonstrating the fragility of such complex systems in terms of security, it is my hope that it

gives credence to the need for full-system approach to designing for security.

1.2.2 Commodity Hardware Support for Security

A longer-term solution to security problems is to design hardware primitives securely from the
get-go and build secure systems from ground up so to speak. However, due to market forces and
short product cycles stressing on quick turnover, it sometimes takes a prolonged amount of time
for security techniques to find their way into commodity systems. For example, it took the idea of
transactional memory, originally proposed to mitigate data races [60], more than two decades to
make it into commodity hardware in the form of Intel TSX [70]. The software-only conception of
shadow stacks, first proposed by Abadi et al. [5] to enforce backward-edge control flow integrity,
only recently (after more than one decade) began to make its way into commodity hardware
recently in Intel CET [67]. How then can we protect existing COTS software? Relooking at
the hardware features exposed to the software layers at the interfaces can offer a shorter-term
development cycle for immediate protection.

Unconventional use of hardware features at the hardware-software interface layer offers a

reasonable balance between designing security into hardware (and waiting for the feature to pop
up in commodity systems) and implementing software-based defenses (that may be slow and not
taking enough advantage of hardware support). To show how commodity hardware features can
be repurposed by exploiting their characteristics for the task at hand, this dissertation proposes
the design and implementation of an exploit prevention primitive that leverages virtualization
hardware support. This work harnesses the commodity virtualization hardware support in two
ways. One, it uses hardware support to enable timely and transparent mediation of memory
read operations. Two, it protects closed-source software and just-in-time compiled code against
memory disclosure exploits. Since virtualization hardware support is available on commodity

systems, this defense mechanism can be immediately made available to users.

1.2.3 Hardware-Software Interaction Matters

The most general abstraction for interfaces is that between hardware and software. Considering
how hardware and software interact can open up new avenues for improving security. When
software executes on hardware, their interaction can in fact be modeled by tracking real-time
events at the underlying microarchitectural components. These events can include both microar-
chitectural ones such as cache misses and branch mispredictions, and architectural ones such as
memory load and store operations. For years, hardware architects and software engineers have
studied these profiled events to optimize both hardware and software design. Leveraging these
microarchitectural profiles of software offers a new way to detect the execution of malware.

To demonstrate how microarchitectural interaction between hardware and software can be
used to detect anomalous and malicious code execution, this dissertation develops a hardware
performance counter-based framework that can efficiently profile these microarchitectural ob-
servables. This represents the first work to examine the feasibility and limits of using unsu-
pervised learning on microarchitectural features from hardware performance counters to detect
malware. More than about detecting malware, this work also shows that a nuanced look at

hardware-software interaction actually matters, especially in thinking about security.

1.3 Thesis

1.3.1 Thesis Statement

The dissertation asserts that security as a full-system property can be improved by examining and

leveraging the interworking of hardware and software.

1.3.2 Contributions

The dissertation makes the case for interface-oriented security engineering with the following
contributions.

Security-aware full-system architecture design. The incidence of hardware-oriented and
microarchitectural attacks has risen rapidly over the recent years. We are possibly at the inflex-
ion point where attacks are increasingly shifting their focus to combining the manipulation of
multiple independently-architected system components in novel ways to break system security.
This dissertation brings to light the deficiency of the status quo in architecture design in face of
such fast advancing attacks. We offer the first concrete security review of energy management, a
crucial architectural component in systems. While the paper focuses on energy management, it
highlights the value of offensive security research at large in both the architecture and systems
community. By describing the challenges and how they can be overcome to pull off a successful
attack, the dissertation quantifies the assumptions and resources needed for attackers to break
existing and future designs. Exploring the plausibility of such new attack vectors and attacks
is extremely valuable because they allow system designers—the defenders—to understand fu-
ture attacks, and potentially prevent them from happening by creating appropriate defenses. As
system designers work to invent and implement these protections, security researchers can com-
plement these efforts by creating newer and exciting attacks on these protections. Architecture
design should, therefore, adopt a full-system and security-aware approach to avoid introducing
vulnerabilities early in its life cycle.

Hardware-assisted moving-target defense. Moving-target principles such as random-

ization that are employed in security architectures have proven inadequate in various ways in
avoiding exploitation. This dissertation argues that such principles remain valuable as long as
they are augmented with other forms of mechanisms to reduce or eliminate system knowledge
exploitable by attackers. We show that destroying runtime information, i.e. introducing non-
determinism into system states, is yet another principle to remove knowledge usable by attack-
ers. In realizing a new exploit prevention primitive to demonstrate this principle, we ensure
its immediate deployability and runtime performance by repurposing readily available hardware
features, in our case hardware virtualization support. Novel software-based repurposing of com-
modity hardware features can serve to both facilitate new defenses and inform the future design
of hardware security primitives.

Hardware-based anomaly sensors for attack detection. This dissertation explores the use
of lower-level features that characterize the microarchitectural interaction between hardware and
software to detect malicious code execution. We demonstrate that despite lacking higher-level se-
mantic information, such previously untapped microarchitectural observables can be succinctly
modeled and are efficient to audit. They are also harder to manipulate directly by attackers. This
opens up the possibility of creating hardware-based sensors and incorporating them as standard
elements in system designs. At a higher level, this work advocates the shift of defensive posture
from a prevention/enforcement-heavy stance to one that assumes the inevitability of attacks and

focuses on detecting and mitigating attacks.

1.3.3 Dissertation Roadmap

Chapter 2 outlines the general attack classes and defense principles in the context of the three
primary lifecycle of security attacks. Chapter 3 presents the new CLKSCREW attack vector enabled
by security-oblivious energy management mechanisms. Chapter 4 introduces the destructive
code read primitive implemented in a system dubbed Heisenbyte that thwarts dynamic code reuse
attacks. Chapter 5 covers Hades, a malware detection system powered by hardware performance

counters. Finally, the dissertation concludes in Chapter 6.

Background on Attacks and Defenses

2.1 Attack Model and Defense Principles

To discuss the value of hardware support in defenses, it is useful to understand the general classes
of exploitation during different stages of an attack. In this chapter, we first detail the attack classes
in our attack model. Then we highlight the key defense principles and goals encapsulated in the
attack model. Shown in Figure 2.1, this juxtaposition of attack classes and defense principles
enables us to systematize works in the context of the security principles they strive to secure,
while discussing the tradeoffs of the use of hardware support.

Broadly speaking, an attack against a system comprises three main stages. First, the attacker
has to induce some form of unintended system behavior to begin her attack. Once the attacker
can get the system to function out of the intended specifications, she can exploit the system by
violating one or more security properties. In the event that the she gains execution control of
the system, she can finally conduct the attack proper on the system.

Stage @ - Unintended Behavior Unintended behavior typically results from a bug or logic
error. An attacker can begin the attack by triggering a vulnerability that makes the system or pro-
gram function beyond the intended design specifications. These unexpected behaviors manifest
differently depending on where on the system stack the attack occurs. Therefore, we delineate
the behaviors accordingly across the system stack to highlight the differing characteristics of the

attack classes.

@ Unintended Computing Behavior
Begin attack / Trigger vulnerability

Hardware A I Physical

Tamper Resistance

j

' Data / Data Flow

2) Side Channel (HW)

HW Behavior
Obfuscation

i

HW/ SW 3) Low-level Attack
Interface
&) 3
o
o
2) Side Channel (SW) §
SW Behavior 2
Obfuscation 8
3
4) Memory Safety Violation 8
Software v Memory Safety
Legend:

D Attack Class :
1
|

Confidentiality

© Exploitation

Violate security properties

Integrity

-

Code / Data
Secrecy

5) Information Leak

_6) Code / Control Flow Leak

Probabilistic Defenses

Code / Data
Randomization

Code / Data Layout
Randomization

Measurement Fidelity
Randomization

7) Data Corruption

1
Control Flow
Integrity

8) Control Flow Hijack)/

Data Flow
Integrity

Code / Data
Integrity

Privilege Separation

Code / Data Data Flow Code / Data Control Flow Memory
| Secrecy Integrity Integrity Integrity Safety
B

© Malware

Conduct attack proper

9) Malware Actions

Malware action
detection

Figure 2.1: Attack classes juxtaposed with key defense principles and goals.

1) Physical Since hardware is the ultimate root of trust in a system, an attacker can conceiv-
ably break all security properties of a system once she gains physical access to the system. Some

examples of physical attacks are cold boot attacks [55] to retrieve secrets from the memory, and

power glitching attacks to bypass bootloader integrity checks.

- Tamper resistance: Defending against this class of attacks requires tamper-resistant secure
hardware design or enforcing physical security to the hardware. Since our paper focuses
on the role of hardware support in defenses against software-originated attacks, we do not

consider these attacks that assume physical access to the target systems.

2) Side Channel Attack Side channel attacks can be used to infer secrets from systems using
observable runtime side-effects of program execution. These side-effects can be manifestation of
either physical aspects of the systems such as heat, radio frequency emanations or vibration, or

interaction between the hardware and software such as cache timing differences. We term the

10

former hardware-based side channel attacks and the latter software-based ones. Since the former
requires physical access to probe the observations physically, we consider them out of scope. Our

attack model includes the latter class since it can be conducted using software.

- HW Behavior Obfuscation: Since side channel attacks rely on the unintended correlation
between the confidential information and some form of observable leaked emissions, the
main defense goal is to eliminate or obfuscate this implicit relationship at the hardware
level. An example is Oblivious RAM (ORAM). We do not consider defenses that try to
achieve this defense property.

- SW Behavior Obfuscation: Changing or obfuscating parts of program behavior can elimi-
nate or reduce the link between any observables and the information to be inferred. This

can involve control flow obfuscation [29] or executing diversified software [34].

3) Low-level Attack Low-level attacks are software-originated attacks that leverage hardware-
based vulnerabilities [48]. They can involve firmware (i.e. hardware-specific software executed
close to the hardware layer) such as UEFI [172] and BIOS [26], or hardware components such as

DMA [141], processor erratas [166], or DRAM [80].

- Since these attacks involve hardware, the most effective defense is to fix the problem in
hardware, or patching the firmware or microcode using updates. These low-level attacks

and defenses are out of scope for our paper.

4) Memory Safety Violation Most prevalent system attacks begin with a violation of memory
safety in software developed with type-unsafe languages like C/C++. Frequently referred to as
memory corruption bugs [143], memory safety vulnerabilities allow attackers to achieve arbitrary
memory read and write capabilities beyond the target program’s intended specifications, and thus
form a key enabler in an attack. Examples of attacks violating the spatial form of memory safety
are buffer overflow attacks; dangling pointer attacks are exemplary cases of the temporal version

of memory safety violations.

11

- Memory safety: Achieving memory safety in compiled programs is making it impossible to
induce program execution to read or write to memory locations other than those intended
by the developers. Ensuring memory safety eliminates memory corruption vulnerabili-
ties. It includes preventing reading of uninitialized memory, accessing freed memory and

performing illegal operations on the heap memory like double frees.

Stage @ - Exploitation This stage occurs after the attacker is able to make the system function
outside the intended specifications. While the earlier stage 1 can be viewed as an attack fulfilling
a pre-requisite of initial control, this stage 2 characterizes the various ways security properties
of a system are compromised. This characterization can be viewed across two main dimensions.
On one, we focus on two main security properties, namely confidentiality and integrity, of a
system. On the other, we characterize the compromise of security properties based on what form
of information they pertain to.

5) Information Leak This class of attack breaks the confidentiality of data and data flow, and
reveals to the attacker sensitive information like cryptographic keys. This typically follows from
a memory safety violation that gives the attacker arbitrary memory read capability. A recent ex-
ample of an information leak attack is one that exploits the Heartbleed vulnerability in OpenSSL
to leak sensitive memory contents on systems [92]. Apart from direct information leak, sensitive
data can also be disclosed via side channel attacks that infer the data without directly reading the
memory.

6) Code / Control Flow Leak The secrecy of code can be compromised with arbitrary memory
read capabilities achieved from memory disclosure vulnerabilities. An attacker can discover code
instructions in executable memory by directly reading code memory [133, 142] or indirectly in-
ferring code layout using code pointers discovered from data memory pages [36, 33]. With time
and fault analysis side channels, an attacker can also learn information about the code without

arbitrary memory read capabilities [127].

- Code / Data secrecy: To deal with unintended leakage of code or data, the confidential-

12

ity of code and data in memory can be protected by means of encryption or obfuscation,
or by preventing read or write operations to the memory (such as execute-only memory

(XOM) [149]).

7) Data Corruption After achieving arbitrary memory write capability from stage 1, an at-
tacker can compromise the integrity of data in the memory. Data corruption attacks are exem-
plified by non-control-data attacks [30] that overwrite security-critical application-specific data
such as user identity data or configuration data, without subverting the intended control flow on

systems.

- Data / Data flow integrity: To prevent unintended corruption of security-sensitive data, a
key defense strategy is to enforce data flow integrity at runtime. Data flow integrity re-
quires deriving the static data flow graph of a program and ensuring that any data flow at
runtime complies with the static data flow graph, possibly with the use of program instru-

mentation [28].

8) Control Flow Hijack The most prevalent form of attacks, control flow hijack breaches the
integrity of original control flow of a targeted program by subverting the original program in-
struction pointer to the attacker’s choosing. The hijacking of the original program control flow

necessarily violates the intended static and dynamic control flow graph of the program.

- Control flow integrity: Analogous to data flow integrity, control flow integrity is the se-
curity property that guarantees all runtime control flow transfers are the ones intended by
the original program [5].

- Code integrity: Ensuring the integrity of code and data in memory requiring tamper-

proofing code and data from any unauthorized write operations.

Stage @ - Malware Proper

13

9) Malware Actions The final step of an attack is performing the attacker’s malicious goals.
This stage typically constitutes an injected or code-reuse shellcode, as well as a full-fledged ma-

licious program payload.

- Malware action detection: Once the actual attack proper is underway in an attack, these
malicious actions manifest in various forms across the system stack (such as power con-
sumption patterns [77], microarchitectural side-effects [37], system calls [62] and func-
tions [110]). The detection of these malware actions can take place during the execution
of the shellcode [169] used during the actual exploitation of the bug or the purpose-driven

payload after the attacker has full control over the system.

2.1.1 Generic Defense Principles

While we highlight localized defense principles that target specific attack classes in the preceding
section, here, we describe generic defense approaches that target multiple attack classes at the
same time.

Probabilistic Defenses Probabilistic defenses work by making a system less deterministic

by means of randomization.

- Code / Data randomization: Instruction Set Randomization (ISR) [75] thwarts code injec-
tion attacks by changing the instruction set on a per-process basis, so that any injected
foreign code without the knowledge of the randomized instruction set will fail to function
as intended.

- Code / Data layout randomization: Randomizing the locations of code and data in memory
makes it harder for an attacker to identify usable code or data needed for her exploits.
The goal of memory layout randomization is to eliminate any a priori information gained
from analyzing the programs before the attack. A widely deployed example of such layout

randomization is Address Space Layout Randomization (ASLR) [148].

14

- Measurement fidelity randomization Side channel attacks frequently require making precise
measurements of the observable effects of program execution. One line of defense involves
reducing the fidelity of any measurement facilities so that the added noise decreases to
signal-to-noise ratio in the side channel attack. For example, to prevent timing attacks,
random delays can be introduced as noise in systems to make it difficult for an attacker to

infer any secret information [82].

Privilege Separation Privilege is defined as the delegation of authority over a system re-
sources, or more informally the permission to perform some system action. In the most general
sense, achieving privilege separation implies that all components of a system are restricted to
only resources they are allowed to read, write or execute access. This is a generic defense prin-
ciple that can mitigate several attack classes at the same time.

There are three main approaches to monitor and enforce privilege separation, differing in the
way they abstract privileges. Isolation-based techniques rely on “rings” of hierarchies or some
form of sandboxing. Capability-based techniques leverage the possession of “tokens” — an access
control construct, to enforce permissions. Using tagging, information flow tracking techniques

track the provenance of data and mediate access.

15

CLKSCREW: Motivating Security-Aware
Energy Management

Aggressive commodity hardware-software energy management mechanisms

open up a new class of software-induced fault attack vector.

Security-oblivious energy management mechanisms can be exploited to

compromise hardware-enforced security isolation.

The need for power- and energy-efficient computing has resulted in aggressive cooperative
hardware-software energy management mechanisms on modern commodity devices. Most sys-
tems today, for example, allow software to control the frequency and voltage of the underlying
hardware at a very fine granularity to extend battery life. Despite their benefits, these software-
exposed energy management mechanisms pose grave security implications that have not been
studied before.

In this chapter, we present a study of contemporary energy management designs and show
how a series of well-thought-out, nevertheless security-oblivious, design decisions can create
security vulnerabilities. To demonstrate that these risks are real and practical, we formulate
the CLKscrew attack, a new class of fault attacks that exploit the security-obliviousness of en-
ergy management mechanisms to break security. This new attack vector is dangerous because
it makes fault attacks more accessible to attackers since the attacks can now be conducted with-
out the need for physical access to the devices or fault injection equipment. We demonstrate

CLKscREw [146] on commodity ARM/Android devices. We show that a malicious kernel driver

16

(1) can extract secret cryptographic keys from Trustzone, and (2) can escalate its privileges by
loading self-signed code into Trustzone. As the first work to show the security ramifications of
energy management mechanisms, we hope to motivate security-aware energy management in

existing and future designs, both in industry and academia.

3.1 Overview

The growing cost of powering and cooling systems has made energy management an essential
feature of most commodity devices today. Energy management is crucial for reducing cost, in-
creasing battery life, and improving portability for systems, especially mobile devices. Designing
effective energy management solutions, however, is a complex task that demands cross-stack
design and optimizations: Hardware designers, system architects, and kernel and application
developers have to coordinate their efforts across the entire hardware/software system stack to
minimize energy consumption and maximize performance. Take as an example, Dynamic Volt-
age and Frequency Scaling (DVES) [109], a ubiquitous energy management technique that saves
energy by regulating the frequency and voltage of the processor cores according to runtime com-
puting demands. To support DVES, at the hardware level, vendors have to design the underlying
frequency and voltage regulators to be portable across a wide range of devices while ensuring
cost efficiency. At the software level, kernel developers need to track and match program de-
mands to operating frequency and voltage settings to minimize energy consumption for those
demands. Thus, to maximize the utility of DVFS, hardware and software function cooperatively

and at very fine granularities.

Despite the ubiquity of energy management mechanisms on commodity systems, security
is rarely a consideration in the design of these mechanisms. In the absence of known attacks,
given the complexity of hardware-software interoperability needs and the pressure of cost and
time-to-market concerns, the designers of these mechanisms have not given much attention to

the security aspects of these mechanisms; they have been focused on optimizing the functional

17

aspects of energy management. These combination of factors along with the pervasiveness of
these mechanisms makes energy management mechanisms a potential source of security vulner-

abilities and an attractive target for attackers.

In this work, we present the first security review of a widely-deployed energy management
technique, DVFS. Based on careful examination of the interfaces between hardware regulators
and software drivers, we uncover a new class of exploitation vector, which we term as CLKSCREw.
In essence, a CLKScREw attack exploits unfettered software access to energy management hard-
ware to push the operating limits of processors to the point of inducing faulty computations. This
is dangerous when these faults can be induced from lower privileged software across hardware-

enforced boundaries, where security sensitive computations are hosted.

We demonstrate that CLKSCREW can be conducted using no more than the software control of
energy management hardware regulators in the target devices. CLKSCREW is more powerful than
traditional physical fault attacks [20] for several reasons. Firstly, unlike physical fault attacks,
CLKscrew enables fault attacks to be conducted purely from software. Remote exploitation with
CLKscrRew becomes possible without the need for physical access to target devices. Secondly,
many equipment-related barriers, such as the need for soldering and complex equipment, to
achieve physical fault attacks are removed. Lastly, since physical attacks have been known for
some time, several defenses, such as special hardened epoxy and circuit chips that are hard to
access, have been designed to thwart such attacks. Extensive hardware reverse engineering may
be needed to determine physical pins on the devices to connect the fault injection circuits [105].
CLKscrew sidesteps all these risks of destroying the target devices permanently.

To highlight the practical security impact of our attack, we implement the CLKscrRew attack
on a commodity ARMv7* phone, Nexus 6. With only publicly available knowledge of the Nexus
6 device, we identify the operating limits of the frequency and voltage hardware mechanisms.
We then devise software to enable the hardware to operate beyond the vendor-recommended

limits. Our attack requires no further access beyond a malicious kernel driver. We show how the

'As of Sep 2016, ARMv7 devices capture over 86% of the worldwide market share of mobile phones [101].

18

CLKscrRew attack can subvert the hardware-enforced isolation in ARM Trustzone in two attack
scenarios: (1) extracting secret AES keys embedded within Trustzone and (2) loading self-signed
code into Trustzone. We note that the root cause for CLKSCREW is neither a hardware nor a
software bug: CLKscRew is achievable due to the fundamental design of energy management
mechanisms.

We have responsibly disclosed the vulnerabilities identified in this work to the relevant SoC
and device vendors. They have been very receptive to the disclosure. Besides acknowledging the
highlighted issues, they were able to reproduce the reported fault on their internal test device

within three weeks of the disclosure. They are working towards mitigations.

In summary, we make the following contributions in this chapter:

1. We expose the dangers of designing energy management mechanisms without security
in mind by introducing the concept of the CLKSCREw attack. Aggressive energy-aware
computing mechanisms can be exploited to influence isolated computing.

2. We present the CLKSCREW attack to demonstrate a new class of energy management-based
exploitation vector that exploits software-exposed frequency and voltage hardware regu-
lators to subvert trusted computation.

3. We introduce a methodology for examining and demonstrating the feasibility of the
CLKscrew attack against commodity ARM devices running a full OS such as Android.

4. We demonstrate that the CLKscrRew attack can be used to break ARM Trustzone by infer-

ring secret cryptographic keys and loading self-signed applications on a commodity phone.

3.2 Background

In this section, we first an overview of the design of energy management systems. Next we
describe DVFS and how it relates to saving energy. We then detail key classes of supporting

hardware regulators and their software-exposed interfaces.

19

Latency - Hardware / Software Stack = Example

~10ms-1s ! Application PM-aware User Application O Pgﬂégﬁ’;gzsd
' //
ffffffffffffffffffffffffff S
: . N © Qualcomm
~100us-100ms; System Root PM service / /O . mpdecision
1 ‘ service
77777777777777 | HAL -
ol
4 . Linux CPUfreq

In-kernel PM Subsystem /O 'power governor

~tus-1ms : Kernel
. o . Qualcomm
- device driver

Specialized PM Hardware 6 @) Qualcomm

. 3 'PMAB8084 PMIC
~ ns - us . . :
~10 - 1k cycles! Hardware PFEZEE:ZZr Core II Peripherals

regulators
Process and circuit design

Figure 3.1: Contemporary energy management system designs span across multiple layers in the
computing stack.

3.2.1 Energy Management Systems

As part of the attacks, we examine the implementations of contemporary energy management
systems. Current energy management systems employ cross-stack design and optimizations in
practice. Figure 3.1 shows a typical energy management system design and its various compo-
nents across the system stack. The energy management system spans from the application layer
all the way to the hardware layer. The figure also shows the layer-specific transition latencies
and examples of the corresponding energy management components in each layer. Two require-
ments underpin the prevalence of such layered designs. One, optimizing system performance
with respect to energy consumption requires accurate feedback on the runtime system work-
load. Components in specific system layers may be more equipped to provide certain feedback
information. For example, instantaneous system utilization levels are readily available to the
OS kernel layer. As such, the Linux CPUfreq power governor is well-positioned at that layer to
initiate runtime changes to the operating voltage and frequency based on these whole-system

measures. Two, components in the higher layers incur higher transition latencies due to cross-

20

layer invocation over-head. Since latencies from the lower layers propagate and accumulate into
the upper layers, the hardware regulators are designed to be most responsive among their soft-
ware counterparts. Although the upper-layer components are slower, their timing requirements
are less stringent.

In the following sections, we will review the energy management systems specific to the
ARMv7 SoCs. We argue that the energy management design issues are by no means specific to
any given architecture. For reference, we also provide a deep dive into the energy and power

management controls on the Intel platforms in Appendix A.2.

3.2.2 Dynamic Voltage & Frequency Scaling

DVES is an energy management technique that trades off processing speed for energy savings.
Since its debut in 1994 [167], DVFS has become ubiquitous in almost all commodity devices. DVFS
works by regulating two important runtime knobs that govern the amount of energy consumed
in a system - frequency and voltage.

To see how managing frequency and voltage can save energy, it is useful to understand how
energy consumption is affected by these two knobs. The amount of energy” consumed in a system
is the product of power and time, since it refers to the total amount of resources utilized by a
system to complete a task over time. Power?, an important determinant of energy consumption,
is directly proportional to the product of operating frequency and voltage. Consequently, to save
energy, many energy management techniques focus on efficiently optimizing both frequency and
voltage.

DVES regulates frequency and voltage according to runtime task demands. As these demands
can vary drastically and quickly, DVFS needs to be able to track these demands and effect the fre-

quency and voltage adjustments in a timely manner. To achieve this, DVFES requires components

*Formally, the total amount of energy consumed, Fr, is the integral of instantaneous dynamic power, P; over
time T: Er = [, P; dt.

’In a system with a fixed capacitative load, at any time ¢, the instantaneous dynamic power is proportional to
both the voltage, V; and the frequency F; as follows: P; o V2 x Fy.

21

N
Voltage output SoC Processor
to other peripherals (Nexus 6)
Voltage output
to cores
1 PMA8084
2 PMIC
Input
Core 0 SPM
(All cores)
Voltage Domain (g Voltage
(All cores) Control
_ J

Figure 3.2: Shared voltage regulator for all Krait cores.

across layers in the system stack. The three primary components are (1) the voltage/frequency
hardware regulators, (2) vendor-specific regulator driver, and (3) OS-level CPUfreq power gov-
ernor [106]. The combined need for accurate layer-specific feedback and low voltage/frequency
scaling latencies drives the prevalence of unfettered and software-level access to the frequency

and voltage hardware regulators.

3.2.3 Hardware Support for DVFS

Voltage Regulators. Voltage regulators supply power to various components on devices, by
reducing the voltage from either the battery or external power supply to a range of smaller volt-
ages for both the cores and the peripherals within the device. To support features, such as camera
and sensors that are sourced from different vendors and hence operating at different voltages,
numerous voltage regulators are needed on devices. These regulators are integrated within a
specialized circuit called Power Management Integrated Circuit (PMIC) [131].

Power to the application cores is typically supplied by the step-down regulators within the
PMIC on the System-on-Chip (SoC) processor. As an example, Figure 3.2 shows the PMIC that
regulates the shared voltage supply to all the application cores (a.k.a. Krait cores) on the Nexus 6
device. The PMIC does not directly expose software interfaces for controlling the voltage supply

to the cores. Instead, the core voltages are indirectly managed by a power management subsys-

22

SoC Processor
PLL (Nexus 6)
(fixed rate)

__

Clock Domain (per-core) \Il‘\

300 MHz

HFPLL N *19.2 MHz
(variable rate) L

Half [n/2*19.2MHz
Divider
N Multiplier . Source Selector

e

I

Figure 3.3: Separate clock sources for each Krait core.

tem, called the Subsystem Power Manager (SPM) [93]. The SPM is a hardware block that main-
tains a set of control registers which, when configured, interfaces with the PMIC to effect voltage
changes. Privileged software like a kernel driver can use these memory-mapped control registers
to direct voltage changes. We highlight these software-exposed controls as yellow-shaded circles

in Figure 3.2.

Frequency PLL-based Regulators. The operating frequency of application cores is de-
rived from the frequency of the clock signal driving the underlying digital logic circuits. The
frequency regulator contains a Phase Lock Loop (PLL) circuit, a frequency synthesizer built into
modern processors to generate a synchronous clock signal for digital components. The PLL cir-
cuit generates an output clock signal of adjustable frequency, by receiving a fixed-rate reference
clock (typically from a crystal oscillator) and raising it based on an adjustable multiplier ratio.

The output clock frequency can then be controlled by changing this PLL multiplier.

For example, each core on the Nexus 6 has a dedicated clock domain. As such, the operating
frequency of each core can be individually controlled. Each core can operate on three possible
clock sources. In Figure 3.3, we illustrate the clock sources as well as the controls (shaded in

yellow) exposed to the software from the hardware regulators. A multiplexer (MUX) is used to

23

select amongst the three clock sources, namely (1) a PLL supplying a fixed-rate 300-MHz clock
signal, (2) a High-Frequency PLL (HFPLL) supplying a clock signal of variable frequency based
on a N multiplier, and (3) the same HFPLL supplying half the clock signal via a frequency divider

for finer-grained control over the output frequency.

As shown in Figure 3.3, the variable output frequency of the HFPLL is derived from a base
frequency of 19.2MHz and can be controlled by configuring the N multiplier. For instance, to
achieve the highest core operating frequency of 2.65GHz advertised by the vendor, one needs
to configure the N multiplier to 138 and the Source Selector to 1 to select the use of the full HF-
PLL. Similar to changing voltage, privileged software can initiate per-core frequency changes by

writing to software-exposed memory-mapped PLL registers, shown in Figure 3.3.

3.2.4 Software Support for DVFS

On top of the hardware regulators, additional software support is needed to facilitate DVFS.
Studying these supporting software components for DVES enables us to better understand the
interfaces provided by the hardware regulators. Software support for DVFS comprises two key

components, namely vendor-specific regulator drivers and OS-level power management services.

Besides being responsible for controlling the hardware regulators, the vendor-provided PMIC
drivers [117, 118] also provide a convenient means for mechanisms in the upper layers of the
stack, such as the Linux CPUfreq power governor [106] to dynamically direct the voltage and
frequency scaling. DVFS requires real-time feedback on the system workload profile to guide the
optimization of performance with respect to power dissipation. This feedback may rely on layer-
specific information that may only be efficiently accessible from certain system layers. For exam-
ple, instantaneous system utilization levels are readily available to the OS kernel layer. As such,
the Linux CPUfreq power governor is well-positioned at that layer to initiate runtime changes to
the operating voltage and frequency based on these whole-system measures. This also provides

some intuition as to why DVEFES cannot be implemented entirely in hardware.

24

FFsrc Intgrmediate _ FFast
combinatorial logic

. N\
input | output
Dsrc Qsrc — Jl— Ddst Qdst P
> clk | | >k
common clock N)
signal X .
' : Teik _
1 ' : L
clock pulse ‘|\ : : T
0 . —
1 ') . .
input (0»1) |
O R
1
Qsrc X
0 Tmax_path '
1
Ddst
0
’ s
output (01)
0 : —
-— ! Teoty _/;4—»
Trr P Trr

Figure 3.4: Timing constraint for error-free data propagation from input Q. to output Dy for
entire circuit.

3.3 Achieving the First CLKscrRew Fault

In this section, we first briefly describe why erroneous computation occurs when frequency
and voltage are stretched beyond the operating limits of digital circuits. Next, we outline chal-
lenges in conducting a non-physical probabilistic fault injection attack induced from software.
Finally, we characterize the operating limits of regulators and detail the steps to achieving the

first CLKscrew fault on a real device.

3.3.1 How Timing Faults Occur

To appreciate why unfettered access to hardware regulators is dangerous, it is necessary to under-
stand in general why over-extending frequency (a.k.a. overclocking) or under-supplying voltage

(a.k.a. undervolting) can cause unintended behavior in digital circuits.

25

Synchronous digital circuits are made up of memory elements called flip-flops (FF). These
flip-flops store stateful data for digital computation. A typical flip-flop has an input D, and an
output (), and only changes the output to the value of the input upon the receipt of the rising
edge of the clock (cLk) signal. In Figure 3.4, we show two flip-flops, F'Fy,. and F'Fy sharing a
common clock signal and some intermediate combinatorial logic elements. These back-to-back
flip-flops are building blocks for pipelines, which are pervasive throughout digital chips and are

used to achieve higher performance.

Circuit timing constraint. For a single flip-flop to properly propagate the input to the
output locally, there are three key timing sub-constraints. (1) The incoming data signal has to
be held stable for T\, during the receipt of the clock signal, and (2) the input signal has to be
held stable for T within the flip-flop after the clock signal arrives. (3) It also takes a minimum
of Tinax patn for the output Q. of F'Fy. to propagate to the input Dyy of F'Fyy. For the overall
circuit to propagate input Dy, — output Q4s, the minimum required clock cycle period?, Ty, is

bounded by the following timing constraint (3.1) for some microarchitectural constant K:

Tclk Z TFF + Tmaxﬁpath + Tsetup + K (31)

Violation of timing constraint. = When the timing constraint is violated during two con-
secutive rising edges of the clock signal, the output from the source flip-flop F'F. fails to latch
properly in time as the input at the destination flip-flop F'Fys. As such, the F'Fjy, continues to
operate with stale data. There are two situations where this timing constraint can be violated,
namely (a) overclocking to reduce Ty and (b) undervolting to increase the overall circuit prop-
agation time, thereby increasing Tiay pah- Figure 3.5 illustrates how the output results in an

unintended erroneous value of 0 due to overclocking.

For comparison, we show an example of a bit-level fault due to undervolting in Figure 3.6.

Note that in this case, the fault occurs because the propagation time increases beyond an achiev-

*Tix is simply the reciprocal of the clock frequency.

26

v Tew’

1 ———— :
clock pulse ‘l\ . A
0 : :
1 ! E
input (0-»1) J ' :
0
1
Qsrc o :
0 ' Tmaxfdath: :
P
1 . S
Ddst
0
] glitched
output (0-»0) Ougp“t
0 . . .
e
Tsetup\j TFF

Figure 3.5: Bit-level fault due to overclocking: Reducing clock period Ty — 77, results in a
bit-flip in output 1 — 0.

able deadline.

Teik

kT
\ A

1
clock pulse fl\
0

1
input (0»1) ‘
o—
1
Qsrc .
0 " Tmaxfpath’i
1 c : "
Ddst
0 .
'glitched
! . output
output (0-»0) .
0 B 0
-~ Teet \}4——» :
TrF setup TrF

Figure 3.6: Glitch due to undervolting: Increasing propagation time of the critical path between

the two consecutive flip-flops, Tinax path — Loy parn Tesults in a bit-flip in output 1 — 0.

27

3.3.2 Challenges of CLKsCREw Attacks

Mounting a fault attack purely from software on a real-world commodity device using its in-
ternal voltage/frequency hardware regulators has numerous difficulties. These challenges are
non-existent or vastly different from those in traditional physical fault attacks (that commonly

use laser, heat and radiation).

Regulator operating limits. =~ Overclocking or undervolting attacks require the hardware
to be configured far beyond its vendor-suggested operating range. Do the operating limits of
the regulators enable us to effect such attacks in the first place? We show that this is feasible

in §3.3.3.

Self-containment within same device. Since the attack code performing the fault injec-
tion and the victim code to be faulted both reside on the same device, the fault attack must be
conducted in a manner that does not affect the execution of the attacking code. We present

techniques to overcome this in § 3.3.4.

Noisy complex OS environment. On a full-fledged OS with interrupts, we need to inject
a fault into the target code without causing too much perturbation to non-targeted code. We

address this in § 3.3.4.

Precise timing. To attack the victim code, we need to be relatively precise in when the fault
is induced. Using two attack scenarios that require vastly different degrees of timing precision
in § 3.4 and § 3.5, we demonstrate how the timing of the fault can be fine-tuned using a range of

execution profiling techniques.

Fine-grained timing resolution. The fault needs to be transient enough to occur during
the intended region of victim code execution. We may need the ability to target a specific range
of code execution that takes orders of magnitude fewer clock cycles within an entire operation.
For example, in the attack scenario described in Section § 3.5.3, we seek to inject a fault into a
memory-specific operation that takes roughly 65,000 clock cycles within an entire RSA certificate

chain verification operation spanning over 1.1 billion cycles.

28

35 ‘ Nex‘us 6

e®e Maximum OPP
**%x Vendor stock OPP
3.0t
2.5
~N
T
9 2.0}
>
o
o
*
%1.5— *
fra ® X
1.0} / x
*
*
*
0.5 %
085 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Voltage (V)

Figure 3.7: Vendor-stipulated voltage/frequency Operating Performance Points (OPPs) vs. maxi-
mum OPPs achieved before computation fails.

3.3.3 Characterization of Regulator Limits

In this section, we study the capabilities and limits of the built-in hardware regulators, focusing
on the Nexus 6 phone. According to documentation from the vendor, Nexus 6 features a 2.7GHz
quad-core SoC processor. On this device, DVFES is configured to operate only in one of 15 possible
discrete® Operating Performance Points (OPPs) at any one time, typically by a DVFS OS-level
service. Each OPP represents a state that the device can be in with a voltage and frequency pair.
These OPPs are readily available from the vendor-specific definition file, apg8084 .dtsi, from the
kernel source code [104].

To verify that the OPPs are as advertised, we need measurement readings of the operating
voltage and frequency. By enabling the debugfs feature for the regulators, we can get per-core

voltage® and frequency’ measurements. We verify that the debugfs measurement readings indeed

°A limited number of discrete OPPs, instead of a range of continuous voltage/frequency values, is used so that
the time taken to validate the configured OPPs at runtime is minimized.

¢/d/regulator/kraitX/voltage

’/d/clk/kraitX_clk/measure

29

match the voltage and frequency pairs stipulated by each OPP. We plot these vendor-provided
OPP measurements as black-star symbols in Figure 3.7.

No safeguard limits in hardware. Using the software-exposed controls described in § 3.2.3,
while maintaining a low base frequency of 300MHz, we configure the voltage regulator to probe
for the range during which the device remains functional. We find that when the device is set to
any voltage outside the range 0.6V to 1.17V, it either reboots or freezes. We refer to the phone as
being unstable when these behaviors are observed. Then, stepping through 5mV within the volt-
age range, for each operating voltage, we increase the clock frequency until the phone becomes
unstable. We plot each of these maximum frequency and voltage pair (as shaded circles) together
with the vendor-stipulated OPPs (as shaded stars) in Figure 3.7. It is evident that the hardware
regulators can be configured past the vendor-recommended limits. This unfettered access to the

regulators offers a powerful primitive to induce a software-based fault.

ATtTACK ENABLER (GENERAL) #1: There are no safeguard limits in the hardware regulators to restrict

the range of frequencies and voltages that can be configured.

Large degree of freedom for attacker. Figure 3.7 illustrates the degree of freedom an at-
tacker has in choosing the OPPs that have the potential to induce faults. The maximum frequency
and voltage pairs (i.e. shaded circles in Figure 3.7) form an almost continuous upward-sloping
curve. It is noteworthy that all frequency and voltage OPPs above this curve represent potential
candidate values of frequency and voltage that an attacker can use to induce a fault.

This “shaded circles” curve is instructive in two ways. First, from the attacker’s perspective,
the upward-sloping nature of the curve means that reducing the operating voltage simultaneously
lowers the minimum required frequency needed to induce a fault in an attack. For example,
suppose an attacker wants to perform an overclocking attack, but the frequency value she needs
to achieve the fault is beyond the physical limit of the frequency regulator. With the help of this
frequency/voltage characteristic, she can then possibly reduce the operating voltage to the extent

where the overclocking frequency required is within the physical limit of the regulator.

30

ATTACK ENABLER (GENERAL) #2: Reducing the operating voltage lowers the minimum required

frequency needed to induce faults.

Secondly, from the defender’s perspective, the large range of instability-inducing OPPs above
the curve suggests that limits of both frequency and voltage, if any, must be enforced in tandem
to be effective. Combination of frequency and voltage values, while individually valid, may still
cause unstable conditions when used together.

Prevalence of Regulators. The lack of safeguard limits within the regulators is not specific
to Nexus 6. We observe similar behaviors in devices from other vendors. For example, the fre-
quency/voltage regulators in the Nexus 6P and Pixel phones can also be configured beyond their
vendor-stipulated limits to the extent of seeing instability on the devices. We show the compar-

ison of the vendor-recommended and the actual observed OPPs of these devices in Figures 3.8

and 3.9.
2.5 Nexus 6P (A57 cluster core)
e®e Maximum OPP 00® °
**% Vendor stock OPP e0°® °
[]
.0
2.0} °®
° °® *
[]

= ° *
I *
e *
>
o150 *
S *
> *
2 x

1.01 *

[*
e *
*

005.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
Voltage (V)

Figure 3.8: Vendor-stipulated vs maximum voltage/frequency OPPs for Nexus 6P.

3.3.4 Containing the Fault within a Core

The goal of our fault injection attack is to induce errors to specific victim code execution. The
challenge is doing so without self-faulting the attack code and accidentally attacking other non-

targeted code.

31

3.0 Pixel ("Performance" cluster core)

®®e Maximum OPP
**% Vendor stock OPP
2.5¢ o0 ® °
°° *
°o° *
L ° *
= 2.0 ° . *
5 o* x*
= °® *
> ° *
215 .0 - *
@
g °° o
S *
o *
1.0 °® ¥

o ° 47
0.5} * *
e o o 3
0'8.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Voltage (V)

Figure 3.9: Vendor-stipulated vs maximum voltage/frequency OPPs for Pixel.

We create a custom kernel driver to launch separate threads for the attack and victim code
and to pin each of them to separate cores. Pinning the attack and victim code in separate cores
automatically allows each of them to execute in different frequency domains. This core pinning
strategy is possible due to the deployment of increasingly heterogeneous processors like the ARM
big.LITTLE [1] architecture, and emerging technologies such as Intel PCPS [72] and Qualcomm
aSMP [121]. The prevailing industry trend of designing finer-grained energy management favors
the use of separate frequency and voltage domains across different cores. In particular, the Nexus
6 SoC that we use in our attack is based on a variant of the aSMP architecture. With core pinning,
the attack code can thus manipulate the frequency of the core that the victim code executes on,
without affecting that of the core the attack code is running on. In addition to core pinning, we
also disable interrupts during the entire victim code execution to ensure that no context switch
occurs for that core. These two measures ensure that our fault injection effects are contained

within the core that the target victim code is running on.

ATTACK ENABLER (GENERAL) #3: The deployment of cores in different voltage/frequency domains

isolates the effects of cross-core fault attack.

32

Attack Phase

Targeted subset of

eTiming Fault
anchor

1 ! i
! P |
| b |
1

! P argetec . l
| vy entire victim execution Victim 1

1
C<Ore ; ! CIT 1T 1T E: [] ‘ ‘ | thread i
victim [|
i Clearing | i 9 @ i
! ﬂresidual b 9 Profiling ePre—delay i
1 states v — |

1 1
| I Attack, |
! [| Thread™ |
Core | - et
attack, ' i i
1 | !
Il 1

Figure 3.10: Overview of CLKscREw fault injection setup.

3.3.5 CLKscrRew Attack Steps

Parameter Description

Flot Base operating voltage

Fldelay Number of loops to delay/wait before the fault
Freq ni Target value to raise the frequency to for the fault
Freq 10 Base value to raise the frequency from for the fault
Faur Duration of the fault in terms of number of loops

Table 3.1: CLKscrew fault injection parameters.

The CLKscrew attack is implemented with a kernel driver to attack code that is executing at
a higher privilege than the kernel. Examples of such victim code are applications running within
isolation technologies such as ARM Trustzone [2] and Intel SGX [7]. In Figure 3.10, we illustrate
the key attack steps within the thread execution of the attack and victim code. The goal of the
CLKscrew attack is to induce a fault in a subset of an entire victim thread execution.

(1) Clearing residual states. Before we attack the victim code, we want to ensure that there
are no microarchitectural residual states remaining from prior executions. Since we are using a
cache-based profiling technique in the next step, we want to make sure that the caches do not
have any residual data from non-victim code before each fault injection attempt. To do so, we
invoke both the victim and attack threads in the two cores multiple times in quick succession.
From experimentation, 5-10 invocations suffice in this preparation phase.

(2)/(3) Profiling for an anchor. Since the victim code execution is typically a subset of the

33

entire victim thread execution, we need to profile the execution of the victim thread to identify
a consistent point of execution just before the target code to be faulted. We refer to this point of
execution as a timing anchor, T},,nor to guide when to deliver the fault injection. Several software
profiling techniques can be used to identify this timing anchor. In our case, we rely on instruction
or data cache profiling techniques in recent work [87].

(4) Pre-fault delaying. Even with the timing anchor, in some attack scenarios, there may
still be a need to finetune the exact delivery timing of the fault. In such cases, we can configure
the attack thread to spin-loop with a predetermined number of loops before inducing the actual
fault. The use of these loops consisting of no-op operations is essentially a technique to induce
timing delays with high precision. For this stage of the attack, we term this delay before inducing
the fault as Fpgelay-

(5)/(6) Delivering the fault. = Given a base operating voltage F,.y, the attack thread will
raise the frequency of the victim core (denoted as Fi.q ni), keep that frequency for Fy,, loops, and
then restore the frequency to Fieq 1o-

To summarize, for a successful CLKSCREW attack, we can characterize the attacker’s goal as
the following sub-tasks. Given a victim code and a fault injection target point determined by
Tanchors the attacker has to find optimal values for the following parameters to maximize the odds

of inducing the desired fault. We summarize the fault injection parameters required in Table 3.1.

F‘9|Tanchor = {Fvolta deelay> Ffreq_hia qur7 Ffreq_lo}

3.3.6 Isolation-Agnostic DVFS

To support execution of trusted code isolated from untrusted one, two leading industry tech-
nologies, ARM Trustzone [2] and Intel SGX [7], are widely deployed. They share a common
characteristic in that they can execute both trusted and untrusted code on the same physical
core, while relying on architectural features such as specialized instructions to support isolated

execution. It is noteworthy that on such architectures, the voltage and frequency regulators typ-

34

Core0
Trusted mode

|

|

|

|

|

|

|

| Trusted
| code
|

|

|

|

|

|

|

|

|

|

Normal mode
(Insecure)

Untrusted
code

Hardware-enforced
isolation

%% Regulator
////5 HW-SW interface

BN NN ¥

‘ vo/‘tage‘/fre‘que?cy ‘cha/‘vges‘

| Voltage and Frequency Regulators |
Shared power domain

Figure 3.11: Regulators operate across security boundaries.

ically operate on domains that apply to cores as a whole (regardless of the security-sensitive pro-
cessor execution modes), as depicted in Figure 3.11. With this design, any frequency or voltage
change initiated by untrusted code inadvertently affects the trusted code execution, despite the
hardware-enforced isolation. This, as we show in subsequent sections, poses a critical security

risk.

ATTACK ENABLER (GENERAL) #4: Hardware regulators operate across security boundaries with no

physical isolation.

3.4 TZ Attack #1: Inferring AES Keys

In this section, we show how AES [100] keys stored within Trustzone (TZ) can be inferred by
lower-privileged code from outside Trustzone, based on the faulty ciphertexts derived from the
erroneous AES encryption operations. Specifically, it shows how lower-privileged code can
subvert the isolation guarantee by ARM Trustzone, by influencing the computation of higher-
privileged code using the energy management mechanisms. The attack shows that the confiden-
tiality of the AES keys that should have been kept secure in Trustzone can be broken.

Threat model. In our victim setup, we assume that there is a Trustzone app that provisions

AES keys and stores these keys within Trustzone, inaccessible from the non-Trustzone (non-

35

secure) environment. The attacker can repeatedly invoke the Trustzone app from the non-secure
environment to decrypt any given ciphertext, but is restricted from reading the AES keys directly
from Trustzone memory due to hardware-enforced isolation. The attacker’s goal is to infer the

AES keys stored.

3.4.1 Trustzone AES Decryption App

For this case study, since we do not have access to a real-world AES app within Trustzone, we
rely on a textbook implementation of AES as the victim app. We implement a AES decryption
app that can be loaded within Trustzone. Without loss of generality, we restrict the decryption to
128-bit keys, operating on 16-bit plaintext and ciphertext. A single 128-bit encryption/decryption
operation comprises 10 AES rounds, each of which is a composition of the four canonical sub-
operations, named SubBytes, ShiftRows, MixColumns and AddRoundKey [100].

To load this app into Trustzone as our victim program, we use a publicly known Trustzone
vulnerability[16] to overwrite an existing Trustzone syscall handler, tzbsp_es_is_activated,
on our Nexus 6 device running an old firmware®. A non-secure app can then execute this syscall
via an ARM Secure Monitor Call [42] instruction to invoke our decryption Trustzone app. This
vulnerability serves the sole purpose of allowing us to load the victim app within Trustzone to
simulate a AES decryption app in Trustzone. It plays no part in the attacker’s task of interest —
extracting the cryptographic keys stored within Trustzone. Having the victim app execute within
Trustzone on a commodity device allows us to evaluate CLKSCREW across Trustzone-enforced

security boundaries in a practical and realistic manner.

3.4.2 Timing Profiling

As described in § 3.3.5, one of the crucial attack steps to ensure reliable delivery of the fault to a
victim code execution is finding ideal values of ['gelay. To guide this parameter discovery process,

we need the timing profile of the Trustzone app performing a single AES encryption/decryption

*Firmware version is shamu MMB29Q (Feb, 2016)

36

-s _ Target thread s Attack thread

6 —~9
§ 2, ,i
Q5| S RE
g v 7 ’&(’;x
o 4} % xn:‘
o © 6 nx
[s} x5
- 3 s
GN) = 5t XX
o s #
o 1t E 3 T
=2 }_/ 'l
L j—) L L L L
8.0 05 1.0 15 2.0 25 3.0 EO 1.5 20 25 3.0 35 4.0
CCNTiarget (in clock cycles) # of pre-fault delay loops, Fuiy

Figure 3.12: Execution duration (in clock cycles) of the victim and attack threads.

operation. ARM allows the use of hardware cycle counter (CCNT) to track the execution duration
(in clock cycles) of Trustzone applications [3]. We enable this cycle counting feature within our
custom kernel driver. With this feature, we can now measure how long it takes for our Trustzone

app to decrypt a single ciphertext, even from the non-secure world.

AtTACK ENABLER (TZ-sPEcIFIC) #5: Execution timing of code running in Trustzone can be profiled

with hardware counters that are accessible outside Trustzone.

Using the hardware cycle counter, we track the duration of each AES decryption operation
over about 13k invocations in total. Figure 3.12 (left) shows the distribution of the execution
length of an AES operation. Each operation takes an average of 840k clock cycles with more
than 80% of the invocations taking between 812k to 920k cycles. This shows that the victim
thread does not exhibit too much variability in terms of its execution time.

Recall that we want to deliver a fault to specific region of the victim code execution and that
the faulting parameter gy allows us to fine-tune this timing. Here, we evaluate the degree
to which the use of no-op loops is useful in controlling the timing of the fault delivery. Using
a fixed duration for the fault Fy,,, we measure how long the attack thread takes in clock cycles
for different values of the pre-fault delays Fpqelay. Figure 3.12 (right) illustrates a distinct linear
relationship between 4.y and the length of the attack thread. This demonstrates that number

of loops used in Fpqelay is a reasonably good proxy for controlling the execution timing of threads,

37

0.7 0.6
5 0.6 3 0.5
3 3
2" 2 0.4
& 0.4¢ =
ke - 0.3]
N03 N
£ 0.2 g 0-2
Z0.1 = 0.1} |
- i
PR Y s S o e e IR B P A S P T i
0'012345678 0'013579111315
of faulted AES rounds # of faulted bytes within one round

Figure 3.13: Fault model: Characteristics of observed faults induced by CLKscrREw on AES oper-
ation.

and thus the timing of our fault delivery.

3.4.3 Fault Model

To detect if a fault is induced in the AES decryption, we add a check after the app invocation to
verify that the decrypted plaintext is as expected. Moreover, to know exactly which AES round
got corrupted, we add minimal code to track the intermediate states of the AES round and return
this as a buffer back to the non-secure environment. A comparison of the intermediate states
and their expected values will indicate the specific AES round that is faulted and the corrupted
value. With these validation checks in place, we perform a grid search for the parameters for
the faulting frequency, Ffeq 1 and the duration of the fault, Fy,, that can induce erroneous AES
decryption results. From our empirical trials, we found that the parameters Fyeq ni = 3.69GH 2
and Fjy,, = 680 can most reliably induce faults to the AES operation.

For the rest of this attack, we assume the use of these two parameter values. By varying F},delay
we investigate the characteristics of the observed faults. A total of about 360 faults is observed.

More than 60% of the faults are precise enough to affect exactly one AES round, as depicted in

38

Figure 3.13 (left). Furthermore, out of these faults that induce corruption in one AES round, more
than half are sufficiently transient to cause random corruptions of exactly one byte, shown in
Figure 3.13 (right). Being able to induce a one-byte random corruption to the intermediate state

of an AES round is often used as a fault model in several physical fault injection works [154, 18].

3.4.4 Putting it together

Removing use of time anchor. Recall from § 3.3.5 that CLKSCREW may require profiling for a
time anchor to improve faulting precision. In this attack, we choose not to do so, because (1) the
algorithm of the AES operation is fairly straightforward (one KeyExpansion round, followed by
10 AES rounds [100]) to estimate F},gelay, and (2) the execution duration of the victim thread does
not exhibit too much variability. The small degree of variability in the execution timing of both
the attack and victim threads allows us to reasonably target specific AES rounds with a maximum
error margin of one round.

Differential fault attack. Tunstall et al. present a differential fault attack (DFA) that infers
AES keys based on pairs of correct and faulty ciphertext [154]. Since AES encryption is sym-
metric, we leverage their attack to infer AES keys based on pairs of correct and faulty plaintext.
Assuming a fault can be injected during the seventh AES round to cause a single-byte random
corruption to the intermediate state in that round, with a corrupted input to the eighth AES
round, this DFA can reduce the number of AES-128 key hypotheses from the original 2!%® to
212 in which case the key can be brute-forced in a trivial exhaustive search. We refer readers to
Tunstall et al.’s work [154] for a full cryptanalysis for this fault model.

Degree of control of attack. To evaluate the degree of control we have over the specific
round we seek to inject the fault in, we induce the faults using a range of F},¢e1ay and track which
AES rounds the faults occur in. In Figure 3.14, each point represents a fault occurring in a specific
AES round and when that fault occurs during the entire execution of the victim thread. We use
the ratio of CC' N Ty /CCN Tiarget as an approximation of latter. There are ten distinct clusters

of faults corresponding to each AES round. Since C'C'NTiyye can be profiled beforehand and

39

o 10* ‘ s ‘ ‘ ‘ IEOM
C 9 YR XK 4
>
o 81 FOROMWK 4
=g
N - SO -
wl 6 x XX MOK 4
<
5h x 3O MO i
©
Q 4r x XM X 4
—
o 3} x X X MK 4
2
= 2t Y i
O 1t i
O x
Ok 1 1 1 1]
0.0 0.2 0.4 0.6 0.8 1.0

Cycle length ratio: CONT 14,/ CONT g get

Figure 3.14: Controlling pre-fault delay, Fpgelay, allows us to control which AES round the fault
affects.

CCUNT,gack is controllable via the use of Fp4elay, an attacker is able to control which AES round
to deliver the fault to for this attack.

Actual attack. Given the faulting parameters, Fy aps-12s = {Fvot = 1.055V, Fpaeay =
200k, Fieqni = 3.69GHz, Fay = 680, Fleqlo = 2.61GHz}, it took, on average, 20 faulting
attempts to induce a one-byte fault to the input to the eighth AES round. Given the pair of this
faulty plaintext and the expected one, it took Tunstall et al’s DFA algorithm about 12 minutes
on a 2.7G' H z quad-core CPU to generate 3650 key hypotheses, one out of which is the AES key

stored within Trustzone.

3.5 TZ Attack #2: Loading Self-Signed Apps

In this case study, we show how CLKscREwW can subvert the RSA signature chain verification -
the primary public-key cryptographic method used for authenticating the loading of firmware
images into Trustzone. ARM-based SoC processors use the ARM Trustzone to provide a secure

and isolated environment to execute security-critical applications like DRM widevine [53] trust-

40

let” and key management keymaster [43] trustlet. These vendor-specific firmware are subject to
regular updates. These firmware update files consist of the updated code, a signature protecting
the hash of the code, and a certificate chain. Before loading these signed code updates into Trust-
zone, the Trusted Execution Environment (TEE) authenticates the certificate chain and verifies
the integrity of the code updates [120].

RSA Signature Validation. In the RSA cryptosystem[124], let N denote the modulus, d
denote the private exponent and e denote the public exponent. In addition, we also denote the
SHA-256 hash of code C as H(C') for the rest of the section. To ensure the integrity and authen-
ticity of a given code blob C, the code originator creates a signature Sig with its RSA private
key: Sig < (H(C))¥ mod N. The code blob is then distributed together with the signature
and a certificate containing the signing modulus N. Subsequently, the code blob C' can be au-
thenticated by verifying that the hash of the code blob matches the plaintext decrypted from the
signature using the public modulus N: Sig® mod N == H(C'). The public exponent is typically
hard-coded to 0x10001; only the modulus N is of interest here.

Threat model. The goal of the attacker is to provide an arbitrary attack app with a self-
signed signature and have the TEE successfully authenticate and load this self-signed app within
Trustzone. To load apps into Trustzone, the attackers can invoke the TEE to authenticate and
load a given app into Trustzone using the QSEOS_APP_START_COMMAND [116] Secure Channel Man-
ager'’ command. The attacker can repeatedly invoke this operation, but only from the non-secure

environment.

3.5.1 Trustzone Signature Authentication

To formulate a CLKSCREW attack strategy, we first examine how the verification of RSA signa-

tures is implemented within the TEE. This verification mechanism is implemented within the

°Apps within Trustzone are sometimes referred to as trustlets.

°This is a vendor-specific interface that allows the non-secure world to communicate with the Trustzone secure
world.

41

Algorithm 1 Given public key modulus N and exponent e, decrypt a RSA signature S. Return
plaintext hash, H.

1: procedure DECRYPTSIG(S, e, N)

2: r ¢ 22048

3: R+ r>mod N

4 N, ey < FLIPENDIANNESS(IV)

5 r~! <~ MODINVERSE(T, Nyey)

6: found_first_one_bit < false

7: for i € {bitlen(e) —1..0} do

8: if found_first_one_bit then

9: T < MONTMULT(7, Z, Nye, 77})
10: if e[i] == 1 then
11: T < MONTMULT(x, @, Nyey, 771)
12: end if
13: else if e[i| == 1 then
14: Syey < FLIPENDIANNESS(.S)

15: T < MONTMULT(S, ¢y, R, Nyew, 771)
16: a<— T
17: found_first_one_bit < true
18: end if
19: end for
20: T < MoNTMULT(x, 1, N,ep, 771)
21: H <+ FLIPENDIANNESS(Z)
22: return H

23: end procedure

bootloader firmware. For the Nexus 6 in particular, we use the shamu-specific firmware image
(MOB318, dated Jan 2017 [46]), downloaded from the Google firmware update repository.

The RSA decryption function used in the signature verification is the function, DECRYPT-
S16", summarized in Algorithm 1. At a high level, DECRYPTSIG takes, as input, a 2048-bit signa-
ture and the public key modulus, and returns the decrypted hash for verification. For efficient
modular exponentiation, DECRYPTSIG uses the function MONTMULT to perform Montgomery
multiplication operations [102, 81]. MONTMULT performs Montgomery multiplication of two
inputs x and y with respect to the Montgomery radix, r [81] and modulus N as follows: MONT-
Murr(z, y, N, 77} < x-y-r ! mod N.

In addition to the use of MoNTMuULT, DECRYPTSIG also invokes the function, FLIPENDIAN-

“DECRYPTSIG loads at memory address 0xFE8643CO.

42

NEss'?, multiple times at lines 4, 14 and 21 of Algorithm 1 to reverse the contents of memory
buffers. FLIPENDIANNESS is required in this implementation of DECRYPTSIG because the inputs
to DECRYPTSIG are big-endian while MONTMULT operates on little-endian inputs. For reference,

we outline the implementation of FLIPENDIANNESS in Algorithm 2.

Algorithm 2 Reverse the endianness of a memory buffer.
1: procedure FLIPENDIANNESS(S7C)

2: d<0

3: dst {O}

4: fori € {0 ..len(src)/4 — 1} do
5: for j € {0..2} do

6: d+ (srcfixd+j]|d) <8
7: end for

8: d<+ srclix4+3]|d

9: k <« len(src) —i*x4 —4
10: dstlk ..k +3] < d

11: end for

12: return dst

13: end procedure

3.5.2 Attack Strategy and Cryptanalysis

Attack overview. The overall goal of the attack is to deliver a fault during the execution of
DECRYPTSIG such that the output of DECRYPTSIG results in the desired hash H(C) of our attack
code C4. This operation can be described by Equation 3.2, where the attacker has to supply an at-
tack signature S, , and fault the execution of DECRYPTSIG at runtime so that DECRYPTSIG outputs
the intended hash H(C). For comparison, we also describe the typical decryption operation of

the original signature S to the hash of the original code blob, C' in Equation 3.3.

Attack : DECrRYPTSIG(S,, e, N) 2% H(C.) (3.2)
Original : DEcryYpPTSIG(S, e, N) — H(C) (3.3)

FLIPENDIANNESS loads at memory address 0xFE868B20

43

For a successful attack, we need to address two questions: (a) At which portion of the runtime
execution of DECRYPTSIG(S, , ¢, N) do we inject the fault? (b) How do we craft S, to be used

as an input to DECRYPTSIG?

3.5.2.1 Where to inject the runtime fault?

Target code of interest. The fault should target operations that manipulate the input modulus
N, and ideally before the beginning of the modular exponentiation operation. A good candidate
is the use of the function FLIPENDIANNESS at Line 4 of Algorithm 1. From experimentation, we
find that FLIPENDIANNESS is especially susceptible to CLKScREw faults. We observe that /V can

be corrupted to a predictable N4 as follows:

ault
Na re Joutt FLIPENDIANNESS(V)

Since N4,y is N4 in reverse byte order, for brevity, we refer to N4 ,., as N4 for the rest of the

section.

Factorizable V4. Besides being able to fault /V to N4, another requirement is that N4 must
be factorizable. Recall that the security of the RSA cryptosystem depends on the computational
infeasibility of factorizing the modulus NV into its two prime factors, p and ¢ [23]. This means
that with the factors of N4, we can derive the corresponding keypair { N4, da, e} using the
Carmichael function in the procedure that is described in Razavi et al.’s work [123]. With this
keypair { N4, d4, e}, the hash of the attack code C'4 can then be signed to obtain the signature
of the attack code, Sy + (H(C4))% mod N 4.

We expect the faulted N4 to be likely factorizable due to two reasons: (a) N4 is likely a
composite number of more than two prime factors, and (b) some of these factors are small. With
sufficiently small factors of up to 60 bits, we use Pollard’s p algorithm to factorize N4 and find

them [97]. For bigger factors, we leverage the Lenstra’s Elliptic Curve factorization Method

(ECM) that has been observed to factor up to 270 bits [86]. Note that all we need for the attack

44

is to find a single N4 that is factorizable and reliably reproducible by the fault.

3.5.2.2 How to craft the attack signature S, ?

Before we begin the cryptanalysis, we note that the attack signature S, (an input to DECRYPTSIG)
is not the signed hash of the attack code, S (private-key encryption of the H(C)). We use S,
instead of S4 primarily due to the pecularities of our implementation. Specifically, this is because
the operations that follow the injection of the fault also use the parameter values derived before
the point of injected fault. Next, we sketch the cryptanalysis of delivering a fault to DECrRYPTSIG
to show how the desired S, is derived, and demonstrate why S, is not trivially derived the same
way as 4.

Cryptanalysis. The goal is to derive S, (as input to DECRYPTSIG) given an expected cor-
rupted modulus Ny, the original vendor’s modulus N, and the signature of the attack code, S4.
For brevity, all line references in this section refer to Algorithm 1. The key observation is that
after being derived from FLIPENDIANNESS at Line 4, N,., is next used by MoNTMULT at Line 15.
Line 15 marks the beginning of the modular exponentiation of the input signature, and thus, we
focus our analysis here.

First, since we want DECRYPTSIG(S ,, e, N) to result in H(C}) as dictated by Equation 3.2,
we begin by analyzing the invocation of DECRYPTSIG that will lead to H(C4). If we were to run
DECRYPTSIG with inputs S4 and N4, DECRYPTSIG(S 4, €, N4) should output H(C4). Based on
the analysis of this invocation of DECRYPTSIG, we can then characterize the output, Zgesireq, of
the operation at Line 15 of DECRYPTSIG(S4, e, N4) with Equation 3.4. We note that the modular

inverse of r is computed based on N4 at Line 5, and so we denote this as 7.

Tdesired < Sa - (1 mod Nu) -7, mod N, (3.4)

Next, suppose our CLKscREW fault is delivered in the operation DECRYPTSIG(S |, €, N)such

that IV is corrupted to N4 at Line 4. We note that while /V is faulted to N4 at Line 4, subsequent

45

instructions continue to indirectly use the original modulus N because R is derived based on the
uncorrupted modulus NN at Line 3. Herein lies the complication. The attack signature S, passed
into DECRYPTSIG gets converted to the Montgomery representation at Line 15, where both moduli

are used:

i r —
T fauit < MoONTMuULT(S 4, 7* mod N, Na, 7"

We can then characterize the output, x 4., of the operation at the same Line 15 of a faulted

DECRYPTSIG(S ,, e, N) as follows:

T fault < S, - (r* mod N) - 74" mod N4 (3.5)

By equating Zfqut = Tdesirea (i-e. equating results from (3.4) and (3.5)), we can reduce the

problem to finding S, for constants K = (r? mod N) - 74" and Zgesireds such that:

SA/ - K mod Ny = Zgesireq mod Ny

Finally, subject to the condition that Z4es;,cq is divisible® by the greatest common divisor of
K and N, denoted as gcd(K, N,), we use the Extended Euclidean Algorithm'* to solve for the
attack signature S A/, since there exists a constant y such that .S A/ K +vy-Njg = Zgesireq- In sum-
mary, we show that the attack signature S, (to be used as an input to DECRYPTSIG(S, e, N))

can be derived from N, N4 and S4.

*We empirically observe that ged(K, N4) = 1 in our experiments, thus making & gesireq trivially divisible by
gcd(K, N 4) for our purpose.

**The Extended Euclidean Algorithm is commonly used to compute, besides the greatest common divisor of two
integers a and b, the integers = and y where ax + by = gcd(a, b).

46

3.5.3 Timing Profiling

Each trustlet app file on the Nexus 6 device comes with a certificate chain of two RSA certificates
(and signatures). Before loading an app into Trustzone, the loader will validate the signatures of
the two certificates and the metadata that comes with the app [120]. The DEcrRYPTSIG code that
decrypts the RSA signature gets invoked four times in total. By incrementally corrupting each
certificate and then invoking the loading of the app with the corrupted chain, we measure the
operation of validating one signature to take about 270 million cycles on average. We extract the
target function FLIPENDIANNESS from the binary firmware image and execute it in the non-secure
environment to measure its length of execution. We profile its invocation on a 256-byte buffer
(the size of the 2048-bit RSA modulus) to take on average 65k cycles.

To show the feasibility of our attack, we choose to attack the fourth invovation of the De-
CRYPTSIG code during the whole app loading process. This requires a very precise fault to be
induced within in a 65k-cycle-long targeted period within an entire chain validation operation
that takes 270 million x 4 = 1.08 billion cycles, a duration that is four orders of magnitude longer
than the targeted period. Due to the degree of precision needed, it is thus crucial to find a way
to determine a reliable time anchor (see Steps @ / @ in § 3.3.5) to guide the delivery of the fault.

Cache profiling To determine approximately which region of code is being executed during
the chain validation at any point in time, we leverage side-channel-based cache profiling attacks
that operate across cores. Since we are profiling code execution within Trustzone in a separate
core, we use recent advances in the cross-core instruction- and data-based Prime+Probe* cache
attack techniques [87, 57, 177]. We observe that the cross-core profiling of the instruction-cache
usage of the victim thread is more reliable than that of the data-cache counterpart. As such, we
adapt the instruction-based Prime+Probe cache attack for our profiling stage.

Within the victim code, we first identify the code address we want to monitor, and then com-

pute the set of memory addresses that is congruent to the cache set of our monitored code address.

* Another prevalent class of cross-core cache attacks is the Flush+Reload [175] cache attacks. We cannot use the
Flush+Reload technique to profile Trustzone execution because Flush+Reload requires being able to map addresses
that are shared between Trustzone and the non-secure environment. Trustzone, by design, prohibits that.

47

Since we are doing instruction-based cache profiling, we need to rely on executing instructions
instead of memory read operations. We implement a loop within the fault injection thread to con-
tinuously execute dynamically generated dummy instructions in the cache-set-congruent mem-
ory addresses (the Prime step) and then timing the execution of these instructions (the Probe
step) using the clock cycle counter. We determine a threshold for the cycle count to indicate that
the associated cache lines have been evicted. The eviction patterns of the monitored cache set

provides an indication that the monitored code address has been executed.

ATTACK ENABLER (TZ-SPECIFIC) #6: Memory accesses from the non-secure world can evict cache
lines used by Trustzone code, thereby enabling Prime+Probe-style execution profiling of Trustzone

code.

While we opt to use the Prime+Probe cache profiling strategy in our attack, there are alter-
nate side-channel-based profiling techniques that can also be used to achieve the same effect.
Other microarchitectural side channels like branch predictors, pipeline contention, prefetchers,
and even voltage and frequency side channels can also conceivably be leveraged to profile the
victim execution state. Thus, more broadly speaking, the attack enabler #6 is the presence of
microarchitectural side channels that allows us to profile code for firing faults.

App-specific timing feature. ~ For our timing anchor, we want a technique that is more
fine-grained. We devise a novel technique that uses the features derived from the eviction timing
to create a proxy for profiling program phase behavior. First, we maintain a global incrementing
count variable as an approximate time counter in the loop. Then, using this counter, we track
the duration between consecutive cache set evictions detected by our Prime+Probe profiling. By
treating this series of eviction gap duration values, g, as a time-series stream, we can approximate
the execution profile of the chain validation code running within Trustzone.

We plot a snapshot of the cache profile characterizing the validation of the fourth and final
certificate in Figure 3.15. We observe that the beginning of each certification validation is pre-
ceded by a large spike of up to 75,000 in the g values followed by a secondary smaller spike. From

experimentation, we found that FLIPENDIANNESS runs after the second spike. Based on this ob-

48

Cache set eviction profile (Validation of the 4th certificate)

T T T

[S N) Ne) IR IEN|
vuououn
[clololole]
[eleololole]
[eleololole]
T T T T
Lo

feat_cache? §

150 L feat_cachet—f

N

o

o
T

100 g 4

‘Gap duration’, g values

. "
0 1 L i | _\‘_
150 155 160 165 170 175 180 185 190
Sample ID over time

Figure 3.15: Cache eviction profile snapshot with cache-based features.

servation, we change the profiling stage of the attack thread to track two hand-crafted timing

features to characterize the instantaneous state of victim thread execution.

Timing anchor. We annotate the two timing features on the cache profile plot in Figure 3.15.
The first feature, feat cachel, tracks the length of the second spike minus a constant k;. The
second feature, feat cache2, tracks the cumulative total of g after the second spike, until the
g > ko. Weuse avalue of k; = 140 and ky = 15 for our experiments. By continuously monitoring

values of g after the second spike, the timing anchor is configured to be the point when g > k.

To evaluate the use of this timing anchor, we need a means to assess when and how the
specific invocation of the FLIPENDIANNESS is faulted. First, we observe that the memory buffer
used to store NV,., is hard-coded to an address 0x0FC8952C within Trustzone, and this buffer is not
zeroed out after the validation of each certificate. We downgrade the firmware version to MMB29Q

(Feb, 2016), so that we can leverage a Trustzone memory safety violation vulnerability [16] to

49

70

T
L fault failure
o o °
x » x X xxx fault success
x
x X X ° x
60 - exX oo X o X oo
X e ° o °
° x X
° X
x
; o0 o X o X X
— X X 000000 X®ooXeX °
a) O X x Xuuoooo X X X X X X e o0
50 HoXooX:-XoxXMoemeooooe X
(] ° ° o X XXo XX o X x
© oo x exgg§llltlxxlx§x1t’xo °
o0 o X 5o oxo mNX ° x ° .
) XXe -x§xx XxXooo0oXxo ° o o X
| ° XD{!Gc)(o)(olol)(llli!ﬂ ° xo)(§xx
° x; X xox ° o oMo XHMooXoxXoX °
4‘—0'40 X o XXX MM e MX XX o oXXoX X x
L X Xex ° o X ° s X
] o XoxX:ax XX XX XA ExEx SemxX
° ° °
Y— 000000000 ° --g ig“'xs ° -gx-xx
o000 o000 °ou xx X o x 8 8555‘!8§§8§ E XX 0oo0o00o00
B2 R © 0 00 00X X XX o X X u - x u x
oo = 00000 x X o x X X X X XX 0 om L x X X
° ° o X o ° XXXX;K llx:‘? o oo X x > X
Ce X ° X
. X X X X
30 oX o ° o X o ; XM o X o o X
on} s L2 9.4 x x u > ©
EH O LT LR
cxoXXXEXXMOO XX XXX 00X o X
X)(le X X % x x
20 . . . X, L
180 190 200 210 220 230

feat_cache2

Figure 3.16: Observed faults using the timing features.

access the contents of IV,., after the fourth invocation of DECRYPTSIG code*. Note that this does
not affect the normal operation of the chain validation because the relevant code sections for

these operations is identical across version MMB29Q (Feb, 2016) and MOB31S (Jan, 2017).

With this timing anchor, we perform a grid search for the faulting parameters, Fyeq nis Flur
and Fpgelay that can best induce faults in FLIPENDIANNESs. The parameters Fieq ni = 3.99GH 2
and Fy,, = 1 are observed to be able to induce faults in FLIPENDIANNESS reliably. The value of
the pre-fault delay parameter Fp4e1ay is crucial in controlling the type of byte(s) corruption in the
target memory buffer V,.,. With different values of Fpqelay, We plot the observed faults and failed
attempts based on the values of feat cachel and feat cacheZ in Figure 3.16. Each faulting attempt

is considered a success if any bytes within N,., are corrupted during the fault.

Adaptive pre-delay. While we see faults within the target buffer, there is some variability in
the position of the fault induced within the buffer. In Figure 3.17, each value of F'}4e1ay is observed
to induce faults across all parts of the buffer. To increase the precision in faulting, we modify the

fault to be delivered based on an adaptive Fpgelay-

*We are solely using this vulnerability to speed up the search for the faulting parameters. They can be replaced
by more accurate and precise side-channel-based profiling techniques.

50

250 ‘ o . ‘ ‘ " ‘ ‘ 270

° . o o . 265
- ® ® 02, ¢ ° o~
> [[] L 1]

5200 . 260 £
© L4 °

2 . 255 5
S | ° o —
g 0 . 250§
2 B +
< 100 2450
S | : S
5 % ot o5t 240 G
_4;-' Ed
é 50+ . . ° . ® 235 “(2

i 1230

95 25 30 35 40 45 50 55 60 65
pre-fault delay 100ps, F i, led

Figure 3.17: Variability of faulted byte(s) position.

3.5.4 Fault Model

Based on the independent variables feat cachel and feat_cache2, we build linear regression mod-
els to predict Fpqelay that can best target a fault at an intended position within the V,., buffer.
During each faulting attempt, Fgelay is computed only when the timing anchor is detected. To
evaluate the efficacy of the regression models, we collect all observed faults with the goal of in-
jecting a fault at byte position 141. Figure 3.18 shows a significant clustering of faults around
positions 140 - 148.

More than 80% of the faults result in 1-3 bytes being corrupted within the N,., buffer. Many
of the faulted values suggest that instructions are skipped when the fault occurs. An example
of a fault within a segment of the buffer is having corrupted the original byte sequence from

0xa777511b to O0xa7777777.

3.5.5 Putting it together

We use the following faulting parameters to target faults to specific positions within the buffer:
Forsa = {Foor = 1.055V, Fialay = adaptive, Fieqn = 3.99GHz2, Fyur = 1, Fieqro =
2.61GHz}.

51

w
o

N
w
T

N
o
T

Frequency of faults

w
T

o

6 5‘0 160 150 260 25;0
Position of first faulted byte in the N,,, buffer

Figure 3.18: Histogram of observed faults and where the faults occur. The intended faulted posi-
tion is 141.

Factorizable modulus N4. About 20% of faulting attempts (1153 out of 6000) result in a
successful fault within the target N,., buffer. This set of faulted N values consists of 805 unique
values, of which 38 (4.72%) are factorizable based on the algorithm described in § 3.5.2. For our at-
tack, we select one of the factorizable V4, where two bytes at positions 141 and 142 are corrupted.
We show an example of this faulted and factorizable modulus in Appendix A.1.

Actual attack. Using the above selected N4, we embed our attack signature S, into the
widevine trustlet. Then we conduct our CLKscrRew faulting attempts while invoking the self-

signed app. On average, we observe one instance of the desired fault in 65 attempts.

3.6 Discussion and Related Works

3.6.1 Applicability to other Platforms

Several highlighted attack enablers in preceding sections apply to other leading architectures. In
particular, the entire industry is increasingly moving or has moved to fine-grained energy man-
agement designs that separate voltage/frequency domains for the cores. We leave the exploration
of these architectures to future research.

Intel. Intel’s recent processors are designed with the base clock separated from the other

clock domains for more scope of energy consumption optimization [59, 72]. This opens up pos-

52

sibilities of overclocking on Intel processors [178]. Given these trends in energy management
design on Intel hardware and the growing prevalence of Intel’s Secure Enclave SGX [69], a closer
look at whether the security guarantees still hold is warranted.

ARMvS8. The ARMvS devices adopt the ARM big.LITTLE design that uses non-symmetric
cores (such as the “big” Cortex-A15 cores, and the “LITTLE” Cortex-A7 cores) in same system [73].
Since these cores are of different architectures, they exhibit different energy consumption char-
acteristics. It is thus essential that they have separate voltage/frequency domains. The use of
separate domains, like in the 32-bit ARMv7 architecture explored in this work, expose the 64-
bit ARMv8 devices to similar potential dangers from the software-exposed energy management
mechanisms.

Cloud computing providers. The need to improve energy consumption does not just apply
to user devices; this extends even to cloud computing providers. Since 2015, Amazon AWS offers
EC2 VM instances [15] where power management controls are exposed within the virtualized
environment. In particular, EC2 users can fine-tune the processor’s performance using P-state
and C-state controls [6]. This warrants further research to assess the security ramifications of

such user-exposed energy management controls in the cloud environment.

3.6.2 Hardware-Level Defenses

Operating limits in hardware. CLKscrew requires the hardware regulators to be able to
push voltage/frequency past the operating limits. To address this, hard limits can be enforced
within the regulators in the form of additional limit-checking logic or e-fuses [125]. However,
this can be complicated by three reasons. First, adding such enforcement logic in the regulators
requires making these design decisions very early in the hardware design process. However, the
operational limits can only be typically derived through rigorous electrical testing in the post-
manufacturing process. Second, manufacturing process variations can change operational limits
even for chips of the same designs fabricated on the same wafer. Third, these hardware regulators

are designed to work across a wide range of SoC processors. Imposing a one-size-fits-all range of

53

limits is challenging because SoC-specific limits hinder the portability of these regulators across
multiple SoC. For example, the PMIC found on the Nexus 6 is also deployed on the Galaxy Note
4.

Separate cross-boundary regulators. Another mitigation is to maintain different power do-
mains across security boundaries. This entails using a separate regulator when the isolated envi-
ronment is active. This has two issues. First, while trusted execution technologies like Trustzone
and SGX separate execution modes for security, the different modes continue to operate on the
same core. Maintaining separate regulators physically when the execution mode switches can
be expensive. Second, DVFS components typically span across the system stack. If the trusted
execution uses dedicated regulators, this implies that a similar cross-stack power management
solution needs to be implemented within the trusted mode to optimize energy consumption. Such
an implementation can impact the runtime of the trusted mode and increase the complexity of
the trusted code.

Redundancy/checks/randomization. To mitigate the effects of erroneous computations due
to induced faults, researchers propose redesigning the application core chip with additional logic
and timing redundancy [12], as well as recovery mechanisms [65]. Also, Bar-El et al. suggest
building duplicate microarchitectural units and encrypting memory bus operations for attacks
that target memory operations [12]. Luo et al. present a clock glitch detection technique that
monitors the system clock signal using another higher frequency clock signal [90]. While many
of these works are demonstrated on FPGAs [157] and ASICs [139], it is unclear how feasible it
is on commodity devices and how much chip area and runtime overhead it adds. Besides adding
redundancy, recent work proposes adding randomization using reconfigurable hardware as a

mitigation strategy [158].

3.6.3 Software-Level Defenses

Randomization. Since CLKSCREW requires some degree of timing precision in delivering the

faults, one mitigation strategy is to introduce randomization (via no-op loops) to the runtime

54

execution of the code to be protected. However, we note that while this mitigates against attacks
without a timing anchor (AES attack in § 3.4), it may have limited protection against attacks that
use forms of runtime profiling for the timing guidance (RSA attack in § 3.5).

Redundancy and checks in security-sensitive code. Several software-only defenses pro-
pose compiling code with checksum integrity verification and execution redundancy (executing
sensitive code multiple times) [12, 13]. Security-sensitive code, such as signature verification
code, executing within TEEs can be rewritten and recompiled to include additional checks and
redundancy in computation. While these defenses may be deployed on systems requiring high
dependability, they are not typically deployed on commodity devices like phones because they
can impact energy efficiency.

TEE-mediated software interfaces. One pertinent design issue highlighted in this work is
the fact that the hardware regulators can be accessed without restrictions from privileged soft-
ware running outside the TEEs. A possible solution is to restrict all non-TEE software access to
hardware regulators. This means that all frequency/voltage changes initiated from DVES soft-
ware running outside TEEs have to incur a context switch to the TEE to effect the changes.
Depending on how frequent DVEFS regulates the runtime frequency and voltage, this may incur

non-trivial performance overheads.

3.6.4 Subverting Cryptography with Faults

Boneh et al. offer the first DFA theoretical model to breaking various cryptographic schemes
using injected hardware faults [24]. Subsequently, many researchers demonstrate physical fault
attacks using a range of sophisticated fault injection equipment like laser [27, 39] and heat [54].
Compared to these attacks including all known undervolting [14, 105] and overclocking [22] ones,
CLKscrew does not need physical access to the target devices, since it is initiated entirely from
software. CLKsCREW is also the first to demonstrate such attacks on a commodity device. We
emphasize that while CLKscREw shows how faults can break cryptographic schemes, it does so

to highlight the dangers of hardware regulators exposing software-access interfaces, especially

55

across security trust boundaries.

3.6.5 Relation to Rowhammer Fault Attacks

Kim et al first present reliability issues with DRAM memory [79] (dubbed the “Rowham-
mer” problem). Since then, many works use the Rowhammer issue to demonstrate the dan-
gers of such software-induced hardware-based transient bit-flips in practical scenarios ranging
from browsers [56], virtualized environments [123], privilege escalation on Linux kernel [126]
and from Android apps [156]. Like Rowhammer, CLKSCREW is equally pervasive. However,
CLKscrew is the manifestation of a different attack vector relying on software-exposed energy
management mechanisms. The complexity of these cross-stack mechanisms makes any potential
mitigation against CLKscREw more complicated and challenging. Furthermore, unlike Rowham-
mer that corrupts DRAM memory, CLKSCREW targets microarchitectural operations. While we
use CLKscrew to induce faults in memory contents, CLKSCREW can conceivably affect a wider
range of computation in microarchitectural units other than memory (such as caches, branch

prediction units, arithmetic logic units and floating point units).

3.6.6 Relation to Meltdown/Spectre Side-Channel Attacks

Like CLKscrRew , recently published Meltdown [88] and Spectre [83] attacks are glaring examples
of security flaws introduced by system architects seeking to optimize performance. Using cache
timing side channels, the Meltdown and Spectre attacks demonstrate how sensitive memory can
be exposed by probing residual cache states that result from aggressive speculative execution.
They combine the use of side-channel attacks with novel manipulation of aggressive speculative
execution states of both Intel and ARM processors. At a high level, all these three hardware-
oriented attacks bear testament to the importance of approaching architecture design with a
full-system approach. Myopic and unduly-performance-focused architecture design can be dan-
gerous — security risks can occur when different system components interact in unanticipated

ways. As microarchitectural attacks, like Meltdown/Spectre, CLKSCREW is equally pervasive.

56

In terms of degree of security impact, CLKSCREwW extends beyond Meltdown/Spectre. Besides
allowing attackers to perform unauthorized memory reads (Meltdown/Spectre break only confi-
dentiality), CLKScCREw also breaks code integrity where it allows attackers to load and execute

unauthorized code.

3.7 Conclusions

As researchers and practitioners embark upon increasingly aggressive cooperative hardware-
software mechanisms with the aim of improving energy efficiency, this work shows, for the
first time, that doing so may create serious security vulnerabilities. With only publicly available
information, we have shown that the sophisticated energy management mechanisms used in
state-of-the-art mobile SoCs are vulnerable to confidentiality, integrity and availability attacks.
Our CLKscrew attack is able to subvert even hardware-enforced security isolation and does not

require physical access, further increasing the risk and danger of this attack vector.

While we offer proof of attackability in this paper, the attack can be improved, extended and
combined with other attacks in a number of ways. For instance, using faults to induce specific val-
ues at exact times (as opposed to random values at approximate times) can substantially increase
the power of this technique. Furthermore, CLKSCREwW is the tip of the iceberg: more security
vulnerabilities are likely to surface in emerging energy optimization techniques, such as finer-
grained controls, distributed control of voltage and frequency islands, and near/sub-threshold
optimizations.

Our analysis suggests that there is unlikely to be a single, simple fix, or even a piecemeal fix,
that can entirely prevent CLKSCREW style attacks. Many of the design decisions that contribute
to the success of the attack are supported by practical engineering concerns. In other words,
the root cause is not a specific hardware or software bug but rather a series of well-thought-out,
nevertheless security-oblivious, design decisions. To prevent these problems, a coordinated full

system response is likely needed, along with accepting the fact that some modest cost increases

57

may be necessary to harden energy management systems. This demands research in a number of
areas such as better Computer Aided Design (CAD) tools for analyzing timing violations, better
validation and verification methodology in the presence of DVFS, architectural approaches for
DVES isolation, and authenticated mechanisms for accessing voltage and frequency regulators.
As system designers work to invent and implement these protections, security researchers can

complement these efforts by creating newer and exciting attacks on these protections.

58

HEISENBYTE: Stemming Code Reuse Exploits
with Destructive Code Reads

Assistive virtualization hardware features enable timely and transparent

mediation of read operations into executable memory.

The destructive code read primitive protects closed-source software and

Jjust-in-time compiled code against memory disclosure exploits.

Vulnerabilities that disclose executable memory pages enable a new class of powerful code
reuse attacks that build the attack payload at runtime. These make “moving target” defenses
like fine-grained randomization inadequate for avoiding exploitation. In this chapter, we present
Heisenbyte, a system to protect against such memory disclosure attacks. Central to Heisenbyte is
the concept of destructive code reads — code is garbled right after it is read. Garbling the code after
reading it takes away from the attacker her ability to leverage memory disclosure bugs in both
static code and dynamically generated just-in-time code. By leveraging existing virtualization
support, Heisenbyte’s novel use of destructive code reads sidesteps the problem of incomplete
binary disassembly in binaries, and extends protection to close-sourced COTS binaries, which
are two major limitations of prior solutions against memory disclosure vulnerabilities. Our ex-
periments demonstrate that Heisenbyte can tolerate some degree of imperfect static analysis in
disassembled binaries, while effectively thwarting dynamic code reuse exploits in both static and
JIT code, at a modest 1.8% average runtime overhead due to virtualization and 16.5% average

overhead due to the destructive code reads.

59

4.1 Introduction

In the last decade, with the widespread use of data execution protection, attackers have turned
to reusing code snippets from existing binaries to craft attacks. To perform these code reuse
attacks, the attacker has to “see” the code so that she can find the “gadgets” necessary to craft the
attack payload. One effective solution, until very recently, has been fine-grained randomization.
The idea is to shuffle the code to blind the attacker from seeing the code layout in memory.
The assumption behind this approach is that without knowledge of the code layout, the attacker
cannot craft payloads. However, as demonstrated by Snow et al. in 2013, it is feasible and practical
to scan for ROP gadgets at runtime and construct a dynamic JIT attack payload [133]. The attack
by Snow et al. undermines the use of fine-grained randomization as an mitigation against ROP
attacks.

To counter this new threat, researchers have revived the idea of execute-only memory (XoM)
[150]. This approach involves preventing programs from reading executable memory using gen-
eral purpose memory access instructions. One challenge in realizing these systems is that legacy
binaries and compilers often intersperse code and data (e.g. jump tables) in executable memory
pages. Thus, the wholesale blinding of executable memory at page granularity is not an option.
To tackle this issue, researchers have used static compilation techniques to separate code and
data [33]. However, this solution does not work well in the absence of source code, for instance,
when utilizing legacy binaries. In fact, separating data from code has been shown to be provably
undecidable [162]. Another complication in realizing the XoM concept arises from web browsers’
use of JIT code where data becomes dynamically generated code. This has been shown to be a
significant attack surface for browsers [9, 136].

In this work, we propose a new concept to deal with memory disclosure attacks. Unlike
XoM and XoM-inspired systems, which aim to completely prevent reads to executable memory,
a task beset with many practical difficulties, we allow executable memory to be read, but make
them unusable as code after being read. In essence, in our model, as soon as the code is read

using a general-purpose memory dereferencing instruction, the copy of code in memory is gar-

60

bled. Manipulating executable memory in this manner allows legitimate code to execute without
false-positives and false-negatives, while servicing legitimate memory read operations for data
embedded in the code. We term our special code read operations as destructive code reads.

We implement our new code read mechanism by leveraging existing virtualization hardware
support on commodity processors. We term our system Heisenbyte'.

Our experiments demonstrate that Heisenbyte can thwart the use of memory disclosure at-
tacks on executable memory, both from static program binaries and dynamically generated JIT
code on a production Windows 7 machine at a modest average runtime overhead of 16.5% and
18.3% on virtualized and non-virtualized systems respectively.

This chapter makes the following contributions:

1. We conceptualize a novel destructive code read primitive that tolerates legitimate data
reads in executable memory while preventing the same data from being used as code in
a dynamic code reuse attack.

2. We implement Heisenbyte to realize this destructive code read operation in practice on
contemporary commodity systems.

3. We demonstrate its utility in preventing attacks that use memory disclosure bugs on both

static program binaries and dynamic JIT code in close-sourced COTS binaries.

4.2 Background

In this section, we describe the steps of a typical dynamic code reuse attack. Since the use of
memory disclosure vulnerabilities is crucial in a dynamic code reuse attack (cf. static code reuse
attacks [130, 21]), we will focus on techniques that aim to thwart executable memory disclosures.

We also cover the assumptions of the threat model and the capabilities of the adversary.

'A tribute to renowned physicist, Werner Heisenberg, who observed that the act of observing a system inevitably
changes its state in quantum mechanics.

61

0 Find usable code reuse gadgets Q Build payload and execute
Typical

dvnamic Harvest pointers to Scan & disassemble Construct on-the-fly Execute attack
4 executable memory executable pages code reuse payload payload
code reuse
attack &‘
S e /" Direct] N O
~ x Static MOV ECX, 3 <.
— ——

M Indirect IRET N
emory > J: i% >
Disclosure Bug R Control Flow

Hijacking
Fine-grained ASLR N Code Reuse
ATTACK Memory Space Dynamic / JIT Shellcode

f Y A4
DEFENSES Prevent code pointers from | Prevent executable memory | Prevent disclosed executable memory

being disclosed from being read/disclosed from being executed
[32] Readactor (indirect) [31/32] Readactor(++) # [35] lsomeron*# (randomize execution paths)
[31] Readactor++ (indirect) | [I'1] XnR* [144] Heisenbyte+# (destructive code reads)
[10] Oxymoron™ (direct) [50] HideM™ [162] NEAR™# (destructive code reads)
[BGDX (destructive code reads)
\ N N
_handles dynamic JIT code . protects close-sourced COTS binaries

Figure 4.1: TOP: Stages of a code reuse attack that constructs its payload on-the-fly using exe-
cutable memory found with a memory disclosure bug. BOTTOM: Taxonomy of defenses grouped
by their defense strategy.

4.2.1 Dynamic Code Reuse Attacks

In the top half of Figure 4.1, we show the stages of a typical code reuse attack, and the sub-steps
within each stage. Typical dynamic code reuse attacks comprise two stages, namely @ the search
for usable code reuse gadgets in either static code [133] or dynamic JIT code [9], and @ building

the payload on-the-fly and then redirecting execution to the payload.

To gather code reuse gadgets for the dynamic exploit, an adversary needs to first uncover
memory pages that are executable. Note that a trivial linear scan of the memory cannot be used
as it is likely to trigger a page fault or access unmapped guard pages placed randomly in the
address space. Therefore, to craft a stable exploit, the adversary has to first gather pointers to
the memory pages marked as executable. These pointers can be direct branches into executable

memory or indirect pointeres residing in data pages but pointing to code memory.

62

With the list of the pointers to executable memory, the adversary can then invoke a memory
disclosure bug repeatedly (without crashing the vulnerable program) to scan and disassemble
the memory pages looking for suitable code reuse gadgets. The next step involves stringing the
locations of the gadgets together in an exploit payload, and finally redirecting execution to this

payload using another control flow hijacking vulnerability.

4.2.2 Previous Works

The first category of defenses focuses on protecting the code pointers and preventing them from
being disclosed, stifling the attack as earlier as possible. Oxymoron hides the direct code pointers
by generating randomized code that does not have direct references to code pages [10]. However,
besides using direct references to code pages, adversaries can use indirect code references that
reside in stack and heap. Readactor and Readactor++ address this by masking the indirect code
references with executable trampolines that are protected by hardware virtualization feature [33,
32].

The next set of works introduces the concept of execute-only memory implemented in soft-
ware. This is designed to prevent executable memory from being disclosed directly through
memory read operations, consequently removing the adversary’s ability to scan and locate suit-
able code reuse sequences for the attack. To achieve this, these works have to separate legitimate
data from executable sections of programs, and distinguish at runtime between code execution
and data read operations in executable memory.

XnR configures executable pages to be non-executable and augments the page fault handler
to mediate illegal reads into code pages [11], but it is susceptible to disclosure attacks via indirect
code references. HideM leverages the spilt-TLB architecture on AMD processors to transparently
prevent code from being read by memory dereferencing operations [51]. The use of split-TLB
limits its ability to remove all data from the executable sections, and inevitably exposes these
data remnants to being used in attacks. Readactor relies on compiler-based techniques to sepa-

rate legitimate data from code in programs and uses hardware virtualization support to enforce

63

execute-only memory [33].

Unlike the previous defenses that protect the executable memory from illegal memory reads,
the third group of works tolerates the disclosure of executable memory contents in attacks. It
shifts the focus of the defense strategy to preventing any discovered gadgets from the earlier

attack stages from being used in later stages of attacks.

This paradigm shift in protection strategy addresses a key limitation of past execute-only
memory defenses — legacy binary compatibility, since such defenses require clean and accurate
separation of code and data. While recent work by Andriesse et al. shows interspersed code
and data are non-existent in programs compiled with gcc or clang compilers [8], the authors
also highlighted that many MSVC-compiled programs on Windows have intermingled code and
data. It is noteworthy that since many library code is highly optimized and contains hand-crafted
assembly, having both code and data in the execution memory sections is no surprise, and is thus

still a huge problem in applying execute-only memory-based defenses.

Belonging to this class of defenses, Isomeron probabilistically impedes the use of the discov-
ered gadgets by randomizing the control flow at runtime specifically for dynamically generated
code [36]. The work described in this chapter, Heisenbyte [147], also falls into this third cate-
gory of defenses. While most works either enforce execute-only code memory or hide important
static code contents from adversaries, we conceal the destructive changes made to executable
memory (when it is read) from the adversaries. Heisenbyte allows legitimate read operations
to disclose the contents of executable memory while keeping the randomized changes made to
the read memory hidden. This enables us to transparently support existing COTS binaries with-
out the need to ensure all legitimate data and code are separated cleanly and completely in the
disassembly. The heart of Heisenbyte lies on the assumption that every byte in the executable

memory can only be exclusively used as code or data.

Independent and concurrent to our work, Werner et al. also propose No-Execute-After-Read
(NEAR) in a Destructive Code Read (DCR) implementation similar in spirit to Heisenbyte [168].

More recently, Pewny et al. combine the use of DCR and XoM in an implementation called Byte-

64

Granular DCR and XoM (BGDX) to reap the benefit of the legacy binary compatibility while being

robust to code inference attacks [112]. We return to a comparison and discussion in Section § 4.7.

4.2.3 Assumptions

We assume a powerful adversary who can read (and write) arbitrary memory within the address
space of the vulnerable program, and do so without crashing the program. On the target system,
we also make similar assumptions used in related papers addressing the problem of memory

disclosure attacks. We assume that the target system is equipped with the following protections:

« WEHX: Memory pages cannot be both executable and writable at the same time. This pre-
vents direct overwriting of existing code or injection of native code into the vulnerable
program. We assume that this also applies to JIT code generated by programs, i.e. dynam-
ically generated instructions cannot be executed on a memory page that is writable.

+ Load-time fine-grained ASLR: All the static code from programs and libraries are loaded
at random locations upon each startup. Address Space Layout Randomization (ASLR) re-
duces the predictability of the code layout. Furthermore, we require code layouts to be
randomized at a fine granularity so that the registers [107] used and instruction locations
within a function [76] or basic block [161] are different. Without this, an adversary can
find code pointers in non-executable memory and infer the code layout of the rest of the
memory without directly reading them.

+ Defenses against JIT attacks: We also assume that fine-grained ASLR is applied to JIT
engines [63], necessitating an adversary to perform a scan of the JIT memory pages to

locate usable code reuse gadgets.

4.3 Heisenbyte Design

In this section, we describe our destructive code read primitive and how it thwarts memory

disclosure attacks. Since our goal is to extend protection against memory disclosure attacks to

65

Instruction Physical Memory

Pipeline MMU

Raw Bytes Disassembly

_---0x100:[94 €37 00 00 |0x0000c394
/9 0x104:|00 30 00 00 [0x00000300

\ 0x200:[33 CcOo XOor eax, eax
0x202:|FF 24 85

a Jmp 0x100[eax*4]
00_01 00_00_
EIP: 0x202
Jmp 0x100[eax*4]
---+# Mem Load/Store i______q: Memory intended as data
—> Instruction Fetch E______q: Memory intended as code

Figure 4.2: A typical execution of a jmp instruction using both code and data interleaved on the
same memory page.

COTS binaries, we also detail the challenges in determining static data from code in disassembled

binaries and how they motivate our defense approach.

4.3.1 Destructive Code Reads
43.1.1 Review of Instruction Pipeline

We briefly review what happens in the CPU pipeline when an instruction dereferences memory
for its data. This is to familiarize the reader with the distinction between a memory read or write
operation that uses memory as data and an instruction fetch operation (which is also a special
form of memory read operation) that uses memory as code.

Figure 4.2 shows the execution of a jmp instruction, a typical implementation of a switch
statement and a very common example of both code and data residing within the same memory
page marked as executable. To aid explanation, we present the raw byte representation as well
as its disassembled instructions. Without loss of generality, we assume the use of 4kB memory
pages for the rest of our paper. While we have demarcated the bytes that are intended to be read
as data from those intended to be executed as code, note that the processor is oblivious to this;
all the processor knows of is the access permissions of a given memory page.

In Step @, the CPU performs a code fetch of the jmp instruction from the 0x202 address

66

Instruction MMU PhysMem

. . MMU MMU
Plpellnee
- - 0x100: '9’4"63’66’6@%{ -7 0x100; 'F’F”cé’@ﬁ’ﬁ}d 0x100 {[FF CI00 0
}/0 0x104:(100 30_00 00 | @ 0x104:{00 30 00 00 | 0x104:(] 00 30_00 00 |
\ 0x200:([33€0" """ 0x2004[33C0" """ 0%200:([33C0° """
@ — 0x202:||FF 24 85 0x202:|FF 24 85 0x202:{|FF 24 85
00_01 00_00_ 00_01 00 00_ EIP: 0x100 00_01 00 00_
,EIP: 0x202 w11 berommmm-sod Seoo ke Executed: inc ebx b __________/|
jmp 0x100[eax*4] 94 C3 00 00 ~ 0x1100:[94 C3 00 00) 0x1100:[94 €300 00
100 30 00 00 | 0x1104: |00 30 00 00 | Desired: xchg eax,esp 0x1104:{00 30_00_00 |
Memory markedas [...] cee il] ret cee e]
execute-only 33 Co 0x1200:[33 €O 0x1200: [33 €O
FF 24 85 0x1202:|FF 24 85 Shellcode 0x1202: (FF 24 85
00_01 00 00_ 0001 00 00_ 0x100 00_01 00_00_
(a) Memory read of execute-only memory detected (b) Destructively read executable memory (c) Shellcode uses executable memory read earlier

Figure 4.3: Destructive code read process.

pointed to by the Extended Instruction Pointer (EIP). The instruction is decoded and the CPU
determines that it needs to dereference the memory at a base address of 0x100 and an offset
given by the register eax for its branching destination. Since the address 0x100 is in the virtual
addressing mode, the CPU has to translate the address to the corresponding physical address via
the Memory Management Unit (MMU) in Step @. For simplicity, we assume an identity mapping
of the virtual to physical addresses. Subsequently, the CPU dereferences the address 0x100 via a

memory load operation in Step @, and completes the execution of the jmp instruction.

4.3.1.2 Destructive Code Read Process

In Figure 4.3, we detail the process of how destructive code read can thwart executable memory
disclosure attacks. Every Windows program binary comes with a PE header that allows us to
parse and identify all static memory sections that are marked as executable. We maintain a
duplicate copy of these executable memory pages to be used as data in the event of a memory read
dereferencing operation. Further, in order to detect read operations in the executable memory
page, we need to mark that page as execute-only.

In Figure 4.3(a), we show this duplicate page directly below the executable page. Like in the
earlier example, the instruction is fetched at Step @, and the memory address of the data to be

dereferenced is translated via the MMU at Step @. When a memory dereferencing for the data

67

address occurs at Step @, this invokes a memory access violation.

The destructive code read begins at this point, shown in Figure 4.3(b). When we detect the
read operation of the executable page, we overwrite the byte at the faulting memory address with
a random byte at Step @. At Step @, via the MMU, we redirect the virtual address of the memory
read to a different physical address that points to our duplicate page. We can then service the
read operation transparently with the original data value at Step @, and the instruction that uses
that data can function normally. Next, we show how these operations, specifically Step @, have

set up a system state that can thwart a memory disclosure attack.

4.3.1.3 Thwarting Memory Scan Attacks

Since code and data are serviced by separate memory pages depending on the operation, the
bytes that are read from executable memory pages may no longer be the same as the ones that

can be executed at the same virtual address.

Given that a legitimate application has previously dereferenced the memory address 0x100
as data, the code memory address at 0x100 now contains a randomized byte. Executing the
instruction at this address will lead to unintended operations. For instance, in Figure 4.3(c) if
the adversary uses a memory disclosure bug to read the memory contents of 0x100, she sees
the original byte sequence “94 C3”, which represents a commonly found stack pivot gadget®.
Thinking that she has found the stack pivot gadget, she sets up her dynamic code reuse payload
to use the address 0x100. Since the earlier code read operation has “destroyed” the byte there
with the random byte FF, when the code reuse payload executes the instruction at address 0x100,
the garbled byte sequence “FF C3” is executed as inc ebx. This effectively stems the further

progress of the exploit.

?A sequence of instructions modifying the stack pointer to address a code location of the adversary’s choosing

68

Offline Preparation Initialization Mode Active Monitoring Mode
Static New
rewritten Fl)rofiesds
binaries oade Identify Mark pages as .

Static Binary Rewritten N executable execute-only #Ez;{iid D[Z?;“g“;faig?‘e
program rewriting program New JIF memory pages using EPT viotall perati
binaries bi s : ew

inarie: inaries Dynamic buffor

JIT code created
-

Figure 4.4: Flowchart of configuration of EPT for monitored executable pages.

4.3.2 Statically Separating Code and Data

Our use of destructive code reads in Heisenbyte at runtime is motivated by the (im)possibility
of precisely and completely distinguishing disassembled bytes intended to be data from those
intended to be instructions during runtime. This leads us to adopt a fundamentally different
strategy from the earlier works that enforce execute-only memory using compiler-based tech-
niques. Instead of determining the code or data nature of bytes during offline static analysis and
enforcing runtime execute or read policies based on this, we infer the code/data nature of bytes
at runtime, identify the inferred data bytes in executable memory, and remove the possibility
of using them as executable code in attacks. We describe some of the main challenges of accu-
rately identifying data in executable sections of Windows binaries, and how we sidestep these

challenges using binary rewriting.

4.3.2.1 Challenges in Distinguishing Data from Code

Halting Problem Legitimate data must be separated out from the disassembled bytes of the
executable sections of the binaries. To do so requires making a judgment on whether or not a
range of bytes is intended to be used as data at runtime. While heuristics can be used to make
that judgment, this code or data separation task at binary level essentially reduces to the halting
problem because we can be sure only at runtime when bytes are truly intended to be code, and
yet we want to do this during static analysis [162].

JIT Code Generation Web scripting languages such as Javascript are optimized for efficient

execution by modern web browsers using just-in-time compilation. While the newer versions of

69

web browsers like Internet Explorer and Mozilla Firefox separate the code and data into different
memory pages, with the latter in non-executable ones [9], the older versions however emit both
code and data on same executable pages. We want to support the use of these legacy JIT engines.

Corner Cases In our analysis of Windows shared libraries, we found that there are many
corner cases where the disassembler cannot accurately determine statically if a chunk of bytes is
intended to be data or code. This stems from the limitations of the disassembly heuristics used
by the disassembling engine.

A common example of incorrect disassembly is the misclassification of isolated data bytes
as RET return instructions within a data block. A RET instruction is represented in assembly
as a one-byte opcode, and can potentially be a target of computed branch instructions whose
destination cannot be statically decidable. Therefore, the disassembler frequently misclassifies
data bytes that match the opcode representation of return instructions as code.

We also found situations which assume that code and data sections are located in a specific
layout. For example, in kernel32.d11, a shared library used by all Windows binaries, the reloca-
tion section indicates a chunk of bytes that are dereferenced as data at the base of the executable
.text section. Because a readable and writable data section .data almost always follows this
.text section, any instruction referencing this data also assumes that 400 bytes following this
address has to be a writable location. This structural assumption is extremely difficult to discern
during offline static analysis. If we blindly relocate this data from the executable .text section

to another section without respecting this structural assumption, a crash is inevitable.

4.3.2.2 Our Conservative Separation Approach

As mentioned previously legacy COTS binaries, especially Windows native programs and li-
braries, have substantial amount of legitimate data interleaved with code in the executable sec-
tions. Blindly retaining these data can lead to exhorbitant overheads in Heisenbyte as read access
to each of the these data items in the executable memory will incur the overhead of the destructive

code read operation.

70

To mitigate these overheads, we perform very conservative static analysis to determine well-
defined data structures that can be safely relocated out of the executable sections without af-
fecting the functionality of the program. For instance, in many legacy Windows binaries, the
read-only data sections are merged with the code section. This is not a problem because the
format for the data section is well-documented. Similarly, we also handle well-structured data
chunks like strings, jump tables and exception handling information. Here, we describe examples
of these legitimate data chunks commonly interspersed with code in the executable sections of
Windows COTS binaries.

Standard data sections Many Windows native binaries have the standard non-executable
data-only sections embedded within the executable . text section. Examples include the Import
Address Table, the Export Address Table and debug configuration section.

Merged data sections An optimization technique to minimize the file sizes of programs
is to merge the read-only data section (.rdata) and the main executable section (.text)>. This
technique is commonly used in Windows native binaries and shared DLL libraries. We are specit-
ically targeting the relocation of two types of read-only data in this section, namely strings and
Structured Exception handler (SEH) structures, since they are well defined.

Jump tables High-level switch statements are implemented as jump instructions and jump
tables in assembly. Compilers typically position the jump table offsets near the jump instructions

that use jump tables. These jump tables are intended to be dereferenced as data at runtime.

4.4 System Implementation

In this section, we detail the various components of Heisenbyte, and how we realize the mecha-
nism of destructive code reads on selected executable memory pages. As shown in Figure 4.4, we
achieve this in three different stages. We begin by rewriting the program binaries that we want

to protect to separate specific data from the code in an Offline Preparation stage. We detail this

*This can be achieved using Microsoft Visual Studio compiler with the linker flag /merge: .rdata=.text.

71

process in § 4.4.1.
To ensure that our destructive read operations only apply to the processes we want to protect,
Heisenbyte processes targeted executable memory pages in the following two modes. We discuss

each of them in detail in § 4.4.2.

« Initialization mode: This mode identifies at runtime selected executable memory pages to
protect, and subsequently configures execute-only access permissions for these pages, in
preparation for the next mode.

+ Active monitoring mode: Once the set of executable pages is configured with the desired
EPT permissions, this mode is then responsible for performing the destructive code read

operation when it detects a read operation to an executable page.

Furthermore, to demonstrate that the technique is practical on COTS binaries, we invest sub-
stantial effort in this work to develop Heisenbyte to work on the primarily close-sourced Win-
dows OS. The techniques and design presented in this work can be generalized to other OSes like

Linux.

4.4.1 Offline Static Binary Rewriting

Recognizing well-defined data in disassembly We use the state-of-the-art commercial disas-
sembler, IDA Pro, to generate the disassembled code listing of the programs. We also leverage
IDA Pro’s built-in functionality to identify well-defined data structures (described in earlier sec-
tions) commonly found in executable memory pages.

Rewriting engine We develop our binary rewriting engine as a Python script. Unlike tra-
ditional binary rewriting tools, we do not perform any rewriting operations that change the
semantics of instructions. Our engine focuses on using disassembly information from IDA Pro
and the section headers to determine if a range of bytes within an executable section needs to
be relocated to a separate data section. Our engine reconstructs the PE header to add a new

non-executable section to consolidate all these identified data. Relocation information is crucial

72

in aiding both our static analysis and our relocation operations. For example, if a range of data
bytes needs to be relocated to another section, the relocation table is updated either by adding
new relocation entries or editing existing ones to reflect the new location of the relocated data.
Relying on the relocation tables allows us to transparently move bytes around within a PE file

without breaking the functionality of the program.

Overcoming Windows binary protection To evaluate our rewritten Windows native li-
brary files with Heisenbyte, we need to replace the original files. However, on Windows, critical
shared libraries and program binaries are protected by a mechanism called Windows Resource
Protection (WRP) [99]. WRP prevents unauthorized modification of essential library files, folders
and registry entries by configuring the Access Control Lists (ACLs) for these protected resources.

Only the Windows Installer service, TrustedInstaller, has full permissions to these resources.

To get around this problem, we rely on the fact that we have administrative privileges on
the system. We take control of the ownership of the protected files from the TrustedInstaller
account using the command takeown.exe, and grant to our account full access rights for the
protected files using icacls.exe. At this point, we can rename the files but we cannot replace
the files because they are still in use. We rename the files and copy our rewritten binaries with
the original filename. When the system is rebooted, our rewritten libraries will be then loaded
into the system. To ensure integrity of the binaries, the modified ACLs of the protected binaries

are restored after the rewritten binaries are replaced.

This technique of deploying rewritten Windows native files work for most of the binaries
with one exception — ntd11.d11. The integrity of this file is verified when the system starts up.
We solve this by disabling the boot-time integrity in the bootloader [49], so that the rewritten

ntdll.d11 binary can be loaded.

73

Guest Virtual (V) Guest Physical (P) Host Machine (M)

| I
|
| : Addr Space Addr Space Addr Space :
i o - - |
I | Code Code | Code |
I > =" |
| m; =t
[: Data Data | Data :
| | > —> |
: | | |
| Guest Pa '
: I Tables ';OSt EPI\;:- |
—_— I
I| GUEST v_-P HOST |

Figure 4.5: Nested paging structure using virtualization hardware support (using Intel-specific
terms).

4.4.2 Heisenbyte Core Monitoring Components
4.4.2.1 Review of Intel Extended Page Tables (EPT)

Before we discuss each of the components in the two modes, we first describe the key hardware
virtualization feature we use to achieve our goals.

Heisenbyte needs to be able to detect when executable memory is being read. There are
a number of ways to do this: mediating at the page fault handler [11] or leveraging the split-
TLB microarchitecture of systems [51]. These solutions stem from the limitation of current OSes
not being able to enforce execute-only permissions on memory pages. Fortunately, hardware
virtualization support — hardware-assisted nested paging — on commodity processors provides a
means for us to enforce fine-grained execute-only permissions on memory pages. This hardware
feature augments existing page walking hardware with the ability to traverse in hardware the
paging structures mapping guest physical (P) to host machine (M) addresses. This eliminates the
overhead involved in maintaining shadow page tables using software. A virtualization-enabled
MMU maps virtual (V) addresses in the guest to machine physical addresses in the host, using
both the guest page tables and the host second-level page tables®. This is done transparently of

the guest OS.

“Intel terms this Extended Page Tables(EPT), and AMD calls this Nested Page Tables (NPT)

74

We show three address spaces spanning across the guest and host modes in Figure 4.5. In the
guest, the page tables store the V—P address mappings, as well as the corresponding permission
bits. These guest page tables, described earlier, cannot be configured with solely the execute bit
set. Conversely, in the host, the EPTs maintain the P—M address mappings. The key difference
between the EPTs and guest page tables is that the EPTs can configure each page mapping as
execute-only. When an access to a memory page violates the permissions configured for that
page, an #EPT violation is invoked, transferring control to the hypervisor.

This mechanism is instrumental in our system to detect read operations to executable mem-
ory. In our work, like Readactor [33], we rely on hardware-assisted EPT to configure guest phys-
ical memory pages as execute-only with no read or write access. Since this is a virtualization-
assisted technology, virtualization has to be enabled on the system we are trying to protect. On
systems that need to protect existing virtualized guests, Heisenbyte can be implemented within
the Virtual Machine Monitor (VMM) software, such as Xen or KVM. However, the need for vir-
tualization does not preclude the protection of non-virtualized systems.

To demonstrate this, we make a conscientious effort to implement Heisenbyte for a non-
virtualized OS. We develop Heisenbyte as a Windows driver that will configure the EPT paging
structures, enable virtualization mode and place the execution of the non-virtualized OS into
virtualized guest mode (non-root VMX mode). Heisenbyte does this on a live running system,
without requiring any system reboot. The host mode component (shown in Figure 4.6) of our
driver ensures that the running system functions as usual, by configuring the EPT structures to
use identity mappings from the guest physical to host machine addresses. At this point, our host
mode component is in a position to configure the execute-only permissions transparently of the

guest OS.

4.4.2.2 Identifying Executable Memory

Before we can configure the EPT execute-only permissions, we need to first identify which ex-

ecutable memory pages to monitor. To do that, we have to track when and where executable

75

memory from processes are loaded and mapped. Since the treatment of dynamic code tracking

is more involved, we will describe them in detail separately.

Static program binaries To deal with static code, Heisenbyte guest mode component (as
shown in Figure 4.6) begins its initialization by registering Windows kernel-provided callback
functions associated with the creation/exiting of processes and loading/unloading of shared
libraries. Using the callback registration APIs, PsSetCreateProcessNotifyRoutine and
PsSetLoadImageNotify, our driver guest component is informed whenever a new static code
process or library gets loaded. This callback mechanism applies to both executable files and
shared library files. If a newly loaded static image matches within a whitelist of binaries we are
protecting, our guest mode component parses the memory-mapped PE header to get the list of

guest virtual addresses and sizes of the executable sections in each loaded image.

With the guest virtual addresses, we need to retrieve the corresponding guest page table and
guest physical addresses for each virtual memory page to configure the EPT entries. However,
since the OS performs a lazy allocation when doing the memory mapping, these memory pages
may not be paged into memory yet. As a workaround, Heisenbyte schedules a thread within the
context of the target process and accesses one byte in each memory page to invoke the paging-in
mechanism. Further, Heisenbyte uses the MmProbeAndLockPages kernel API to make the pages
resident in the physical memory, so that they cannot be paged out. This necessarily increases the

memory working set of a program. We will investigate this in §4.5.2.2.

These information is stored in a queue buffer shared by the guest mode and host mode com-
ponents. It is noteworthy that since the guest mode component runs in the VMX non-root guest
mode, it has no access to the EPTs. The configuration of the EPT mappings has to be performed

by the host mode component.

Dynamic JIT code Unlike the loading of static binaries into memory, dynamic memory
buffer creation/freeing does not have convenient kernel-provided callbacks. Furthermore, the
protection bits of a dynamic buffer may change at runtime during the generation and execu-

tion of dynamic code. For example, a modern JIT-enabled browser, like Safari, first allocates a

76

Offline Analysis Live Target System
Original Rewritten »| Loaded Guest
binary application User

program

binary —
Relocated .

——————— | Guest page
data | Guestmode |4¢—» tables Guest
reloc | component JI Kernel
b —_ e — — — —
™ Fosi mode i: y
IDA Static L _anﬂjo_n@t_ a > EPT Host
Pro inary Heisenbyte

rewriter \ /
./

Figure 4.6: Overview of system architecture (Heisenbyte components are shaded grey).

writable (read/write RW) buffer as a code cache to fill with generated native code. With our
assumption that hardware W@ X DEP is enforced, the JIT engine has to remove the writable per-
mission and make the code cache executable (read/execute RX) before executing the code cache.
If the dynamic code cache subsequently needs to be modified, the buffer is restored to a writable
(read/write RW) one before changes to the code cache can be made.

Based on the lifetime of the buffer during which the code is ready to be executed, we observe
that we only need to monitor the buffer during this period of time. Specifically, we begin tracking
a dynamic buffer when the protection bits changes from non-executable to executable, and stop
tracking a dynamic executable buffer when it is freed or when its executable bit is removed.

Windows-specific implementation Next we discuss how we detect when dynamic memory
buffers are turned executable and when they are freed. All operations that are used to free or
change protection bits of memory result in two functionsinntd11.d11, NtFreeVirtualMemory,
and NtProtectVirtualMemory respectively, just before invoking the system calls to the kernel
services. When ntd11.d11 is loaded into our target process, we modify the entry points of
these two functions with trampolines to a Virtual Memory (VM)-tracking code that resides on a
dynamically allocated page. Since the function hooking is performed in-memory, the OS Copy-
on-Write mechanism ensures that these hooks only apply to the target process.

In practice, dynamic memory buffers are created and freed very frequently. Since we are only

77

interested in executable buffers, we use an auxiliary bitmap data page to indicate if an executable
buffer of a given virtual address has been previously tracked. This added optimization enables
the VM-tracking code to decide if it should handle specific events.

The VM-tracking code that monitors the changing of protection bits of buffers performs a
hypercall to our host mode component whenever an executable buffer is configured to be non-
executable and vice versa. The host mode component updates the address bitmap depending on
whether a new executable page is being tracked or removed from tracking. Conversely, the VM-
tracking code that monitors the freeing of executable buffers will perform a hypercall when it
determines from the bitmap that a buffer with a given virtual address is being freed. The host
mode component will then reset the EPT mapping for the physical pages of the buffer to an
identity mapping, essentially stopping the tracking of this dynamic executable buffer.

Protecting VM-tracking code and data The VM-tracking code resides on a dynamically
allocated executable page, and is protected by Heisenbyte just like any typical executable memory
page. Conversely, by being configured to be read-only from the userspace, the auxiliary bitmap
is protected from any tampering attacks originating from the userspace; it can only be modified
in the host kernel mode (specifically by the host mode driver component. Furthermore, a XOR-
based checksum of the bitmap is maintained and verified before the bitmap is updated in the host

mode component.

4.4.2.3 Overcoming Challenges in using EPT

Problem of shared physical memory pages One key challenge in using EPT to enforce execute-
only memory is that the guest physical memory pages may be shared by multiple processes
due to the OS’s Copy-on-Write (COW) optimization. This COW mechanism is a common OS
optimization applied to static binaries to conserve physical memory and make the startup of
programs faster. Thus the OS lazily duplicates the original page into a newly allocated physical
page only when the process writes to the memory page. Before these physical memory pages are

duplicated by COW, they are shared by multiple processes. Enforcing execute-only permissions

78

on these shared guest physical pages may result in many #EPT violations triggered by processes
we do not care about and cause unnecessary overhead.

Inducing COW on physical pages Heisenbyte overcomes this problem by inducing COW
on the executable memory pages of target processes. We leverage the guest OSes’ innate COW
capability to transparently allocate new physical memory pages for the static code regions of
processes we want to protect. To invoke COW on the memory pages of processes, the write
operation must occur in the context of the process; a write operation originating from the hy-
pervisor into the memory space of a user process will not trigger the copy-on-write mechanism.

When a static binary is loaded into memory, Heisenbyte schedules an Asynchronous Proce-
dure Call thread [98] to execute in the context of the target process. This thread suspends the
execution of the original target process, enumerates the static code regions of the process using
the PE headers mapped in the address space, and performs a read and write operation on each ex-
ecutable memory page. This identity-write operation is very efficient since we only “touch” one
byte in each 4kB memory page. The OS detects this memory write and invokes the COW mech-
anism. In this manner, each executable static page in a process will no longer share a physical
page with another process.

The executable memory pages are then configured to be read-only using EPT by the host mode
component only after the COW-inducing thread has completed processing all the executable

memory pages of the newly loaded binary.

4424 Intervention with Code Garbling

Maintaining separate code views To enable our destructive code read operations while allowing
legitimate data reads in executable memory to function properly, we need to maintain separate
code and data views for each executable memory page we are protecting. We leverage the EPT
to transparently redirect the use of any guest virtual address to the desired view at runtime. In
Figure 4.7(a), before a target process is being protected, an identity EPT mapping of the guest

physical to host machine memory is maintained.

79

Virtual Addr Space

Guest Physical

Host Machine

Il I
: : (Target Process) Addr Space Addr Space :
|: Code __--~ Code _--~ Code __--~ I
II __--"TData —_--"TData __--"Data :
|
I
1 Data Data | pata ||
I I |
I I

- - - - - - - -

Code _--~~
corpy~ Data

- - - . . . T s T T a
I\ Virtual Addr Space Guest Physical | Host Machine |
: | (Target Process) Addr Space | Addr Space |
|: Code _--~ Code _--~ I Code __--~ I
II __---" Data _---"Data : _---" Data :
| B
I I

: I Data Data I Data :
[|
I |
I |
| I

Host Machine

Virtual Addr Space Guest Physical

Il |
: : (Target Process) Addr Space Addr Space :
Il Code_--- Code -~ Code_ - !
|: _.--" Data __.--"Data _.--"Data :
I
I

:| Data Data I Data :
[> |
v Code __-""|1I
| copy” Data | |
| I

(c) data reads into the executable memory

Figure 4.7: Using EPT to maintain separate code and data views transparently.

After identifying the guest physical memory pages to protect, we add a duplicate page in
the host machine address space. Any subsequent instructions being executed are redirected to
the code copy memory page shown at the bottom of Figure 4.7(b). This guest physical page is

configured to be execute-only using EPT.

Destructive reads into executable memory With the executable pages configured to trigger
a VM exit upon a data read, our #EPT violation handler in the host mode component of the driver
can intervene and mediate at these events. At each #EPT read violation, we overwrite the data
read address within our code copy page with a random byte. This constitutes the destructive

nature of our code reads. Since there are legitimate data reads into executable memory from the

80

kernel, especially during PE loading, we perform the byte garbling only when the read operation
originates from user-space.

Next we edit the EPT entry to have read/write/execute access and redirect the read operation
to read from the original code page, now intended exclusively to service data read requests, as
shown in Figure 4.7(c). To restore the memory protection, we set the single-step trap flag in
the EFLAGS so that a VM exit is triggered immediately after the instruction performing the read

operation. At this point, we restore the EPT permissions to execute-only to resume operation.

4.5 Evaluation

In this section, we demonstrate the utility of Heisenbyte in stopping attacks that use static and
dynamic memory disclosure bugs. We evaluate the performance and memory overhead of our
system. Our experiments are done on 32-bit Windows 7 running on a quad-core Intel i7 processor
with 2GB RAM. As our prototype does not handle SMP systems, we configure the system to use

only one physical core.

4.5.1 Security Effectiveness
4.5.1.1 Memory Disclosure Attack on Static Code

We use the Internet Explorer (IE) 9 memory disclosure vulnerability (CVE-2013-2551) presented
by Snow et al. [133]. This is a fairly powerful heap overwrite vulnerability involving a Javascript
string object. It enables an adversary to perform arbitrary memory read and write operations
repeatedly without causing IE to crash. On our test setup, we craft an exploit that leverages this
memory disclosure bug as a memory read and write primitive.

As ASLR is enabled by default - Window’s ASLR is a coarse-grained form that changes only
the base addresses of the shared libraries at load time —, the exploit has to look for suitable

code reuse “gadgets” to string together as an attack payload. To demonstrate that our system

81

works with an exploit that uses disclosed executable memory contents, we craft our exploit to

dynamically locate a stack pivot ROP gadget.

The exploit begins by first leaking the virtual table pointer associated with the vulnerable
heap object. This pointer contains an address in the code page of VGX.d11 shared library. Using
the memory read primitive, the exploit scans backwards in memory for the PE magic signature

MZ to search for the PE header of the shared library.

It is noteworthy that at this point, if IE uses any code within the range of bytes the exploit
has scanned, IE will crash due to the corruption of legitimate code by the destructive code reads.
However, in a real deployment, as defenders, we do not want to rely on such opportunistic
crashes. We assume that the exploit avoids scanning executable memory during this stage and

only reads non-executable memory.

When the exploit finds the PE header of the library, it can then derive the base address of
user32.d11 by parsing the import address table in the PE header. The shared library user32.d411
contains a set of ROP gadgets that are found offline. With this, the exploit can construct its
ROP payload by adjusting the return addresses of the pre-determined ROP gadgets with the base
address of user32.d11. To simulate the dynamic discovery of “gadgets” in a dynamic code reuse
exploit, we craft the exploit to perform a 4-byte memory scan at the location of the stack pivot

gadget, and then redirect execution to that stack pivot gadget.

While our actual system uses a randomized byte to garble the code, we use a fixed 0xCC byte
(i.e. a debug trap) for the code corruption in this experiment. This allows us to be sure that any
crash is directly caused by our destructive code reads. When control flow is redirected to the stack
pivot gadget, IE crashes at the address of the stack pivot with a debug trap. This demonstrates
that Heisenbyte stems the further progress of the exploit as a result of corrupted byte caused by

the exploit’s executable memory read.

Furthermore, we configure the Windbg debugger to automatically launch upon application
crash. When the debugger is invoked at the crash address at the location of the stack pivot,

the debugger displays and disassembles the original byte sequence of the stack pivot gadget in

82

user32.d1ll. As the debugger reads memory as data read operations, the original bytes at that
code address are shown. It is apparent that what gets executed is different from what gets read”.
This further demonstrates that Heisenbyte correctly maintains separate code and data views of

executable memory.

4.5.1.2 Memory Disclosure Attack on Dynamic Code

At the time of writing, we are aware of only one publicly available exploit [113] that uses an
integer overflow bug to achieve memory read/write capability on the JIT code cache of mobile
Chrome. However, this exploit only works on ARM devices, so we cannot use this for our eval-
uation.

To evaluate our system on memory disclosure attack on dynamically generated code, we
create a vulnerable program that mimics the behavior of JIT engine in the creation of dynamic
executable buffers. Our program allocates a readable and writable buffer and copies into this
buffer a pre-compiled set of instructions that uses a jump table. This is similar to the behavior of
legacy JIT engines that emit native code containing both code and data in the dynamic buffer.

With the code cache ready to execute, our program makes the dynamic buffer executable by
changing the permission access to readable/executable, and executes the buffer from the base
address of the buffer. The program functions correctly with Heisenbyte running. Since the jump
tables in the dynamic buffer are only ever used as data in the lifetime of the buffer, Heisenbyte
properly supports the normal functionality of the simulated JIT-ed code.

To simulate an attack that scans the memory of the dynamic code region for code reuse gad-
gets, we create an exploit to leverage a memory disclosure bug we have designed into the pro-
gram. The exploit uses this bug to read the first four bytes of the dynamic buffer and redirects
execution control to the start of the dynamic buffer. Like in the case of the experiment with
IE9, the vulnerable program crashes at the base address of the dynamic buffer as a result of the

destructive code reads induced by Heisenbyte.

*This incidentally can be a real pain for someone trying to debug the code crash problem with a debugger.

83

I Virtualization
60} [Destructive Code Reads |4

w » (o))
(=] o o
T T T

Runtime Overhead (%)

N
o
T

101

Figure 4.8: SPEC2006 execution overhead.

=y
o

[ee]

[<2)

Peak RSS Memory Overhead (%)

4l

21

0 = — = .\:. I:l - D / I:l

X S
O ST SRV R N S S
SIS G A S S A3 o” O
Qé © b W D(P ‘ob b:g\ 06\ b/‘\ &fb
3 > o +

S o
W N3

Figure 4.9: Memory overhead in terms of peak RSS.

4.5.2 Performance Overhead
4.5.2.1 Execution Overhead

We measure the slowdown caused by various components of Heisenbyte using the SPEC2006 in-
teger benchmark programs. Since our solution works on and rewrites binaries, we first compile
the programs and work with the compiled binaries assuming no source code is available. We com-
pile the SPEC2006 programs with Microsoft Visual Studio 2010 compiler using the default linker

and compilation flags. As the compiler does not support the C99 feature, e.g. type _complex, we

84

cannot successfully compile 462.1ibquantum. We thus use only 11 out of 12 SPEC2006 integer
applications for our evaluation. For all the tests, we restart each set of runs on a rebooted system,

perform 3 iterations using the base reference input and take the median measurements.

We evaluate the execution slowdown caused by Heisenbyte to an originally non-virtualized
system. The overhead of Heisenbyte comprise two main sources, namely the overhead as a result
of virtualizing the entire system at runtime, and the overhead of incurring two VM exits for each
destructive code read operation. Separating the measurements for the two allows us to evaluate
the overhead net of virtualization when Heisenbyte is deployed on existing virtualized systems

(they are already occurring the virtualization overhead).

To measure the overhead caused by purely virtualizing the system, we run the SPEC bench-
marks with the Heisenbyte driver loaded, but without protecting any binaries or shared libraries.
Compared to a baseline system, the virtualization overhead ranges from 0% (401 .bzip2) to 9.6%
(429 .mcf). The virtualization overhead is highly dependent on the execution profile of the pro-
grams. We attribute the high overhead for 401.bzip2 to the paging operations performed by
Intel EPT hardware page walker. On average, the geometric mean of the virtualization overhead

caused by Heisenbyte is 1.8% across all the programs.

With the measurements for the virtualization overhead, we can now measure the overhead of
the destructive code reads due to the incomplete removal of legitimate data from the executable
memory pages. We configure Heisenbyte to protect the SPEC binaries and all the shared DLL
libraries used by SPEC, and compare the execution time to the baseline. The variance in this
overhead is huge, depending on how much legitimate data is not removed by the binary rewriting.
The destructive code read overhead ranges from 0% (401 .bzip2) to 62% (400.perlbench), with
an average of 16.5% across the programs. This overhead is a direct consequence of the imperfect
removal of legitimate data from the executable memory pages at the binary rewriting stage. The
higher the frequency a program accesses such legitimate data in the memory pages, the greater
the overhead incurred by the destructive codes. The average of the combined virtualization and

destructive code read overhead is 18.3%.

85

In this work, we choose to be very conservative in the types of data that we relocate out
of the executable sections during the binary rewriting to show that the system can still tolerate
the incomplete relocation of all data from the executable sections. This overhead can be further

reduced with a more aggressive strategy in removing the data.

4.5.2.2 Resident Memory Overhead

As discussed in §4.4.2.2, Heisenbyte requires keeping the executable memory pages resident in
physical memory when configuring the EPT permissions and monitoring for data reads to these
pages. Here we evaluate how much more physical memory overhead introducing Heisenbyte
causes. We measure this by tracking the peak Resident set size (RSS) of a process over entire
program execution. RSS measures the size of process memory that remains resident in the RAM
or physical memory. We inject a profiling thread to our processes to log the current maximum
RSS as the process runs every 20 seconds. Figure 4.9 shows a modest increase of 0.8% on average

in the peak RSS across all the programs.

4.6 Related Work and Enhancements

Our work is enabled by two key techniques, namely the ability to maintain separate code and
data views in a von Neumann memory architecture®, and destructive read operations applied
on executable memory. We have described the research works most closely related to our work
in §4.2.2. Here we detail other works using the above two techniques. Then we discuss possible
enhancements to Heisenbyte.

Hardware-based destructive reads Examples of destructive read operations in practice are
sparse. The destructive-read embedded DRAM [41] is a special-purpose DRAM that allows de-
structive reads to conserve power consumption. The contents of the memory can only be read

once. At the software level, destructive read operations are sometimes performed by the BIOS

Swhere code and data are stored in the same addressable memory

86

during the memory check in its Power-On Self Test (POST), with the purpose of ensuring sensi-
tive memory contents cannot be leaked [58]. Our software-emulated destructive read primitive
on executable memory represents the first work (together with an independent and concurrent
work, NEAR [168]) to apply this technique to make system states non-deterministic and harder

for adversaries to leverage code memory disclosure vulnerabilities.

Maintaining separate code/data views Many have explored the value of maintaining sepa-
rate views for code and data. The earliest works are mostly offensive in nature. Van Oorschot et al.
leverage the process of desynchronization the TLB to bypass self-hashing software checks [155].
Shadow Walker, a rootkit, relies on the split-TLB architecture of processors to hide its malicious
code from being detected by code scans by Antivirus [137]. Torrey explores the use of EPT to
differentiate code from data at runtime to perform attestation on dynamically changing appli-
cations [151]. Spider also uses EPT permissions to maintain different views for code and data
to implement the evasion-resistant breakpoints that are “invisible” to the guest [38]. Our work

shares similar EPT-based techniques with these works, albeit towards different goals.

New hardware features to reduce overhead In this work, we choose to implement Heisen-
byte with the standard virtualization features found in most processors. The goal is to provide
a baseline proof-of-concept implementation of our design. As we have seen in § 4.5.2, the major
source of overhead comes from inducing the VM exits to implement the destructive code reads.
This can be reduced substantially with the combined use of two new virtualization features in
the recent Haswell processor [68]. This processor allows selected #EPT violations to be converted
to a new type of exception that does not require VM exits to the hypervisor. The latency of VM
exits can then be reduced substantially. This exception is known as the #VE Virtualization Excep-
tion. With this feature, during the active monitoring mode, a data read into protected executable
memory pages will trigger an exception and control will be handed over to the guest OS #VE
Interrupt Service Handler (ISR). To handle the configuration of EPT entries, the second feature,
named EPT Pointer switching, allows the guest OS to efficiently select within a pre-configured

set of EPT pointers having the required EPT permissions we need.

87

Graceful remediation In additional to detecting attacks, Heisenbyte can offer the capability
to gracefully terminate, instead of crashing, the process that is being targeted by the attack, and
provide further alerting information regarding the attack to the user. Instead of using randomized
junk bytes for the destructive code reads, Heisenbyte can use specific bytes designated to induce
selected software interrupts or traps when executed. The host component of Heisenbyte can
be configured to mediate on these interrupts. When malicious code attempts to execute code
modified by earlier reads, pertinent information about the attempted code execution, such as the
faulting instruction, and the original and modified contents of the executable memory page, can
then be logged. This may assist in identifying the associated vulnerability, and provide useful

forensics information for vendors to patch the program.

Size of garbled code At present, Heisenbyte disregards the operand size of the instruction
performing the reads into the executable memory, and performs destructive code reads of only
one byte. An adversary who uses data reads of four bytes to scan the memory can potentially
exploit this. Garbling only one byte will give the adversary the potential to use the remaining
three bytes from the data reads. To tackle this problem, Heisenbyte can easily be extended to
handle code reads using different operand sizes. We can maintain three hashtables, each stor-
ing the opcodes used for 1-byte, 2-byte and 4-byte operands. Whenever a code read happens,
Heisenbyte can look up the hashtable to determine efficiently the size of operand and destroy

the same number of bytes accordingly.

Code read logs to guide binary rewriting As an optimization to aid the offline static anal-
ysis, we can augment Heisenbyte to record all read operations into executable memory into a
log buffer. This dynamic log can be used to build a “bitmap” of sorts, similar to that used in
BGDX [112], to indicate definitively at runtime which bytes are code and data, after which the
binaries can be analyzed and rewritten repeatedly using this information to achieve a high code
coverage over time. This can further reduce the overhead of the system, since the data reads that

previously trigger VM exits will no longer occur.

88

4.7 Discussion

After Heisenbyte [147] was published as a binary-compatible defense against dynamic code reuse
attacks, further research highlighted its weaknesses by formalizing generic properties that de-
structive code reads-based defenses should hold to be secure. Several works subsequently hard-
ened destructive code reads from attacks that undermine these properties. In this section, we
describe these works and reflect upon this line of research efforts to defend against memory
disclosure-based dynamic code reuse attacks.

Execute-Only Memory (XoM) By reducing the information available to attackers, XoM
works well against exploitation through memory disclosure. Its value is evident as we see XoM
making its way into commodity hardware such as the newer ARMv8 processors’ and Intel pro-
cessors in the form of Intel Memory Protection Keys®. For hardware that have yet to support this
feature, researchers have developed software-based solutions to approximate the defensive prin-
ciple of XoM, with hardware virtualization support [33, 32], hooking the page fault handler [11]
or novel use of the split-TLB [51]. These XoM-based defenses require code and data to be cleanly
separated, and thus work well only when source code is available for recompilation or when the
program binaries can be accurately disassembled when compiled with specific compilers like gcc
and clang [8].

Binary-Compatibility of Destructive Code Reads While Andriesse et al. show that there is
no interspersed code and data in programs compiled with modern GCC and clang compilers [8],
recent work have highlighted that this problem still exists on both Windows and ARM platforms,
especially for programs compiled with Microsoft Visual Studio compiler [168, 112]. Destructive
code reads (DCRs) is first conceived precisely to address this limitation, i.e. to protect legacy
COTS binaries from code disclosure. Consequently, the primary source of overhead comes from
protecting segments of programs where one is not confident of discerning a priori whether spe-

cific bytes are code or data. This is the main reason why Heisenbyte is designed with a best-effort,

"The ARMvS architecture allows execute-only user permissions by clearing the PTE_UXN and PTE_USER bits.

*Execute-only permissions can be configured for memory pages using the Intel RDPKRU/WRPKRU instructions.

89

albeit very conservative, static analysis phase to distinguish between code and data definitively

and then rewriting these binaries to lower DCR-driven overheads.

Therefore, a promising avenue to reduce the overhead of DCRs lies in being able to discern
code from data as confidently and as much as possible during the static disassembly of pro-
grams. Towards this end, NEAR [168] achieves lower SPEC2006 overheads (5.72%) than Heisen-
byte (16.48%) due to better heuristics (such as identifying jump tables and function-local data)
in the statically identifying data within the code segments. Subsequently, BGDX [112] further
improves upon the DCRs in two main aspects: (1) it achieves better coverage and accuracy in sep-
arating code from data by leveraging dynamic profling (DynamoRIO), and (2) it combines DCR
with XoM on memory bytes that it has determined to be definitively code. These allows BGDX

to achieve lower overheads (3.95%) and byte-granular memory protection.

Explicit vs Implicit Code Disclosure Attacks The initial implementations of Destructive
Code Reads, both Heisenbyte [147] and NEAR [168], are designed to guard against explicit code
disclosure attacks, i.e. disclosing the contents of executable memory by directly reading it. How-
ever, apart from explicitly reading memory, contents of memory can also be disclosed implicitly

either by side channels attacks or code inference attacks.

Timing-based side channel attacks have been shown to be able to reveal memory bytes with-
out directly reading them [127, 44]. Comprehensive protection against side channel leaks is
generally recognized as a prohibitively challenging tasks in the general context, and not just
pertaining to the disclosure of executable memory. Most of these attacks require programs to be
crash-resilient. Most Windows COTS programs are not tolerant of crashes. Furthermore, exploit-
ing these user applications is time-sensitive. For example, an attacker loses the opportunity to
exploit the system once its exploit invokes a crash on IE or takes too long. These aforementioned
reasons make existing side channel-based memory disclosure attacks on this class of binaries

challenging.

Code inference attacks prey on the imperfections of the type of code randomization deployed

together with DCRs. To inform the susceptibility of DCRs to code inference attacks, Snow et al.

90

formalize three generic properties (code persistence, singularity and dis-association) that DCRs
must exhibit to remain secure [134][Section IILB]. Specifically, code must not have predictable
instruction-level structure (dis-association), or possess temporal (persistence) and spatial (sin-
gularity) copies. If so, especially in target applications with scripting capabilities, DCRs can be
undermined and usable code bytes can be inferred without ever reading the executable mem-
ory directly [134]. This largely stems from the narrow-scoped code transformations limited by
binary-only code randomization techniques. Furthermore, Pewny et al. shows that even when
coupling DCRs with extremely fine-grained per-load randomization, DCRs can remain vulnerable
to code inferences by fingerprinting “code anchors” and function call-sites [112]. These attacks
underscore the deployment challenges of DCRs in practice — the efficacy of DCRs is contingent

on the type and scope of code randomization being deployed.

These attacks exploit predictable patterns in the executable memory contents. Subsequent
countermeasures harden DCRs from such attacks by improving the type and scope of code
randomization being deployed. To break temporal predictability of code memory, instead of
merely using load-time randomization, dynamic continous binary-compatible code randomiza-
tion schemes like Shuffler [170] and TASR [19] can be deployed to make the attack knowledge
gleaned from code disclosure attacks transient. Furthermore, the range and scope of byte “gar-
bling” in DCRs can be extended to break the predictability of instruction-level structure. To deal
with code inference attacks, Morton et al. propose a DCR design where the portion of code that
is destroyed includes not just bytes that are involved in memory read operations, but also all the

other instructions/memory bytes that could potentially be inferred [103].

4.8 Conclusions

We present the novel formulation of destructive code reads to restrict adversaries’ ability to lever-
age executable memory that are exposed using memory disclosure bugs as part of an attack.

Commodity hardware feature is instrumental to the realization of this technique. We repurpose

91

commodity hardware virtualization support to provide timely and efficient mediation of read op-
erations on executable memory. Heisenbyte guarantees the disclosed executable memory cannot
be executed as intended, while still tolerating some degree of data not removed from the code
pages. Our experiments demonstrate that Heisenbyte prevents the use of disclosed executable
memory in real and synthetic attacks, while offering transparent protection for legacy close-
sourced binaries, at modest overall runtime overheads.

Moving target principles like randomization in various forms raise the bar for exploitation;
other forms of reducing or eliminating knowledge exploitable by attackers are necessary. With
the conception of destructive code reads in Heisenbyte, we show that destroying information
is yet another principle to remove this knowledge. Notwithstanding its limitation, destructive
code reads remain an effective binary-compatible primitive in the gamut of randomization-based
defenses when employed carefully in concert with both execute-only memory and code random-

ization schemes.

92

HADES: Detecting Malware with
Microarchitectural Profiling

Assistive debugging hardware features facilitate efficient auditing of such

microarchitectural events in a program-transparent manner.

Hardware-software interaction can be modeled as microarchitectural events

to detect anomalous malicious code execution.

Recent works have shown promise in detecting malware programs based on their dynamic
microarchitectural execution patterns. Compared to higher-level features like OS and application
observables, these microarchitectural features are efficient to audit and harder for adversaries to
control directly in evasion attacks. These data can be collected at low overheads using widely
available hardware performance counters (HPC) in modern processors. In this chapter, we de-
scribe how we advance the use of hardware supported lower-level features to detecting malware
exploitation in an anomaly-based detector. This allows us to detect a wider range of malware,
even zero days. As we show empirically, the microarchitectural characteristics of benign pro-
grams are noisy, and the deviations exhibited by malware exploits are minute. We demonstrate
that with careful selection and extraction of the features combined with unsupervised machine
learning, we can build baseline models of benign program execution and use these profiles to
detect deviations that occur as a result of malware exploitation. We show that detection of real-
world exploitation of popular programs such as IE and Adobe PDF Reader on a Windows/x86

platform works well in practice in a prototype we called Hades [145]. We also examine the limits

93

and challenges in implementing this approach in face of a sophisticated adversary attempting to
evade anomaly-based detection. The proposed detector is complementary to previously proposed

signature-based detectors and can be used together to improve security.

5.1 Introduction

Malware infections have plagued organizations and users for years, and are growing stealthier
and increasing in number by the day. In response to this trend, defenders have created com-
mercial antivirus (AV) protections, and are actively researching better ways to detect malware.
An emerging and promising approach to detect malware is to build detectors in hardware [37].
The idea is to use information easily available in hardware (typically via HPC) to detect malware.
It has been argued that hardware malware schemes are desirable for two reasons: first, unlike
software malware solutions that aim to protect vulnerable software with equally vulnerable soft-
ware', hardware systems protect vulnerable software with robust hardware implementations that
have lower bug defect density because of their simplicity. Second, while a motivated adversary
can evade either defense, evasion is harder in a system that utilizes hardware features. The in-
tuition is that the attacker does not have the same degree of control over lower-level hardware
features as she has with software ones. For instance, it is easier to change system calls or file
names than induce cache misses or branch misprediction in a precise way across a range of time
scales while exploiting the system.

In this chapter, we introduce techniques to advance the use of lower-level microarchitec-
tural features in the anomaly-based detection of malware exploits. Existing malware detection
techniques can be classified along two dimensions: detection approach and the malware features
they target, as presented in Figure 5.1. Detection approaches are traditionally categorized into
misuse-based and anomaly-based detection. Misuse-based detection flags malware using pre-

identified attack signatures or heuristics. It can be highly accurate against known attacks but

Software AV systems roughly have the same bug defect density as regular software.

94

Detection Approach

Misuse-based Anomaly-based
& Traditional AV software [141] System-calls,
% Runtime heuristics since 1996 [46,93, 133]
@ 9 (shellcode), since 2007 [114, 1 13] - Content-based,
= £ SCRAP (IOP - since 2003 [82,91, 156]
2 g (JOP). 2013 [73] Function-level, since 2007 [109]
L & kBouncer (ROP), 2013 [107] mmmmm—--= ST — N
o © , ' Architectural events, !
£ < NumChecker (rootkit), 2013 [157] | ! since 2011 [92] !
23 | |
> 3 ! :
5 , i Hades (this work) [142] !
£ Android malware ! |
g detection, 2013 [36] ! |
2 ! i
i ________________________ 7

Figure 5.1: Taxonomy of malware detection approaches and some example works.

can be easily evaded with slight modifications that deviate from the signatures. On the other
hand, anomaly-based detection characterizes baseline models of normalcy state and identifies
attacks based on deviations from these models. Besides known attacks, it can potentially iden-
tify novel ones. There are a range of features that can be used for detection: until 2013, they
were OS and application-level observables such as system calls and network traffic. Since then,
lower-level features closer to hardware such as microarchitectural events have been used for
malware detection. Shown in Figure 5.1, we examine for the first time, the feasibility and limits
of anomaly-based malware detection using both architectural and low-level microarchitectural

features available from HPCs.

Prior misuse-based research that uses microarchitectural features such as [37] focuses on
flagging Android malicious apps by detecting payloads. A key distinction between our work
and prior work is when the malware is detected. Malware infection typically comprises two
stages, exploitation and take-over. In the exploitation stage, an adversary exercises a bug in the
victim program to hijack control of the program execution. Exploitation is then followed by more
elaborate take-over procedures to run a malicious payload such as a keylogger. Our work focuses

on detecting malware during exploitation, as it not only gives more lead time for mitigations but

95

can also act as an early-threat detector to improve the accuracy of subsequent signature-based

detection of payloads.

The key intuition for the anomaly-based detection of malware exploits stems from the obser-
vation that the malware, during exploitation, alters the original program flow to execute peculiar
non-native code in the context of the victim program. Such unusual code execution tend to cause
perturbations to the dynamic execution characteristics of the program. If these perturbations are

observable, they can form the basis of detecting malware exploits.

In this chapter, we model the baseline characteristics of common vulnerable programs — In-
ternet Explorer 8 and Adobe PDF Reader 9 (two of the most attacked programs) and examine if
such perturbations do exist. Intuitively one might expect the deviations caused by exploits to be
fairly small and unreliable, especially in vulnerable programs with extremely varied use such as in
the ones we study. This intuition is validated in our measurements. On a Windows system using
Intel x86 chips, our experiments indicate that distributions of measurements from the hardware
performance counters are positively skewed, with many values being clustered near zero. This
implies minute deviations caused by the exploit code cannot be effectively discerned directly.
However, we show that this problem of identifying deviations from the heavily skewed distri-
butions can be alleviated. We show that by using power transform to amplify small differences,
together with temporal aggregation of multiple samples, we can identify the execution of the ex-
ploit within the context of the larger program execution. Further, in a series of experiments, we
systematically evaluate the detection efficacy of the models over a range of operational factors,
events selected for modeling and sampling granularity. For IE exploits, we can identify 100%
of the exploitation epochs with 1.1% false positives. Since exploitation typically occurs across
nearly 20 epochs, even with a slightly lower true positive rate, we can detect exploits with high
probability. These are achieved at a sampling overhead of 1.5% slowdown using sampling rate of

512K instructions epochs.

Further we examine the resilience of our detection technique to evasion strategies of a more

sophisticated adversary. We model mimicry attacks that craft malware to exhibit event char-

96

Victim

Existing
libraries
ROP
Adversary ---- -—=>
e ROP
Stage1 @ @ @
Exploit Stage1

S ®
< @ Stage2

----| | Stage2 - Process

@ Memory

Figure 5.2: Multi-stage exploit process.

acteristics that resemble normal code execution to evade our anomaly detection models. With
generously optimistic assumptions about attacker and system capabilities, we demonstrate that
the models are susceptible to the mimicry attack. In a worst case scenario, the detection per-
formance deteriorates by up to 6.5%. Due to this limitation we observe that anomaly detectors
cannot be the only defensive solution but can be valuable as part of an ensemble of detectors that

can include signature-based ones.

5.2 Background

Figure 5.2 shows a typical multi-stage malware infection process that results in a system compro-
mise. The necessity for its multi-stage nature will become clear as we explain the exploit process
in this section.

Triggering the vulnerability First the adversary crafts and delivers the exploit to the victim
to target a specific vulnerability known to the adversary (Step (D). The vulnerability is in general
a memory corruption bug; the exploit is typically sent to a victim from a webpage or a document
attachment from an email. When the victim accesses the exploit, two exploit sub-programs,
commonly known as the ROP and Stagel “shellcodes”, load into the memory of the vulnerable

program (Step). The exploit then uses the vulnerability to transfer control to the ROP shellcode

97

(Step ®).

Code Reuse Shellcode (ROP) To prevent untrusted data being executed as code, modern
processors provide Data Execution Prevention (DEP) to restrict code from being run from data
pages. To support JIT compilation however, DEP can be toggled by the program itself. So the
ROP-stage shellcode typically circumvents DEP by reusing instructions in the original program
binary — hence the name Code Reuse Shellcode - to craft a call to the function that disables
DEP for the data page containing the next Stagel shellcode. The ROP shellCode then redirects
execution to the next stage. (Step @) [108].

Stage1 Shellcode This shellcode is typically a relatively small — from a few bytes to about
300 bytes® — code stub with exactly one purpose: to download a larger (evil) payload which can
be run more freely. To maintain stealth, it downloads the payload in memory (Step (®).

Stage2 Payload The payload is the final piece of code that the adversary wants to execute
on the target to perform a specific malicious task. The range of functionality of this payload,
commonly a backdoor, keylogger, or reconnaissance program, is unlimited. After the payload is
downloaded, the Stagel shellcode runs this payload as an executable using reflective DLL injec-
tion (Step (©), a stealthy library injection technique that does not require any physical files [45].
By this time, the victim system is fully compromised (Step (7).

The Stagel shellcode and Stage2 payload are different in size, design and function, primarily
due to the operational constraints on the Stagel shellcode. When delivering the initial shellcode
in the exploit, exploit writers typically try to use as little memory as possible to ensure that the
program does not unintentionally overwrite their exploit code in memory. To have a good prob-
ability for success, this code needs to be small, fast and portable, and thus is written in assembly
language and uses very restrictive position-independent memory addressing style. These con-
straints limit the adversary’s ability to write very large shellcodes. In contrast, the Stage2 payload
does not have all these constraints and can be developed like any regular program. This is similar

to how OSes use small assembly routines to bootstrap and then switch to compiled code.

?As observed at http://exploit-db.com

98

http://exploit-db.com

The strategy and structure described above is representative of a large number of malware
especially those created with recent web exploit kits [153]. These malware exploits execute com-
pletely from memory and in the process context of the host victim program. Further, they main-
tain disk and process stealth by ensuring no files are written to disk and no new processes are

created, and thus easily evade most file based malware detection techniques.

5.3 Experimental Setup

Do the execution of different shellcode stages exhibit observable deviations from the baseline
performance characteristics of the user programs? Can we use these deviations, if any, to detect
a malware exploit as early as possible in the infection process? To address these questions, we
conduct several feasibility experiments, by building baseline per-program models using machine
learning classifiers and examining their detection efficacy over a range of operational factors.
Here, we describe our experimental setup and detail how we collect and label the measurements

attributed to different malware exploit stages.

5.3.1 Exploits

Unlike SPEC, there are no standard exploit benchmarks. We rely on a widely-used penetration
testing tool Metasploit (from www.metasploit.com) to generate exploits for common vulnerable
programs from publicly available information. We use exploits that target the security vulnera-
bilities CVE-2012-4792, CVE-2012-1535 and CVE-2010-2883 on IE 8 and the web plug-ins, i.e. Adobe
Flash 11.3.300.257 and Adobe Reader 9.3.4 respectively. We choose to utilize Metasploit because
the exploitation techniques it employs in the exploits are representative of multi-stage nature of
real-world exploits.

Besides targeting different vulnerabilities using different ROP shellcode from relevant library
files (msvert.dll, icucnv36.d1l, flash32.o0cx), we also vary both the Stagel (reverse_tcp,

reverse_http, bind_tcp) shellcode and the Stage2 final payload (meterpreter, vncinject, com-

99

www.metasploit.com

mand_shell) used in the exploits.
Additionally, we instrument the start and end of the respective malware stages with debug
trap int3 instructions (0xCC) of one byte long, to label the exploit measurements with the respec-

tive stages solely for evaluation purposes.

5.3.2 Measurement Infrastructure

Since most real-world exploits run on Windows and PDF readers, and none of the architectural
simulators can run programs of this scale, we use measurements from production machines.
We develop a Windows driver to configure the performance monitoring unit on Intel i7 2.7GHz
IvyBridge Processor to interrupt once every NN instructions and collect the event counts from the
HPCs. We also record the Process ID (PID) of the currently executing program so that we can
filter the measurements based on processes.

We collect the measurements from a VMware Virtual Machine (VM) environment, installed
with Windows XP SP3 and running a single-core with 512MB of memory. With the virtualized
HPCs in the VM, this processor enables the counting of two fixed events (clock cycles, instruction
retired) and up to a limit of four events simultaneously. We configure the HPCs to update the
event counts only in the user mode. To ensure experiment fidelity for the initial study, measure-
ments from the memory buffer are read and transferred via TCP network sockets to a recording
program deployed in another VM. This recording program saves the stream of measurements in

a local file that is used for our analysis.

5.3.3 Sampling Granularity

We experiment with various sampling interval of N instructions. We choose to begin the inves-
tigation with a sampling rate of every 512,000 instructions since it provides a reasonable amount
of measurements without incurring too much overhead (See Section § 5.5.4 for an evaluation of
the sampling overhead). Each sample consists of the event counts from one sampling time epoch,

the identifying PID and the exploit stage label.

100

Since, unlike Linux, Windows does not provide a convenient mechanism to save and restore
event counts across context switches, we note that our custom collection driver has the limitation
of including event measurements from multiple processes in one sample. This lowers the fidelity
of the measurements. To mitigate this measurement “contamination” issue, we rely on a rudi-
mentary process-level filtering (by PID) and opting for progress-based sampling (i.e. sampling by

retired instructions) over time-based sampling (i.e. by cycle count).

5.3.4 Labeling Measurements with Exploit Data

To investigate the effects of malicious code execution on the event characteristics, we require
fine-grained labeling of the measurements captured during the various stages of an exploit. To
this end, we instrumented the boundaries of the ROP and Stage1 shellcode with debug trap int3
instructions (0xCC) of one byte long, and installed an Interrupt Service Routine (ISR) to handle
the debug traps. As the exploit code executes, the instrumented debug traps will be triggered
and handled by the ISR updating an internal flag that is sampled together with the event counts.
This setup allows us to identify accurately, with minimum perturbation to the exploit execution,

the measurements attributed to various stages of the exploit code.

Instrumenting the boundaries of the ROP stage of an exploit is slightly trickier. We locate
ROP gadgets of the instruction sequence “int3/ ret” and insert these gadgets at the start and end

of the respective ROP shellcode.

With the above labels included in the measurements, we can then differentiate the measure-
ments taken between different stages of an exploit. This insertion of the debug trap int3 in-
structions is used solely for the labeling of the measurements for this study and is not used in a
real-time detection setting. In Figure 5.3, we present a sample of the labeled event counts simul-
taneously recorded during an IE exploit. We label the event counts taken without the malware
code exeuction as ‘clean’. Those event counts sampled while malware code is executing are la-

beled with the respective exploit stage names.

101

<LOAD>: Number of LOAD instructions retired

[

ERTy : : : -

o xxx Clean eee ROP 111 Stagel +++ Stage2

ko] X

g 0.5 4 B A uu“\ﬂ”\“mmmu“‘u\‘”uumummummu‘uummuuumuuu‘uummuwumummummmumumuuM 1

= P 1 Sl S T

€

So.0f ‘ ‘ s \ .
0 100 200 300 400 500

<MISP_BR>: Branch misses

E
3 1.0, %]
) ° e+
8 X ’g;* X R uu‘wumu“‘“”n“w‘n‘mmum“"Hwu‘uumum““”H“m‘m“mm“““m“"w‘m‘mwum“‘“‘m““w j_;fﬁ}
R05p o ki Rl
E ><><><><><>< &XxiX;;xXX);&xx)ix:Xx % Ea
=
500 ‘ ‘ ‘ ‘]
0 100 200 300 400 500

<MIS_DTLBS>: D-TLB store misses

Normalized Value
© =
n =)
T fg_!’
+
%I
.,
+r
. .

0.0 20K) X x > ! B

0 100 200 300 400 500

" <MIS_LLC>: LLC misses

2 1.0f ‘ ‘ 1

Ch N - . .

b % | i ! | U R

-g 05k % %"%@%@&ﬂ (AL TR H%ﬁi’fw

£

g 0_0 I | | X | LU iy HH\HH}H m + + 1
0 100 200 300 400 500

Time Epoch

Figure 5.3: Labeled event counts (Sampled every 32k ins.)

5.3.5 Collection of Clean and Infected Measurements

To obtain clean exploit-free measurements for IE 8, we randomly browse websites that use dif-
ferent popular web plugins available on IE viz., Flash, Java, PDF, Silverlight, and Windows Media
Player extensions. We visit the top 20 websites from Alexa and include several other websites to
widen the coverage of the use of the various plug-ins. Within the browser, we introduce vari-
ability by randomizing the order in which the websites are loaded across runs and by navigating
the websites by clicking links randomly and manually on the webpages. The dynamic content
on the websites also perturbs the browser caches. We use a maximum of two concurrent tabs. In
addition, we simulate plug-in download and installation functions.

For Adobe PDF measurements, we download 800 random PDFs from the web, reserving half

of them randomly for training and the other half for testing. To gather infected measurements,

102

we browse pages with our PDF exploits with the same IE browser that uses the PDF plug-in. We
use Metasploit to generate these PDF exploits and ensure that both the clean and unclean PDFs

have the same distribution of file types, for instance, same amount of Javascript.

We stop gathering infected measurements when we see creation of a new process. Usually
the target process becomes unstable due to the corrupted memory state, and the malicious code
typically “migrates” itself to another new or existing process to ensure persistence after the exe-

cution of the Stage2 payload. This is an indication that the infection is complete.

While there are factors that may affect the results of our measurements, we take additional

care to mitigate the following possible biases in our data during the measurement collection:

(1) Between-run contamination: After executing each exploit and collecting the measure-
ments, we restore the VM to the state before the exploit is exercised. This ensures the measure-
ments collected are independent across training and testing sets, and across different clean and

exploit runs.

(2) Exploitation bias: Loading the exploits in the program in only one way may bias the
sampled measurements. To reduce this bias, we collect the measurements while loading the
exploit in different ways: (a) We launch the program and load the URL link of the generated
exploit page. (b) With an already running program instance, we load the exploit page. (c) We

save the exploit URL in a shortcut file and launch the link shortcut with the program.

(3) Network condition bias: The VM environment is connected to the Internet. To ensure
that the different network latencies do not confound the measurements, we configure the VM
environment to connect to an internally-configured Squid (from www.squid-cache.org) proxy
and throttle the network bandwidth from 0.5 to 5Mbps using Squid delay pools. We vary the
bandwidth limits while collecting measurements for both the exploit code execution and clean

runs.

103

www.squid-cache.org

Table 5.1: Shortlisted candidate events to be monitored.

Microarchitectural Events

Architectural Events Name Event Description
Name Event Description Lic Last level cache references
LOAD Load instructions (ins.) Mis_Lic Last level cache misses
STORE Store ins. Misp_BRr Mispredicted br. ins.
ARITH Arithmetic ins. Misp_RET Mispred. near return ins.
Br Branch (br.) ins. Misp_CaLL Mispred. near call ins.
CALL All near call ins. Misp_Br_C Mispred. conditional br.
CarL_D Direct near call ins. Mis_IcacHE _iCache misses
Carr_ID Indirect near call ins. Mis_ITLB ITLB misses
RET Near return ins. Mis_DtiBL D-TLB load misses
Mis_DtLBs D-TLB store misses
“These derived events are not directly measured, StLB_HIT sTLB hits after iTLB misses
but computed with two events measured by the HPCs. ~ %Mi1s_LLc* % of last level cache misses
For example, %Misp_BR is computed as Misp_Br/Br. %Misp_BR* % of mispred. br.

%Misp_RET* % of mispred. near RET ins.

5.4 Building Models

To use HPC measurements for anomaly-based detection of malware exploits, we need to build
classification models to describe the baseline characteristics for each program we protect. These
program characteristics are relatively rich in information and, given numerous programs, manu-
ally building the models is nearly impossible. Instead we rely on unsupervised machine learning
techniques to dynamically learn possible hidden structure in these data. We then use this hidden

structure — aka model - to detect deviations during exploitation.

We rely on a class of unsupervised one-class machine learning techniques for model building.
The one-class approach is very useful because the classifier can be trained solely with measure-
ments taken from a clean environment. This removes the need to gather measurements affected
by exploit code, which is hard to implement and gather in practice. Specifically, we model the
characteristics with the one-class Support Vector Machine (oc-SVM) classifier that uses the non-
linear Radial Basis Function (RBF) kernel. In this study, the collection of the labeled measure-
ments is purely for evaluating the effectiveness of the models in distinguishing the measurements

taken in the presence of malware code execution.

104

5.4.1 Feature Selection

While the Intel processor we use for our measurements permits hundreds of events to be moni-
tored using HPCs, not all of them are equally useful in characterizing the execution of programs.
We examine most events investigated in previous program characterization works [132, 64], and
various other events informed by our understanding of malware behavior. Out of the hundreds
of possible events that can be monitored, we shortlist 19 events for this study in Table 5.1. We
further differentiate between the Architectural events that give an indication of the execution
mix of instructions in any running program, and the Microarchitectural ones that are dependent

on the specific system hardware makeup.

Events with higher discriminative power The processor is limited to monitoring up to 4
events at any given time. Even with the smaller list of shortlisted events, we have to select only a
subset of events, aka features, that can most effectively differentiate clean execution from infected
execution. With the collected labeled measurements, we compute the Fisher Score (F-Score) to
provide a quantitative measure of how effective a feature can discriminate measurements in clean
executions from those in infected executions. The F-Score is a widely-used feature selection met-
ric that measures the discriminative power of features [40]. A feature with better discriminative
power would have a larger separation between the means and standard deviations for samples
from different classes. The F-Score measures this degree of separation. The larger the F-Score,
the more discriminative power the feature is likely to have. However, a limitation to using the
F-Score is that it does not account for mutual information/dependence between features, but it

can guide our selection of a subset of “more useful” features.

Since we are trying to differentiate samples with malicious code execution from those with-
out, we compute the corresponding F-Scores for each event. Without loss of generality, we refer
to the former as negative samples and the latter positive ones. For each feature i, let n(,) and n(_
denote the number of positive and negative test samples. i, ji(4) and y(_) are the averages of the
i" feature of all, positive and negative samples respectively. 0(2 H and 0(2_) denote the variances

of the positive and negative samples respectively. The F-Score for the i*" feature, F; is computed

105

as follows:

5 ol = 0 ey (pe) —)
-)

n(+)0(2+) + ny 0(2_)
where the numerator quantifies the between-class variance and the denominator the in-class
variance for the " feature.

We compute the F-Scores for the different stages of malware code execution for each event
and reduce the shortlisted events to the 7 top-ranked events for each of the two categories, as well
as for the two categories combined, as shown in Table 5.2. Each row consists of the top-ranked
events for an event category and the exploit stage.

We further select top 4 events from each row to form 9 candidate event sets that we will use to
build the baseline characteristic models of the IE browser. Each model constructed with one set
of events can then be evaluated for its effectiveness in the detection of various stages of malware
code execution. For brevity, we assign a label (such as A-0 and AM-2) to each set of 4 events in
Table 5.2 and refer to each model based on this set label. We note that the derived events such
as %MisP_BRr are listed in the table solely for comparison. Computing them requires monitoring
two events and reduces the number of features used in the models. Via experimentation, we find
that using them in the models does not increase the efficacy of the models. Thus, we exclude
them from the event sets.

Feature Extraction Each sample consists of simultaneous measurements of all the four event
counts in one time epoch. We convert the measurements in each sample to the vector subspace,
so that each classification vector is represented as a four-feature vector. Each vector, using this
feature extraction method, represents the measurements taken at the smallest time-slice for that
sampling granularity. These features will be used to build non-temporal models.

Since we observe that malware shellcode typically runs over several time epochs, there may
exist temporal relationships in the measurements that can be exploited. To model any potential
temporal information, we extend the dimensionality of each sample vector by grouping the N
consecutive samples and combining the measurements of each event to form a vector with 4N

features. We use N = 4 to create sample vectors consisting of 16 features each, so each sample

106

Table 5.2: Top 7 most discriminative events for different stages of exploit execution (Each event
set consists of 4 event names in Borp. E.g, monitoring event set A-0 consists of simultaneously
monitoring RET, CALL_D, STORE and ARITH event counts.)

Exploit Set Events ranked by F-scores
Stage Label 1 2 3 4 5 6 7
Architectural Events
ROP A-0 RET CaLr D STORE ARITH CaLL Loap Carr_Ip
Stagel A-1 STORE Loap CaLL_ID RET CaLrL D CALL ARITH
Stage2 A-2 STORE CarLr_ID RET CaLrL_D CaLL ARITH Br

Microarchitectural Events

ROP M-0 || Misp_Br_C %Misp_Br Misp_Br %Misp_RET Mis_ITLB Mis_Lrc Mis_DtLBs
Stagel M-1 Misp_ RET Misp BR C %Misp_RET %Misp_ BR Mis DTtLBs StLB_HIT Misp_Br
Stage2 M-2 Misp_RET StLB_Hit Mis IcacHe Mis_ It %Misp_ RET Misp_CAaLL. Mis_LiLc

Both Architectural and Microarchitectural Events

ROP AM-0 || Misp_Br_C %Misp_Br Misp_Br %Misp_RET Mis_ITLB ReT Mis_Lic
Stagel AM-1 STORE Loap Misp_RET CaLL_ID ReT CaLL D CaLL
Stage2 AM-2 STORE CarLr_ID Misp_RET RET CaLL_D CaALL StiLB_HiTt

vector effectively represents measurements across 4 time epochs. By grouping samples across
several time epochs, we use the synthesis of these event measurements to build temporal models.

With the granularity at which we sample the measurements, the execution of the ROP shell-
code occurs within the span of just one sample. Since we are creating vectors with a number of
samples as a group, the ROP payload will only contribute to one small portion of a vector sample.

So we leave out the ROP shellcode for testing using this form of feature extraction.

5.5 Results

5.5.1 Anomalies Not Directly Detectable

We first investigate if we can gain insights into the distribution of the event counts for a clean
environment and one attacked by an exploit. Without assuming any prior knowledge of the
distributions, we use box-and-whisker® plots of normalized measurements for different events.

These plots offer a visual gauge of the range and variance in the measurements and an initial indi-

*The box-and-whisker plot is constructed with the bottom and top of the box representing the first and third
quartiles respectively. The red line in the box is the median. The whiskers extend to 1.5 times the length of the box.
Any outliers beyond the whiskers are plotted as blue + ticks.

107

cation on how distinguishable the measurements taken with the execution of different malware

code stages are from the clean measurements from an exploit-free environment.

These distribution comparisons suggest that any event anomalies manifested by malware code
execution are not trivially detectable, due to two key observations. (1) Most of the measurement
distributions are very positively skewed, with many values clustered near zero. (2) Deviations, if

any, from the baseline event characteristics due to the exploit code are not easily discerned.

5.5.2 Power Transform

To address this challenge, we rely on rank-preserving power transform on the measurements
to positively scale the values. In the field of statistics, the power transform is a common data
analysis tool to transform non-normally distributed data to one that can be approximated by a
normal distribution. Used in our context, it has the value of magnifying any slight deviations
that the malware code execution may have on the baseline characteristics.

For each event type, we find the appropriate power parameter \ such that the normalized
median is roughly 0.5. For each event i, we maintain and use its associated parameter \; to scale
all its corresponding measurements throughout the experiment. Each normalized and scaled
event measurement for event i, normalized;, is transformed from the raw value (raw;), minimum

value (min;), maximum value (max;) as follows:

A

) (5.1)

. raw; — min;
normalized; = (—
max;

Using this power transform, we plot the distributions of all the events, in Figure 5.4. Now we
observe varying deviations from baseline characteristics due to different stages of malware code
execution for various event types. Some events (such as Misp_RET and STORE) show relatively
larger deviations, especially for the Stagel exploit shellcode. These events likely possess greater
discriminative power in indicating the presence of malware code execution. Clearly, there are

also certain events that are visually correlated. The RET and CALL exhibit similar distributions.

108

BR CALL MISP_BR LLC MIS_LLC MISP_CALL MISP_BR_C MIS_ICACHE

10f 1 T] r]]
0.8} 1t 1+ 1t 1 1t 1 F 1t 1
0.6] 1 f 1 A2 e 1 = 1t 1 2T 1
0‘4 >$ $ B ¢_ >$ H | >$ ﬁ_ >% é $_ >$ é #_ >$ $ g %‘ >% ﬁ_ >$ $ é é‘
0.2f 1t 1 1t 1 1t . 1t !
00 - 4 - é é_ - 4 - B - 4 . 8 u 4 - B
MIS_ITLB MIS_DTLBL MIS_DTLBS STLB_HIT LOAD STORE ARITH CALL_ D
o8] 1t 1+ 1t 1 1 F 1t 1t 1
0.6f 1t 1 F 1t 1 F 1t 1 F 1 F 1
04f] %i T & é == L4l [He] [+ E o - ! e‘r"l 8 1 a]
0.2f 1t 1F 1 F 1F 1t lﬁ 1 F 1 F L1
0.0} 1 L 1 L 1 L 1 L 1 L 1 1L < =]
CALL_ID RET MISP_RET %MIS_LLC %MISP_BR MISP_RET
1.0 1 F 1 F] 1.0f 1 T]
0.8 1t 08 1t]
0.6 11 & oeff] & 1 LR T #,
0.4 1 & 0.4f .]
0.2 1t 0.2f I :
0.0 L = o 0.0t {1 t i
S o ¥ F o & S &8 FoX & & FoX & ¥ fo‘\‘o‘z é‘
FEFF FESFE LESFS FESS FESS P o}@

Figure 5.4: Distribution of events (after power transform) with more discernible deviations.

We can also observe strong correlation between those computed events (such as %Misp_BRr) and

their constituent events (such as Misp_BRr).

5.5.3 Evaluation Metrics for Models

To visualize the classification performance of the models, we construct the Receiver Operating
Characteristic (ROC) curves which plot the percentage of truely identified malicious samples
(True positive rate) against the percentage of clean samples falsely classified as malicious (False
positive rate). Each sample in the non-temporal model corresponds to the set of performance
counter measurements in one epoch; each temporal sample spans over 4 epochs. Furthermore,
to contrast the relative performance between the models in the detection of malicious samples,
the area under the ROC curve for each model can be computed and compared. This area, com-
monly termed as the Area Under Curve (AUC) score, provides a quantitative measure of how well
a model can distinguish between the clean and malicious samples for varying thresholds. The

higher the AUC score, the better the detection performance of the model.

109

ROC for Set <AM-0> ROC for Set <AM-1> ROC for Set <AM-2>

1.0 e —
[]
® 0.8 1 R R
Sosfy i .] . .
2 :
o 048 & [ROP || 7 I ROP] 1
E’ 0.2 —— Stagel|] b]| —— sStagel]] _ —— Stagel|]
: - - - Stage2 : - - - Stage2 : - - - Stage2
0'00 0.2 04 06 08 1 0 020406 08 1 0 020406 08 1
False positive rate False positive rate False positive rate
ROC for Set <AM-0> ROC for Set <AM-1> ROC for Set <AM-2>
L———" T N T T T T = =T g
3 rJ l,, /,) -
‘é 0.8 . 1 ”r“ i ,,I i
’
2 o6l | L/ | ! |
) J)
804 . g . 4 .
(]
E 0.2 Stagel|] . —— Stagel|| ! —— Stagel||
- - - Stage2 - - - Stage2 - - - Stage2
0.0

0 020406 08 1 0 020406 08 1 0 020406 08 1
False positive rate False positive rate False positive rate

Figure 5.5: Top: ROC plots for Non-Temporal 4-feature models for IE. Bottom: ROC plots for
Temporal 16-feature models for IE.

5.5.4 Detection Performance of Models

We first build the oc-SVM models with the training data, and evaluate them with the testing
data using the non-temporal and temporal modeling on the nine event sets. To characterize
and visualize the detection rates in terms of true and false positives over varying thresholds, we
present the ROC curves of both approaches in Figure 5.5. For brevity, we only present the ROC
curves for models that use both architectural and microarchitectural events. We also present the
overall detection results in terms of AUC scores in Figure 5.6 and highlight the key observations
that affect the detection accuracy of the models below.

Different Stages of Malware Exploits We observe that the models, in general, perform best
in the detection of the Stagel shellcode. These results suggest the Stagel shellcode exhibits the
largest deviations from the baseline architectural and microarchitectural characteristics of benign
code. We achieve a best-case detection accuracy of 99.5% for Stagel shellcode with AM-1 models.

On the other hand, the models show mediocre detection capabilities for the ROP shellcode.

The models does not perform well in the detection of the ROP shellcode, likely because the sam-

110

I ROP [Stagel [Stage2
non-temporal temporal

0.2} 1

O N APV O DM D O S AODD S M
vvv@@@@@@ vvv@@@@@@
Event set

Figure 5.6: Detection AUC scores for different event sets using non-temporal and temporal mod-
els for IE.

pling granularity at 512k instructions is too coarse-grained to capture the deviations from the
ROP shellcode in the baseline models. While the Stagel and Stage2 shellcode executes within
several time epochs, we measured that the ROP shellcode takes 2182 instructions on average to
complete execution. It ranges from as few as 134 instructions (for the Flash ROP exploit) to 6016
instructions (for the PDF ROP exploit). Since we are keeping the sampling granularity constant,
the sample that contains measurements during the ROP shellcode execution will largely consist
of samples from the normal code execution.

Non-Temporal vs Temporal Modeling We observe that the detection accuracy of the models
for all event sets improves with the use of temporal information. By including more temporal
information in each sample vector, we reap the benefit of magnifying any deviations that are
already observable in the non-temporal approach. For event set M-2, this temporal approach of
building the models improves the AUC score from the non-temporal one by up to 58.8%.

Architectural vs Microarchitectural Events We quantify the detection capabilities of our
models by considering the architectural and microarchitectural features separately and in com-
bination. Models built using only architectural events achieve AUC scores on average 4.1% bet-
ter than those built solely with microarchitectural events. Combining the use of microarchi-
tectural events with architectural ones improves the average AUC scores by 5.8% and 1.4% for
microarchitectural-only and architectural-only models respectively. It is more advantageous to

incorporate the use of both types of events in the detection models. For instance, by selecting

111

—a— ROP —e— Stagel (Non-Temp) —e— Stage2 (Non-Temp)

- @ — Stagel (Temporal) - & - Stage2 (Temporal)

100 ¢ - - - - - &> - —-—--- ¢ --=-== 0=::::‘ ————— o 11.0
—_ N
S 8 R
S 80| < 109
3 .
5 v
& 60 10.8 g
) n
€)
= -]
— 40f 10.7<
o
E 20.6
g 20p 10.6
Wi 7.8

H O 1
0 1 — g5
16k 32k 64k 128k 256k 512k

Sampling Rate (# of instruction retired)

Figure 5.7: Trade-off between sampling overhead for different sampling rates versus detection
accuracy using set AM-1.

and modeling both the most discriminative architectural and microarchitectural events together,
we can achieve higher detection rates of up to an AUC score of 99.5% for event set AM-1.

Different Sampling Granularities While we use the sampling rate of 512K instructions for
the above experiments, we also examine the impact on detection efficacy for various sampling
granularities. Although the hardware-based HPCs incur a near-zero overhead in the monitoring
of the event counts, a pure software-only implementation of the detector still requires running
programs to be interrupted periodically to sample the event counts. This inadvertently leads to
a slowdown of the overall running time of programs due to this sampling overhead. To inform
the deployment of a software-only implementation of such a detection paradigm, we evaluate
the sampling performance overhead for different sampling rates.

To measure this overhead, we vary the sampling granularity and measure the slowdown in
the programs from the SPEC 2006 benchmark suite. We also repeat the experiments using the
event set AM-1 to study the effect of sampling granularity has on the detection accuracy of the
model. We plot the execution time slowdown over different sampling rates with the correspond-
ing detection AUC scores for various malware exploit stages in Figure 5.7.

We observe that the detection performance generally deteriorates with coarser-grained sam-

112

pling. This illustrates a key limitation of the imprecise sampling technique used on Windows
systems. For example, during the span of instructions retired in one sample, while we may label
these measurements as belonging to a specific process PID, these measurements may also con-
tain measurements belonging to other processes context-switched in and out during the span
of this sample. The interleaved execution of different processes creates this “noise” effect that
becomes more pronounced with a coarser-grained sampling rate and deteriorates the detection
performance. Nonetheless, we note that the reduction in sampling overhead at coarser-grained

rates far proportionately outstrips the decrease in detection performance.

Constrained Environments To further investigate the impact of the aforementioned “noise”
effect, we also assess the impact on detection accuracy in the scenario where we deploy both the
online classification and the measurement gathering in the same VM. As described in Section
§5.3.2, we collect the measurements in our study from one VM and transfer the measurements to
the recorder in another VM to be saved and processed. We term this cross-remote-VM scenario

where the sampling and the online classification are performed on different VMs as R-1core.

For this experiment, we use the event model set AM-1using two additional local-VM scenarios
utilizing both one and two cores separately. We term these two scenarios as L-Icore and L-2core
respectively. We present the detection AUC scores for the three different scenarios in Table 5.3
(Left).

We observe the detection performance suffers when the online classifier is deployed locally
together with the sampling driver. This may be due to possible noise introduced to the event
counts while the online detector is executing and processing the stream of samples. This high-
lights a key limitation of the current method of periodic collection of HPC measurements on
Windows systems, where we are unable to cleanly segregate the measurements on a per-process

basis.

To alleviate this problem, we envision a software-only implementation on a distributed or
multi-core system in which the online detector is running separately from the system or core

being protected. Furthermore, since this detection approach requires little more than a stream

113

Table 5.3: AUC scores for: (Left) Constrained scenarios for IE using set AM-1 and (Right) Stand-
alone Adobe PDF Reader.

Scenario Non-Temporal Temporal Set Non-Temporal Temporal
Label ROP Stagel Stage2 Stagel Stage2 Label ROP Stagel Stage2 Stagel Stage2
L-1core 0.505 0.895 0.814 0.918 0.900 AM-0 0.931 0.861 0.504 0.967 0.766
L-2core 0496 0.890 0.807 0.907 0.813 AM-1 0.857 0.932 0.786 0.999 0.863
R-1core 0.678 0916 0.781 0.995 0.823 AM-2 0.907 0.939 0.756 0.998 0.912

of HPC measurements, this makes it suitable as an out-of-VM deployment in a Virtual Machine
Introspection (VMI)-based setting [50] for intrusion detection. This approach requires minimum
guest data structures, relieving the need to bridge the semantic gap, a common problem faced
by VMI works. Another potential avenue to alleviate the “noise” problem is a pure hardware
implementation using a separate and secure dedicated core or co-processor for the execution of

an online detector as proposed in [37].

5.5.5 Results for Adobe PDF Reader

Due to space constraints, we do not present the full results from our experiments on the stand-
alone Adobe PDF Reader. We present the AUC detection performance of the models built with
the event sets AM-0,1,2 in Table 5.3 (Right). Compared to the models for IE, the detection of
ROP and Stagel shellcode generally improves for the Adobe PDF Reader. We even achieve an
AUC score of 0.999 with the AM-1 temporal model. The improved performance of this detection
technique for the PDF Reader suggests that its baseline characteristics are more stable given the

less varied range of inputs it handles compared to IE.

5.6 Analysis of Evasion Strategies

In general, anomaly-based intrusion detection approaches, such as ours, are susceptible to
mimicry attacks. To evade detection, a sophisticated adversary with sufficient information about
the anomaly detection models can modify her malware into an equivalent form that exhibits sim-

ilar baseline architectural and microarchitectural characteristics as the normal programs. In this

114

section, we examine the degree of freedom an adversary has in crafting a mimicry attack and

how it impacts the detection efficacy of our models.

Adversary Assumptions We assume the adversary (a) knows all about the target program
such as the version and OS to be run on, and (b) is able to gather similar HPC measurements for
the targeted program to approximate its baseline characteristics. (c) She also knows the way the
events are modeled, but not the exact events used. We highlight three ways the adversary can

change her attack while retaining the original attack semantics.

Assumption (c) is realistic, given the hundreds of possible events that can be monitored on a
modern processor. While she may uncover the manner the events are modeled, it is difficult to
pinpoint the exact subset of four events used given the numerous possible combinations of sub-
sets. Furthermore, even if the entire event list that can be monitored is available, there may still
exist some events (such as events monitored by the power management units) that are not pub-
licly available. Nonetheless, to describe attacks 1 and 2, we optimistically assume the adversary

has full knowledge of all the events that are used in the models.

Attack 1: Padding The first approach is to pad the original shellcode code sequences with
“no-op” (no effect) instructions with a sufficient number so that the events manifested by the
shellcode match that of the baseline execution of the program. These no-op instructions should
modify the measurements for all the events monitored, in tandem, to a range acceptable to the

models.

The adversary needs to know the events used by the model a priori, in order to exert an
influence over the relevant events. We first explore feasibility of such a mimicry approach by
analyzing the Stagel shellcode under the detection model of event set AM-1. After studying the
true positive samples, we observe that the event characteristics exhibited by the shellcode are
due to the unusually low counts of the four events modeled. As we re-craft the shellcode at the

assembly code level to achieve the mimicry effect, we note three difficulties.

(1) Multi-instruction no-ops: Some microarchitectural events require more than one instruc-

tion to effect a change. For example, to raise the Misp_RET counts, sequences of RET code need

115

to be crafted in a specific order. Insertion of no-ops must be added in multi-instruction segments.

(2) Event co-dependence: To maintain the original shellcode semantics, certain registers need
to be saved and subsequently restored. These operations constitute STORE /LOAD p-operations
and can inadvertently affect both STORE and LoAD events. Thus we are rarely able to craft no-op
code segments to modify each event independently. For instance, among the events in AM-1,
only the no-op instruction segment for STORE can be crafted to affect it independently. Event

co-dependence makes adversarial control of values of individual events challenging.

(3) No-op insertion position: Insertion position of the no-op instruction segments can be
critical to achieve the desired mimicry effect. We notice the use of several loops within the
shellcode. If even one no-op segment is inserted into the loops, that results in a huge artificial
increase in certain event types, consequently making that code execution look more malicious

than usual.

Next, we examine the impact of such mimicry efforts on the detection performance. We pad
the Stagel shellcode at random positions (avoiding the loops) with increasing number of each
crafted no-op instruction segment and repeated the detection experiments. In Figure 5.8 (Left),
we plot the box-and-whisker plots of the anomaly scores observed from the samples with varying
numbers of injected no-op code. In general, the anomaly scores become less anomalous with the
padding, until after a tipping point where inserting too many no-ops reverses mimicry effect.
In the same vein, we observe in Figure 5.8 (Right) that the detection AUC scores decrease as the
samples appear more normal. For the worst case, the detection performance suffers by up to 6.5%
just by inserting only the CaLL_ID no-ops. We do not study combining the no-ops for different

events, but we believe it should deteriorate the detection performance further.

Attack 2: Substitution Instead of padding no-ops into original attack code sequences, the
adversary can replace her code sequences with equivalent variants using code obfuscation tech-
niques, common in metamorphic malware [25]. Like the former attack, this also requires that
she knows the events used by the models a priori. To conduct this attack, she must first craft or

generate equivalent code variants of code sequences in her exploits, and profile the event char-

116

STORE LOAD

T gngeylovat

)
o
o
S
S

T

()
e}
o
L
o
<
(7]
-
S 0
(@)}
£ 0 5 10 20 50 100 10 20 50 100
> MISP_RET CALL_ID
é 6000 Y R
wn
2 o 5 £ | =)=l
£
S 2000 1r E
C
< ok 1L g
0 2 4 6 8 10 0 2 4 6 8 10
of no-op instruction segments inserted
1.00 —e— STORE —e— | OAD - - MISP RET -&- CALL ID
0.99
0.98} 1
]
o 0.97} |
Q
W 0.96 |
80957 1
20
0.94} 1
0.93F 1
0.92—

0 5/2 10/4 20/6 50/8 100/10
of no-op instruction segments inserted

Figure 5.8: Impact of inserting no-op segments on: (Left) The anomaly scores of Stage1 shellcode
and (Right) The detection efficacy of Stagel shellcode.

acteristics of each variant. She can adopt a greedy strategy by iteratively substituting parts of
her attack code with the equivalent variants, measuring the HPC events of the shellcode and
ditching those variants that exhibit characteristics not acceptable to the models. However, while
this greedy approach will terminate, it warrants further examination as to whether the result-
ing shellcode modifications suffice to evade the models. We argue that this kind of shellcode

re-design is hard and will substantially raise the bar for exploit writers.

Attack 3: Grafting This attack requires either inserting benign code from the target program
directly into the exploit code, or co-scheduling the exploit shellcode by calling benign functions
(with no-op effects) within the exploit code. This attack somewhat grafts its malicious code exe-

cution with the benign ones within the target program, thus relieving the need for the knowledge

117

of the events that are modeled. If done correctly, it can exhibit very similar characteristics as the
benign code it grafts itself to. As such this represents the most powerful attack against our de-
tection approach.

While we acknowledge that we have not crafted this form of attack in our study, we believe
that it is extremely challenging to craft such a grafting attack due to the operational constraints
on the exploit and shellcode, described in Section §5.2. (1) Inserting sufficient benign code into
the shellcode may exceed the vulnerability-specific size limits and cause the exploit to fail. (2)
To use benign functions for the grafting attacks, these functions have to be carefully identified
and inserted so that they execute sufficiently to mimic the normal program behavior and yet
not interfere with the execution of the original shellcode. (3) The grafted code must not unduly

increase the execution time of the entire exploit.

5.6.1 Defenses

Unlike past anomaly-based detection systems that detect deviations based on the syntactic/se-
mantic structure and code behavior of the malware shellcode, our approach focuses on the archi-
tectural and microarchitectural side-effects manifested through the code execution of the mal-
ware shellcode. While the adversary has complete freedom in crafting her attack instruction
sequences to evade the former systems, she cannot directly modify the events exhibited by her
attack code to evade our detection approach. To conduct a mimicry attack here, she has to care-
fully “massage” her attack code to manifest a combination of event behaviors that are accepted
as benign/normal under our models. This second-order degree of control over the event char-
acteristics of the shellcode adds difficulty to the adversary’s evasion efforts. On top of this, we
discuss further potential defense strategies to mitigate the impact of the mimicry attacks.
Randomization Introducing secret randomizations into the models has been used to
strengthen robustness against mimicry attacks in anomaly-based detection systems [159]. In
our context, we can randomize the events used in the models by training multiple models using

different subsets of the shortlisted events. We can also randomize the choice of model to utilize

118

over time. Another degree of randomization is to change the number of consecutive time-epoch
samples to use for each sample for the temporal models. In this manner, the adversary does not
know which model is used during the execution of her attack shellcode. For her exploit to be
portable and functional on a wide range of targets, she has to modify her shellcode using the
no-op padding and instruction substitution mimicry attacks for a wider range of events (and not
just the current four events).

Multiplexing At the cost of higher sampling overhead, we can choose to sample at a finer
sampling granularity and measure more events (instead of the current four) by multiplexing the
monitoring — we can approximate the simultaneous monitoring of 8 events across two time
epochs by monitoring 4 events in one and another 4 in the other. This increases to the input
dimensionality used in the models, making it harder for the adversary to make all the increased

number of monitored event measurements appear non-anomalous.

Defense-in-depth Consider a defense-in-depth approach, where this malware anomaly de-
tector using HPC manifestations is deployed with existing anomaly-based detectors monitoring
for other features of the malware, such as its syntactic and semantic structure [159, 84, 94] and
its execution behavior at system-call level [135, 47, 96, 128] and function level [110]. In such a
setting, in order for a successful attack, an adversary is then forced to shape her attack code to
conform to normalcy for each anomaly detection model. An open area of research remains in
quantifying this multiplicative level of security afforded by the combined use of these HPC mod-
els with existing defenses, i.e. examining the difficulty in shaping the malware shellcode to evade
detectors using statistical and behavioral software features, while simultaneously not exhibiting

any anomalous HPC event characteristics during execution.

5.7 Discussion

Hades relies on readily available hardware performance counters to profile microarchitectural

behavior of programs. Researchers have highlighted issues (non-determinism, inter-run vari-

119

ations and overcount among all) in the use of performance counters to provide accurate and
deterministic measurements [164, 165]. In this section, we discuss such characteristics of hard-
ware performance counters and how they impact the collection of microarchitectural events for

malware detection.

Variability in Measurements While hardware performance counters should ideally provide
exact and deterministic (i.e. getting consistent results across different runs), real-world imple-
mentations fall short of this ideal expectation. Weaver et al. show that events collected with the
performance counters exhibit run-to-run variation and persistent overcount, even when con-
ducted in strictly controlled environments [165]. They note that these variations are influenced
by non-deterministic hardware interrupts and page faults. These sources of variations can be
hard to predict, since they depend on per-machine per-run system conditions like the OS activ-
ity, instruction-specific quirks, processor errata or I/O interference. Furthermore, such variations

can exist both within the same machine or across multiple machines [164].

Mitigating Noisy Measurements The most direct impact of measurement variations is the
introduction of noise into the malware detection models. The higher the degree of noise, the less
stable the models and the greater the false positive rate in detection performance. Unlike tradi-
tional uses (deterministic replay, architectural simulation) of performance counters that require
deterministic measurements, our use of machine learning models in profiling programs accom-
modate some degree of noise — the models remain useful as long as the perturbations caused
by malicious code execution exceed in magnitude that of the noise, as our experiments have
shown. Our feature selection process using F-Score (§5.4.1) allows us to shortlist events with
the best signal-to-noise ratio and with the best chance of overcoming the aforementioned prob-
lem of noise. The intra-run variability can also be attributed to the imprecise sampling of events,
more commonly known as sample skid [163]. The problem of skid can be partially mitigated
with performance counter functionalities that precisely attribute event counts across interrupts.
Examples of such hardware features are Intel Precise Event-Based Sampling (PEBS) and AMD

Instruction Based Sampling (IBS) [138]. Furthermore, systematic inaccuracies caused by event

120

overcount are accounted for by training and using malware detection models on a per-machine
basis; if events are consistently under- or over-estimated on a machine, they will have negligible
impact on the anomaly detection models.

Inter-machine Variations Weaver et al. report inter-machine variations for the instruction
counts event [164]. In our per-machine training and detection deployment, such variations can
work in our advantage, towards making it harder for attacker to game the detection models. As-
suming such inter-machine variations exist, each per-machine trained model will be very unique
to each system makeup. As a result, creating ex-ante mimicry attacks for machine-specific mod-
els becomes very challenging; the attacker will be forced to make assumptions on the machine-

specific hardware characteristics that drive the underlying anomaly detection models.

5.8 Architectural Enhancements for Malware Detection

Performance counters are typically used for low-level performance analysis and tuning, and for
program characterization. In this section, we suggest some simple modifications to extend their
benefits for detecting malware based on anomalies.

More performance counters Our experiments show that adding events can help better
distinguish between benign and malicious code execution. Expanding the set of performance
counters that can be monitored concurrently can potentially increase detection fidelity. Cheap
hardware mechanisms to observe instruction and data working set changes, and basic-block level
execution frequencies can improve malware detection accuracies further.

Interrupt-less periodic access Currently reading performance counters requires the host
process to be interrupted. This leads in expensive interrupt-handling cost and undue sampling
overhead to the programs. If the performance monitoring units are re-designed with the capa-
bility to store performance counter measurements periodically to a designated memory region
without generating interrupts, accessing the samples from this region directly will eliminate the

sampling overhead. Most importantly, this allows for monitoring at finer granularities to reduce

121

the "noise” effect described in § 5.5.4, and leaves greater scope for better detection.

Custom Accelerators In our work we sample at a very coarse granularity of 512K instruc-
tions. Results show that finer granularity sampling can improve detection accuracies. Currently
the detector is implemented in software, but at much finer granularities, to keep up with in-
creased data volumes, hardware implementations will likely be necessary and certainly be more

energy-efficient compared to software implementations.

Secret Events In this work we have used publicly available performance counters for detect-
ing malware. The malware detector can be built just as well with non-public microarchitectural
events. Keeping the events secret increases the difficulty of the attacker to conduct evasion at-
tacks. This model is very similar to how on-chip power controllers operate in modern processors.
In the latest Intel and AMD processors, an on-chip microcontroller receives activity factors from
various blocks on the chip and uses this information to make power management decisions. Nei-
ther the units providing activity factors or the logic/algorithm for making power management
decisions are public information, and has been hard to reverse engineer. Further the power man-
agement algorithm is not directly accessible to software but during emergencies an exception is

delivered to the software. A similar model can be used to build malware detectors.

5.9 Related Work

The use of low-level hardware features for malware detection (instead of software ones) is a recent
development. Demme et al. demonstrate the feasibility of misuse-based detection of Android
malware programs using microarchitectural features [37]. While they model microarchitectural
signatures of malware programs, we build baseline microarchitectural models of benign programs
we are protecting and detect deviations caused by a potentially wider range of malware (even
ones that are previously unobserved). Another key distinction is that we are detecting malware
shellcode execution of an exploit within the context of the victim program during the act of

exploitation; they target Android malware as whole programs. After infiltrating the system via

122

an exploit, the malware can be made stealthier by installing into peripherals, or by infecting other
benign programs. Stewin et al. propose detecting the former by flagging additional memory bus
accesses made by the malware [140]. Malone et al. examine detecting the latter form of malicious
static and dynamic program modification by modeling the architectural characteristics of benign
programs (and excluding the use of microarchitectural events) using linear regression models
[95]. Another line of research shows that malware can be detected using side-channel power
perturbations they induce in medical embedded devices [31], software-defined radios [52] and
mobile phones [78]. However, Hoffman et al. show that the use of such power consumption
models can be very susceptible to noise, especially in a device with such widely varied use as the

modern smartphone [61].

Besides HPCs, several works have leveraged other hardware facilities on modern processors
to monitor branch addresses efficiently to thwart classes of exploitation techniques. kBouncer
uses the Last Branch Recording (LBR) facility to monitor for runtime behavior of indirect branch
instructions during the invocation of Windows API for the prevention of ROP exploits [108]. To
enforce control flow integrity, CFIMon [174] and Eunomia [176] leverage the Branch Trace Store
(BTS) to obtain branch source and target addresses to check for unseen pairs from a pre-identified
database of legitimate branch pairs. Unlike our approach to detecting malware, these works are
designed to prevent exploitation in the first place, and are orthogonal to our anomaly detection

approach.

5.10 Conclusions

This work introduces the novel use of hardware-supported lower-level microarchitectural fea-
tures to the anomaly-based detection of malware exploits. This represents the first work to exam-
ine the feasibility and limits of using unsupervised learning on microarchitectural features from
HPCs to detect malware. We demonstrate that the dynamic execution of commonly attacked pro-

grams can be efficiently characterized with minimal features — the stream of event measurements

123

easily accessible from the HPC, and used to detect lower-level perturbations caused by malware
exploits to the baseline characteristics of benign programs. Unlike its misuse-based counterparts
previously proposed, this anomaly-based detection approach can detect a wider range of mal-
ware, even novel ones. This work can thus be used in concert with its misuse-based counterparts
to better security. Further, in modeling a class of potential mimicry attacks against our detector,
we show that it can be challenging for an adversary to precisely control these hardware features

to conduct an evasion attack.

124

Conclusion

This dissertation puts forth the thesis that full-system security can be improved by examining and
leveraging the interworking of hardware and software. First, I motivate security-aware energy
management designs by highlighting multiple issues in current designs of energy management
mechanisms (Chapter 3: CLKscrew). I show that unfettered software access to isolation-agnostic
hardware regulators exposes security-sensitive trusted execution environments to practical and
realizable security risks. Second, I design and implement the Destructive Code Read primitive
as a novel defense to destroy runtime information crucial for exploitation (Chapter 4: Heisen-
byte). Leveraging hardware virtualization support, the primitive extends the benefits of execute-
only memory defenses to COTS systems. Last but not least, in the third case study, I describe
a hardware performance counter-based framework that efficiently profiles previously untapped
microarchitectural interaction between hardware and software to detect anomalous and mali-
cious code execution (Chapter 5: Hades). These case studies underscore the importance of giving
commodity hardware-software interfaces due consideration when designing robust defenses or

architecting systems for security.

6.1 Future Directions

As systems become more heterogeneous (e.g. mobile SoCs), widespread (e.g. IoT) and multi-

layered (e.g. disparate privilege modes), ensuring security across the computing stack becomes

125

increasingly crucial. To this end, I introduce novel techniques to leverage readily available hard-
ware features exposed to software to secure systems. These techniques use commodity features,
making them deployable on systems in the immediate term. Beyond the short term, it is my hope
that at a higher level, several principles can distilled from the dissertation to inform secure sys-
tem designs in future. The following research directions capture my vision towards more secure

generation of systems.

Security-Aware Hardware-Software Co-Design. Security is indeed a full-system prop-
erty, and the increasing incidence of microarchitectural-style! attacks (such as CLKscrew [146],
Rowhammer [79], and more recently, Meltdown [88] and Spectre [83]) bears testament to this.
The interesting aspect to these classes of attacks is that the root cause does not lie with any inde-
pendent hardware or software component, but rather with the way multiple components interact
with one another. For example, with CLKscrew, taken in isolation the individual constituents
of the energy management stack are relatively well-designed — ARM Trustzone correctly pre-
vents lower-privileged software from directly accessing code and data within the trusted zone;
the DVEFS drivers enforce configuration limits at the software level; the hardware regulators are
designed to operate efficiently across multiple hardware components. However, taking the co-
existence of these designs in tandem allows a lower-privileged attacker to influence the operating
frequency and voltage of trusted computation from outside Trustzone. While attacks are mainly
geared towards the higher layers of the computing stack for the past two decades, the lower lay-
ers closer to hardware are becoming more of a target in recent years. In short, to a determined

malicious actor, all components in systems are fair game.

Moving forward, I believe we need to rethink how we approach the early life cycle of system
designs. First, beyond optimizing independent components solely for performance, functional
correctnessness and robustness, it is imperative that security be made a design consideration

during the conception, implementation and evaluation of hardware components. Second, since

'Compared to architectural attacks that target specific OS, ISA or platforms, microarchitectural attacks work
across architectures and can be difficult to fix.

126

many microarchitectural attacks result from the inter-component interaction, the conventional
approach to designing system components in silos should go. Hardware architects and system
integrators should take an active role in carefully examining the interplay amongst different
system components. A cursory systems-level brainstorming in the design stage—systematically
enumerating all ways system components can function and interact with one another—may un-
cover previously unanticipated ways users (and attackers) can combine the use of different sys-
tem components in tandem to nefarious ends. The straightforward approach is to begin with a
qualitative approach to assessing the security of hardware designs, perhaps with dedicated secu-
rity assessment teams adept at conducting hardware-oriented vulnerability analysis. However, a
potential obstacle now is the lack of techniques to properly quantify security, or the lack thereof.
In large firms involved in the early hardware design, evaluating security of individual compo-
nents, much less the cross-interaction of multiple components, can prove unwieldy because it is
difficult to measure security. Further research into developing concrete quantitative measures of

security (both intra-component and inter-component) is likely warranted.

Always-on Security-Oriented Hardware. This dissertation shows even though much se-
mantic information about software execution is lost at the hardware level, useful signals can
still be gleaned to detect anomalous software behavior. This suggests that we can possibly build
anomaly detection mechanisms directly into hardware. I envision a next-generation security ar-
chitecture where control-flow and data-flow profiling mechanisms are designed as standard cus-
tomization elements in system designs. In a defense-in-depth setting, these in-hardware security
units can provide the first line of defense in a ensemble deployment of malware/exploitation
detection “sensors”. These hardware defense sensors can offer protection in two ways: (1) func-
tion as a lightweight low-overhead trigger to defer analysis and detection to higher-overhead
but more accurate software-based sensors, (2) provide an anomaly score (as a continuous value,
instead of a discrete one) that can then be combined with the output scores of other sensors in

an ensemble fashion to achieve a better detection performance.
In-Flux Hardware. Attackers prey on predictability of system states. For instance, recent

127

microarchitectural attacks (CLKscrew, Meltdown, Spectre) are enabled in part by predictable tim-
ing side channels of residual system states. Advanced dynamic code reuse attacks exploit pre-
dictable patterns in executable memory to execute. Mimicry-style malware exploit predictability
in models to evade detection. Thus, defenses based on the moving-target principle of removing
predictability have proven fairly effective and robust. To push this defense paradigm further, I
think the time is ripe to build hardware that can, by design, inject unpredictability or randomness
into runtime states.

Hardware have always been designed with predictability of timing and execution states. This
determinism can potentially be removed by creating hardware that changes aspects of its microar-
chitectural characteristics each time a software program executes — i.e. the hardware is constantly
“in-flux”. Sethumadhavan et al. coin the term polymorphic hardware to describe such a shape-
shifting architecture [129]. It makes systems more resilence to attacks in two ways, namely, one,
by making it hard to gain initial runtime information to bootstrap attacks, and two, by making
any acquired knowledge of runtime information for attacks obsolete quickly. These in-flux ar-
chitectures assume that vulnerabilities and exploits are inevitable, and shift the defensive posture

from impenetrability to resiliency, which arguably may be more sustainable in the long term.

128

Bibliography

ARM. Power Management with big. LITTLE: A technical overview. https://community.
arm.com/processors/b/blog/posts/power-management-with-big-1
ittle-a-technical-overview. 2013.

ARM. “Security Technology - Building a Secure System using TrustZone Technology”. In:
ARM Technical White Paper (2009).

ARM. c9, Performance Monitor Control Register. http://infocenter.arm.com/help/
index . jsp?topic=/com.arm.doc.ddi0344b/Bgbdeggf . html. Cortex-A8 Technical
Reference Manual.

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. “Control-flow integrity prin-
ciples, implementations, and applications”. In: ACM Trans. Inf. Syst. Secur. 13.1 (Nov. 2009),
4:1-4:40. 1sSN: 1094-9224. por1: 10.1145/1609956 . 1609960. URL: http://doi . acm.
org/10.1145/1609956.1609960.

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. “Control-flow integrity”. In:
Proceedings of the 12th ACM conference on Computer and communications security. ACM.
2005, pp. 340-353.

Amazon. Processor State Control for Your EC2 Instance. http://docs.aws.amazon. com/
AWSEC2/latest/UserGuide/processor_state_control.html. Amazon AWS.

Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. “Innovative technology
for CPU based attestation and sealing”. In: Proceedings of the 2nd international workshop
on hardware and architectural support for security and privacy (HASP). Vol. 13. 2013.

Dennis Andriesse, Xi Chen, Victor van der Veen, Asia Slowinska, and Herbert Bos. “An In-

Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries™. In: 25th USENIX Security
Symposium (USENIX Security 16). USENIX Association, 2016, pp. 583-600.

129

https://community.arm.com/processors/b/blog/posts/power-management-with-big-l
https://community.arm.com/processors/b/blog/posts/power-management-with-big-l
ittle-a-technical-overview
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344b/Bgbdeggf.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344b/Bgbdeggf.html
http://dx.doi.org/10.1145/1609956.1609960
http://doi.acm.org/10.1145/1609956.1609960
http://doi.acm.org/10.1145/1609956.1609960
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html

[9]

[10]

[12]

(13]

[14]

Michalis Athanasakis, Elias Athanasopoulos, Michalis Polychronakis, Georgios Portoka-
lidis, and Sotiris Ioannidis. “The Devil is in the Constants: Bypassing Defenses in Browser
JIT Engines”. In: Proceedings of the 22nd Network and Distributed System Security Sympo-
sium (NDSS 2015). 2015.

Michael Backes and Stefan Nurnberger. “Oxymoron: Making fine-grained memory ran-
domization practical by allowing code sharing”. In: Proc. 23rd Usenix Security Sym (2014),
pp. 433-447.

Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nirnberger,
and Jannik Pewny. “You Can Run but You Can’T Read: Preventing Disclosure Exploits in
Executable Code”. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’14). ACM, 2014, pp. 1342-1353. 1sBN: 978-1-4503-2957-6.
por: 10.1145/2660267 . 2660378. URL: http://doi.acm.org/10.1145/2660267 .
2660378.

Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire Whelan.
“The sorcerer’s apprentice guide to fault attacks”. In: Proceedings of the IEEE 94.2 (2006),
pp. 370-382.

Alessandro Barenghi, Luca Breveglieri, Israel Koren, Gerardo Pelosi, and Francesco Regaz-
zoni. “Countermeasures against fault attacks on software implemented AES: effectiveness
and cost”. In: Proceedings of the 5th Workshop on Embedded Systems Security. ACM. 2010,

p-7.

Alessandro Barenghi, Guido Bertoni, Emanuele Parrinello, and Gerardo Pelosi. “Low volt-
age fault attacks on the RSA cryptosystem”. In: Fault Diagnosis and Tolerance in Cryptog-
raphy (FDTC), 2009 Workshop on. IEEE. 2009, pp. 23-31.

Jeff Barr. Now Available - New C4 Instances. https://aws . amazon.com/blogs/aws/
now-available-new-c4-instances/. Jan. 2015.

Sean Beaupre. TRUSTNONE - Signed comparison on unsigned user input. http : / /
theroot.ninja/disclosures/TRUSTNONE_1.0-11282015.pdf.

Gal Beniamini. Trust Issues: Exploiting TrustZone TEEs. https://googleprojectzero.
blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html. July
2017.

Alexandre Berzati, Cécile Canovas, and Louis Goubin. “Perturbating RSA public keys: An
improved attack”. In: International Workshop on Cryptographic Hardware and Embedded
Systems (CHES). Springer. 2008, pp. 380—395.

David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed Okhravi.
“Timely rerandomization for mitigating memory disclosures”. In: Proceedings of the 22nd

130

http://dx.doi.org/10.1145/2660267.2660378
http://doi.acm.org/10.1145/2660267.2660378
http://doi.acm.org/10.1145/2660267.2660378
https://aws.amazon.com/blogs/aws/now-available-new-c4-instances/
https://aws.amazon.com/blogs/aws/now-available-new-c4-instances/
http://theroot.ninja/disclosures/TRUSTNONE_1.0-11282015.pdf
http://theroot.ninja/disclosures/TRUSTNONE_1.0-11282015.pdf
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html

[22]

(23]

[24]

(27]

(28]

ACM SIGSAC Conference on Computer and Communications Security. ACM. 2015, pp. 268—
279.

Eli Biham, Yaniv Carmeli, and Adi Shamir. “Bug attacks”. In: Annual International Cryp-
tology Conference. Springer. 2008, pp. 221-240.

Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. “Jump-oriented program-
ming: a new class of code-reuse attack”. In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security. ACM. 2011, pp. 30-40.

Johannes Blomer, Ricardo Gomes Da Silva, Peter Gunther, Juliane Kriamer, and Jean-
Pierre Seifert. “A practical second-order fault attack against a real-world pairing imple-
mentation”. In: Fault Diagnosis and Tolerance in Cryptography (FDTC), 2014 Workshop on.
IEEE. 2014, pp. 123-136.

Dan Boneh. “Twenty years of attacks on the RSA cryptosystem”. In: Notices of the Amer-
ican Mathematical Society (AMS) 46.2 (1999), pp. 203-213.

Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On the Importance of Checking
Cryptographic Protocols for Faults”. In: Proceedings of the 16th Annual International Con-
ference on Theory and Application of Cryptographic Techniques. EUROCRYPT’97. Springer-
Verlag, 1997, pp. 37-51. 1SBN: 3-540-62975-0. URL: http://dl.acm.org/citation.cfm?
id=1754542.1754548.

Jean-Marie Borello and Ludovic Mé. “Code obfuscation techniques for metamorphic
viruses”. In: Journal in Computer Virology 4.3 (2008), pp. 211-220.

Yuriy Bulygin. Attacking and Defending BIOS in 2015. http://www.intelsecurity.
com / advanced - threat - research / content / AttackingAndDefendingBIOS -
RECon2015.pdf. 2015.

G. Canivet, P. Maistri, R. Leveugle, J. Clédiére, F. Valette, and M. Renaudin. “Glitch and
Laser Fault Attacks onto a Secure AES Implementation on a SRAM-Based FPGA”. In: Jour-
nal of Cryptology 24.2 (2011), pp. 247-268. 1ssN: 1432-1378. por: 10.1007/s00145-010-
9083-9. URL: http://dx.doi.org/10.1007/s00145-010-9083-9.

Miguel Castro, Manuel Costa, and Tim Harris. “Securing software by enforcing data-flow
integrity”. In: Proceedings of the 7th symposium on Operating systems design and imple-
mentation. USENIX Association. 2006, pp. 147-160.

Haibo Chen, Liwei Yuan, Xi Wu, Binyu Zang, Bo Huang, and Pen-Chung Yew. “Control
flow obfuscation with information flow tracking”. In: MICRO. 2009, pp. 391-400.

Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. “Non-control-
data Attacks Are Realistic Threats”. In: Proceedings of the 14th Conference on USENIX Secu-

131

http://dl.acm.org/citation.cfm?id=1754542.1754548
http://dl.acm.org/citation.cfm?id=1754542.1754548
http://www.intelsecurity.com/advanced-threat-research/content/AttackingAndDefendingBIOS-RECon2015.pdf
http://www.intelsecurity.com/advanced-threat-research/content/AttackingAndDefendingBIOS-RECon2015.pdf
http://www.intelsecurity.com/advanced-threat-research/content/AttackingAndDefendingBIOS-RECon2015.pdf
http://dx.doi.org/10.1007/s00145-010-9083-9
http://dx.doi.org/10.1007/s00145-010-9083-9
http://dx.doi.org/10.1007/s00145-010-9083-9

[32]

[34]

[35]

(36]

(38]

(39]

rity Symposium - Volume 14. SSYM’05. USENIX Association, 2005, pp. 12-12. URL: http:
//dl.acm.org/citation.cfm?id=1251398.1251410.

Shane S Clark, Benjamin Ransford, Amir Rahmati, Shane Guineau, Jacob Sorber, Kevin
Fu, and Wenyuan Xu. “WattsUpDoc: Power Side Channels to Nonintrusively Discover

Untargeted Malware on Embedded Medical Devices”. In: USENILX Workshop on Health In-
formation Technologies. Aug. 2013.

Stephen] Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen, Lucas
Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and Michael Franz. “It’s a
TRaP: Table randomization and protection against function-reuse attacks”. In: Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM.
2015, pp. 243-255.

Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen, Ahmad-
Reza Sadeghi, Stefan Brunthaler, and Michael Franz. “Readactor: Practical Code Random-
ization Resilient to Memory Disclosure”. In: 36th IEEE Symposium on Security and Privacy
(Oakland). May 2015.

Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz.
“Thwarting cache side-channel attacks through dynamic software diversity”. In: Network
And Distributed System Security Symposium, NDSS. Vol. 15. 2015.

Ang Cui, Michael Costello, and Salvatore J Stolfo. “When Firmware Modifications Attack:
A Case Study of Embedded Exploitation.” In: NDSS. 2013.

Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z Snow, and Fabian Mon-
rose. “Isomeron: Code randomization resilient to (just-in-time) return-oriented program-
ming”. In: Proc. 22nd Network and Distributed Systems Security Sym.(NDSS) (2015).

John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman, Simha
Sethumadhavan, and Salvatore Stolfo. “On the feasibility of online malware detection
with performance counters”. In: Proceedings of the 40th Annual International Symposium
on Computer Architecture. ISCA ’13. ACM, 2013, pp. 559-570. 1SBN: 978-1-4503-2079-5.
pol: 10.1145/2485922.2485970.

Zhui Deng, Xiangyu Zhang, and Dongyan Xu. “SPIDER: Stealthy Binary Program In-
strumentation and Debugging via Hardware Virtualization”. In: Proceedings of the 29th
Annual Computer Security Applications Conference. ACSAC ’13. New Orleans, Louisiana,
USA: ACM, 2013, pp. 289-298. 1SBN: 978-1-4503-2015-3.

Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Victor Lomné, and Florian
Mendel. “Statistical Fault Attacks on Nonce-Based Authenticated Encryption Schemes”.
In: Advances in Cryptology — ASIACRYPT 2016: 22nd International Conference on the The-
ory and Application of Cryptology and Information Security, Hanoi, Vietnam, December 4-8,

132

http://dl.acm.org/citation.cfm?id=1251398.1251410
http://dl.acm.org/citation.cfm?id=1251398.1251410
http://dx.doi.org/10.1145/2485922.2485970

[40]

[41]

[44]

[45]

[46]

(48]

[49]

[50]

2016, Proceedings, Part I. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 369-395. 1sBN: 978-3-662-53887-6. poI: 10. 1007/
978-3-662-53887-6_14. URL: http://dx.doi.org/10.1007/978-3-662-53887-
6_14.

R O Duda, P E Hart, and D G Stork. “Pattern Classification, New York: John Wiley &
Sons, 2001, pp. xx + 654”. In: J. Classif. 24.2 (Sept. 2007), pp. 305-307. 1SSN: 0176-4268. DOI:
10.1007/s00357-007-0015-9

Haakon Dybdahl, Per Gunnar Kjeldsberg, Marius Grannees, and Lasse Natvig.
“Destructive-read in Embedded DRAM, Impact on Power Consumption”. In: J. Embed-
ded Comput. 2.2 (Apr. 2006), pp. 249-260. 1sSN: 1740-4460. URL: http://dl.acm.org/
citation.cfm?id=1370998.1371000.

Jake Edge. KS2012: ARM: Secure monitor APL https://lwn.net/Articles/513756/.
Aug. 2012

Jan-Erik Ekberg and Kari Kostiainen. Trusted Execution Environments on Mobile Devices.
https://www. cs . helsinki . fi / group/ secures/CCS - tutorial / tutorial -
slides.pdf. ACM CCS 2013 tutorial. Nov. 2013.

Isaac Evans, Sam Fingeret, Julidn Gonzalez, Ulziibayar Otgonbaatar, Tiffany Tang,
Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed Okhravi. “Miss-
ing the Point(er): On the Effectiveness of Code Pointer Integrity”. In: 36th IEEE Symposium
on Security and Privacy (Oakland). May 2015.

Stephen Fewer. Reflective DLL Injection. http://www.harmonysecurity.com/files/
HS-P005_ReflectiveDllInjection.pdf. Oct. 2008.

Firmware update for Nexus 6 (shamu). https://dl.google.com/dl/android/aosp/
shamu-mob31s-factory-c73a35ef .zip. Factory Images for Nexus and Pixel Devices.

Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji, and Thomas A Longstaff. “A sense
of self for unix processes”. In: 1996 IEEE Symposium on Security and Privacy. 1996, pp. 120—
128.

Jeff Forristal. Hardware Involved Software Attacks. http://forristal.com/material/
Forristal_Hardware_Involved_Software_Attacks.pdf. 2012.

Fyyre. Disable PatchGuard - the easy/lazy way. http : //fyyre . ivory - tower . de/
projects/bootloader.txt. 2011.

Tal Garfinkel, Mendel Rosenblum, et al. “A Virtual Machine Introspection Based Archi-
tecture for Intrusion Detection.” In: NDSS. Vol. 3. 2003, pp. 191-206.

133

http://dx.doi.org/10.1007/978-3-662-53887-6_14
http://dx.doi.org/10.1007/978-3-662-53887-6_14
http://dx.doi.org/10.1007/978-3-662-53887-6_14
http://dx.doi.org/10.1007/978-3-662-53887-6_14
http://dx.doi.org/10.1007/s00357-007-0015-9
http://dl.acm.org/citation.cfm?id=1370998.1371000
http://dl.acm.org/citation.cfm?id=1370998.1371000
https://lwn.net/Articles/513756/
https://www.cs.helsinki.fi/group/secures/CCS-tutorial/tutorial-slides.pdf
https://www.cs.helsinki.fi/group/secures/CCS-tutorial/tutorial-slides.pdf
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf
https://dl.google.com/dl/android/aosp/shamu-mob31s-factory-c73a35ef.zip
https://dl.google.com/dl/android/aosp/shamu-mob31s-factory-c73a35ef.zip
http://forristal.com/material/Forristal_Hardware_Involved_Software_Attacks.pdf
http://forristal.com/material/Forristal_Hardware_Involved_Software_Attacks.pdf
http://fyyre.ivory-tower.de/projects/bootloader.txt
http://fyyre.ivory-tower.de/projects/bootloader.txt

[51]

[52]

[55]

[56]

Jason Gionta, William Enck, and Peng Ning. “HideM: Protecting the Contents of
Userspace Memory in the Face of Disclosure Vulnerabilities”. In: Proceedings of the 5th
ACM Conference on Data and Application Security and Privacy. CODASPY ’15. 2015,
pp. 325-336.

Carlos R Aguayo Gonzalez and Jeffrey H Reed. “Detecting unauthorized software exe-
cution in SDR using power fingerprinting”. In: MILITARY COMMUNICATIONS CONFER-
ENCE, 2010-MILCOM 2010. IEEE. 2010, pp. 2211-2216.

Google. Multiplatform Content Protection for Internet Video Delivery. https : / / wuw .
widevine.com/wv_drm.html. Widevine DRM.

Sudhakar Govindavajhala and Andrew W. Appel. “Using Memory Errors to Attack a Vir-
tual Machine”. In: Proceedings of the 2003 IEEE Symposium on Security and Privacy (S&P),
pp- 154-165.

Michael Gruhn and Tim Muller. “On the practicability of cold boot attacks”. In: Availabil-
ity, Reliability and Security (ARES), 2013 Eighth International Conference on. IEEE. 2013,
pp. 390-397.

Daniel Gruss, Clémentine Maurice, and Stefan Mangard. “Rowhammer. js: A remote
software-induced fault attack in javascript”. In: Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2016, pp. 300-321.

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. “Cache Template Attacks: Automat-
ing Attacks on Inclusive Last-Level Caches”. In: 24th USENIX Security Symposium (USENIX
Security 15). Washington, D.C.: USENIX Association, 2015, pp. 897-912.

J Alex Halderman, Seth D Schoen, Nadia Heninger, William Clarkson, William Paul,
Joseph A Calandrino, Ariel J Feldman, Jacob Appelbaum, and Edward W Felten. “Lest
we remember: cold-boot attacks on encryption keys”. In: Communications of the ACM
52.5 (2009), pp. 91-98.

Per Hammarlund, Rajesh Kumar, Randy B Osborne, Ravi Rajwar, Ronak Singhal, Reynold
D’Sa, Robert Chappell, Shiv Kaushik, Srinivas Chennupaty, Stephan Jourdan, et al.
“Haswell: The fourth-generation Intel core processor”. In: IEEE Micro 2 (2014), pp. 6—20.

Maurice Herlihy and J Eliot B Moss. Transactional memory: Architectural support for lock-
free data structures. Vol. 21. 2. ACM, 1993.

Johannes Hoffmann, Stephan Neumann, and Thorsten Holz. “Mobile Malware Detection

Based on Energy Fingerprints: A Dead End?” In: Research in Attacks, Intrusions, and De-
fenses. Springer, 2013, pp. 348-368.

134

https://www.widevine.com/wv_drm.html
https://www.widevine.com/wv_drm.html

[62]

[63]

[64]

[66]

[67]

[72]

Steven A Hofmeyr, Stephanie Forrest, and Anil Somayaji. “Intrusion detection using se-
quences of system calls”. In: Journal of computer security 6.3 (1998), pp. 151-180.

Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz. “Librando: trans-
parent code randomization for just-in-time compilers”. In: Proceedings of the 2013 ACM
SIGSAC conference on Computer & Communications Security. ACM. 2013, pp. 993-1004.

K. Hoste and L. Eeckhout. “Comparing Benchmarks Using Key Microarchitecture-
Independent Characteristics”. In: Workload Characterization, 2006 IEEE International Sym-
posium on. IEEE, Oct. 2006, pp. 83—-92. 1SBN: 1-4244-0508-4. po1: 10.1109/iiswc.2006.
302732.

Nguyen Minh Huu, Bruno Robisson, Michel Agoyan, and Nathalie Drach. “Low-cost re-
covery for the code integrity protection in secure embedded processors”. In: Hardware-
Oriented Security and Trust (HOST), 2011 IEEE International Symposium on. IEEE. 2011,
pp- 99-104.

Intel. Behind Intel’s New Random-Number Generator. https ://spectrum. ieee . org/
computing/hardware/behind-intels-new-randomnumber-generator. Aug. 2011.

Intel. Control-flow Enforcement Technology Preview. https://software. intel. com/
sites/default/files/managed/4d/2a/control-flow-enforcementtechnology-
preview.pdf. June 2016.

Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual - Volume 3C. 2014.

Intel. Intel Software Guard Extensions (Intel SGX). https://software.intel.com/en-
us/sgx.

Intel. Intel Transactional Synchronization Extensions (Intel TSX) Overview. https : / /
software.intel.com/en-us/node/524022.

Intel. Intel® Advanced Encryption Standard Instructions (AES-NI). https://software.
intel . com / en - us / articles / intel - advanced - encryption - standard -
instructions-aes-ni. Feb. 2012.

Intel. The Engine for Digital Transformation in the Data Center. http : //www . intel .
com/content/dam/www/public/us/en/documents/product-briefs/xeon-eb-
brief .pdf. Intel Product Brief.

Brian Jeff. “big.LITTLE system architecture from arm: Saving power through heteroge-

neous multiprocessing and task context migration”. In: Proceedings of the 49th Annual
Design Automation Conference (DAC). ACM. 2012, pp. 1143-1146.

135

http://dx.doi.org/10.1109/iiswc.2006.302732
http://dx.doi.org/10.1109/iiswc.2006.302732
https://spectrum.ieee.org/computing/hardware/behind-intels-new-randomnumber-generator
https://spectrum.ieee.org/computing/hardware/behind-intels-new-randomnumber-generator
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/node/524022
https://software.intel.com/en-us/node/524022
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-e5-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-e5-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-e5-brief.pdf

[74]

[75]

[76]

[84]

Mehmet Kayaalp, Timothy Schmitt, Junaid Nomani, Dmitry Ponomarev, and Nael B Abu-
Ghazaleh. “SCRAP: Architecture for signature-based protection from Code Reuse At-
tacks.” In: HPCA. 2013, pp. 258-269.

Gaurav S Kc, Angelos D Keromytis, and Vassilis Prevelakis. “Countering code-injection
attacks with instruction-set randomization”. In: Proceedings of the 10th ACM conference on
Computer and communications security. ACM. 2003, pp. 272-280.

Chongkyung Kil, Jinsuk Jim, Christopher Bookholt, Jun Xu, and Peng Ning. “Address
space layout permutation (ASLP): Towards fine-grained randomization of commodity
software”. In: Computer Security Applications Conference, 2006. ACSAC’06. 22nd Annual.
IEEE. 2006, pp. 339-348.

Hahnsang Kim, Joshua Smith, and Kang G. Shin. “Detecting Energy-greedy Anomalies
and Mobile Malware Variants™. In: Proceedings of the 6th International Conference on Mobile
Systems, Applications, and Services. MobiSys 08. ACM, 2008. po1: 10 .1145/1378600 .
1378627. URL: http://doi.acm.org/10.1145/1378600.1378627.

Hahnsang Kim, Joshua Smith, and Kang G Shin. “Detecting energy-greedy anomalies and
mobile malware variants”. In: Proceedings of the 6th international conference on Mobile
systems, applications, and services. ACM. 2008, pp. 239-252.

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu.
“Flipping bits in memory without accessing them: An experimental study of DRAM dis-
turbance errors”. In: 2014 ACM/IEEE 41st International Symposium on Computer Architec-
ture (ISCA). June 2014, pp. 361-372.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilk-
erson, Konrad Lai, and Onur Mutlu. “Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors™. In: Proceeding of the 41st annual inter-
national symposium on Computer architecuture. IEEE Press. 2014, pp. 361-372.

Cetin Kaya Koc. High-speed RSA implementation. Tech. rep. Technical Report, RSA Labo-
ratories, 1994.

Paul C Kocher. “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems”. In: Advances in Cryptology - CRYPTO’96. Springer. 1996, pp. 104-113.

Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. “Spectre Attacks:
Exploiting Speculative Execution”. In: ArXiv e-prints (Jan. 2018). arXiv: 1801.01203.

Deguang Kong, Donghai Tian, Peng Liu, and Dinghao Wu. “SA3: Automatic semantic
aware attribution analysis of remote exploits”. In: Security and Privacy in Communication

Networks. Springer, 2012, pp. 190-208.

136

http://dx.doi.org/10.1145/1378600.1378627
http://dx.doi.org/10.1145/1378600.1378627
http://doi.acm.org/10.1145/1378600.1378627
http://arxiv.org/abs/1801.01203

(85]

[96]

Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar, and
Dawn Song. “Code-Pointer Integrity”. In: 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14). 2014.

Hendrik W Lenstra Jr. “Factoring integers with elliptic curves”. In: Annals of mathematics
(1987), pp. 649-673.

Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clementine Maurice, and Stefan Mangard.
“ARMageddon: Cache Attacks on Mobile Devices”. In: 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX, 2016, pp. 549-564.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan Man-
gard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. “Meltdown”. In:
ArXiv e-prints (Jan. 2018). arXiv: 1801.01207.

ARM Ltd. ARM Trustzone. https://www.arm. com/products/security-on-arm/
trustzone.

Pei Luo, Chao Luo, and Yunsi Fei. System Clock and Power Supply Cross-Checking for Glitch
Detection. Cryptology ePrint Archive, Report 2016/968. http: //eprint . iacr . org/
2016/968. 2016.

Dan Luu. We saw some really bad Intel CPU bugs in 2015, and we should expect to see more
in the future. http://danluu. com/cpu-bugs/. Jan. 2016.

MITRE. Heartbleed - CVE-2014-0160. https://cve .mitre.org/cgi-bin/cvenane.
cgi?name=CVE-2014-0160. 2014.

MSM Subsystem Power Manager (spm-v2). https : / / android . googlesource . com/
kernel/msm.git/+/android-msm-shamu-3.10-1lollipop-mrl/Documentation/
devicetree/bindings/arm/msm/spm-v2.txt. Git at Google.

Matthew V Mahoney. “Network traffic anomaly detection based on packet bytes”. In: Pro-
ceedings of the 2003 ACM symposium on Applied computing. 2003, pp. 346—350.

Corey Malone, Mohamed Zahran, and Ramesh Karri. “Are hardware performance coun-
ters a cost effective way for integrity checking of programs”. In: Proceedings of the sixth
ACM workshop on Scalable trusted computing. STC ’11. Chicago, Illinois, USA: ACM, 2011,
pp. 71-76. 1sBN: 978-1-4503-1001-7. por: 10.1145/2046582.2046596.

Carla Marceau. “Characterizing the behavior of a program using multiple-length n-

grams”. In: Proceedings of the 2000 workshop on New security paradigms. ACM. 2001,
pp- 101-110.

137

http://arxiv.org/abs/1801.01207
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
http://eprint.iacr.org/2016/968
http://eprint.iacr.org/2016/968
http://danluu.com/cpu-bugs/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://android.googlesource.com/kernel/msm.git/+/android-msm-shamu-3.10-lollipop-mr1/Documentation/devicetree/bindings/arm/msm/spm-v2.txt
https://android.googlesource.com/kernel/msm.git/+/android-msm-shamu-3.10-lollipop-mr1/Documentation/devicetree/bindings/arm/msm/spm-v2.txt
https://android.googlesource.com/kernel/msm.git/+/android-msm-shamu-3.10-lollipop-mr1/Documentation/devicetree/bindings/arm/msm/spm-v2.txt
http://dx.doi.org/10.1145/2046582.2046596

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied
Cryptography. 1st. Boca Raton, FL, USA: CRC Press, Inc., 1996. 1sSBN: 0849385237.

Microsoft. Asynchronous Procedure Calls. https : //msdn . microsoft . com/en-us/
library/windows/desktop/ms681951 (v=vs.85) .aspx.

Microsoft. Windows Resource Protection. https : / /msdn . microsoft . com/en-us/
library/windows/desktop/cc185681(v=vs.85) .aspx.

Frederic P. Miller, Agnes F. Vandome, and John McBrewster. Advanced Encryption Stan-
dard. Alpha Press, 2009. 1SBN: 6130268297, 9786130268299.

Mobile Hardware Stats 2016-09. http://hwstats . unity3d. com/mobile/cpu. html.
Unity. Sept. 2016.

Peter L Montgomery. “Modular multiplication without trial division”. In: Mathematics of
computation 44.170 (1985), pp. 519-521.

Micah Morton, Hyungjoon Koo, Forrest Li, Kevin Z. Snow, Michalis Polychronakis, and
Fabian Monrose. “Defeating Zombie Gadgets by Re-randomizing Code upon Disclo-
sure”. In: Engineering Secure Software and Systems: 9th International Symposium, ESS0S
2017, Bonn, Germany, July 3-5, 2017, Proceedings. Springer International Publishing, 2017,
pp. 143-160.

Nexus 6 Qualcomm-stipulated OPP. https://android . googlesource . com/kernel/
msm/+/android-msm-shamu-3.10-1ollipop-mrl/arch/arm/boot/dts/qcom/
apq8084.dtsi. Git at Google.

Colin O’Flynn. Fault Injection using Crowbars on Embedded Systems. Tech. rep. IACR Cryp-
tology ePrint Archive, 2016.

Venkatesh Pallipadi and Alexey Starikovskiy. “The ondemand governor”. In: Proceedings
of the Linux Symposium. Vol. 2. 00216. sn. 2006, pp. 215-230.

Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. “Smashing the gadgets:
Hindering return-oriented programming using in-place code randomization™. In: Security
and Privacy (SP), 2012 IEEE Symposium on. IEEE. 2012, pp. 601-615.

Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. “Transparent ROP
exploit mitigation using indirect branch tracing”. In: Proceedings of the 22nd USENIX con-
ference on Security (USENIX ’13). USENIX Association, 2013, pp. 447-462.

David A. Patterson and John L. Hennessy. Computer Architecture: A Quantitative Ap-
proach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990. 1sBN: 1-55880-
069-8.

138

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/cc185681(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/cc185681(v=vs.85).aspx
http://hwstats.unity3d.com/mobile/cpu.html
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/arch/arm/boot/dts/qcom/apq8084.dtsi
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/arch/arm/boot/dts/qcom/apq8084.dtsi
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/arch/arm/boot/dts/qcom/apq8084.dtsi

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Sean Peisert, Matt Bishop, Sidney Karin, and Keith Marzullo. “Analysis of computer in-
trusions using sequences of function calls”. In: Dependable and Secure Computing, IEEE
Transactions on 4.2 (2007), pp. 137-150.

Gabor Pek, Andrea Lanzi, Abhinav Srivastava, Davide Balzarotti, Aurelien Francillon, and
Christoph Neumann. “On the feasibility of software attacks on commodity virtual ma-
chine monitors via direct device assignment”. In: Proceedings of the 9th ACM symposium
on Information, computer and communications security. ACM. 2014, pp. 305-316.

Jannik Pewny, Philipp Koppe, Lucas Davi, and Thorsten Holz. “Breaking and Fixing De-
structive Code Read Defenses”. In: Proceedings of 33nd Annual Computer Security Appli-
cations Conference (ACSAC). 2017.

Pinkie Pie. Mobile Pwn20wn Autumn 2013 - Chrome on Android - Exploit Writeup. 2013.

Michalis Polychronakis, Kostas G Anagnostakis, and Evangelos P Markatos. “Compre-
hensive shellcode detection using runtime heuristics”. In: Proceedings of the 26th Annual
Computer Security Applications Conference. ACM. 2010, pp. 287-296.

Michalis Polychronakis, Kostas G Anagnostakis, and Evangelos P Markatos. “Emulation-
based detection of non-self-contained polymorphic shellcode”. In: Recent Advances in In-
trusion Detection. Springer. 2007, pp. 87-106.

QSEECOM source code. https : / / android . googlesource . com/ kernel /msm/ +/
android -msm- shamu-3.10-1lollipop-mrl/drivers/misc/qgseecom. c. Git at
Google.

Qualcomm Krait PMIC frequency driver source code. https://android.googlesource.
com/kernel/msm/+/android-msm-shamu-3.10-1lollipop-mrl/drivers/clk/
qcom/clock-krait.c. Git at Google.

Qualcomm Krait PMIC voltage regulator driver source code. https : / / android .
googlesource . com/ kernel /msm/ +/android - msm - shamu-3 . 10-1lollipop -
mrl/arch/arm/mach-msm/krait-regulator.c. Git at Google.

Qualcomm. Qualcomm Announces Breakthrough Mobile Anti-malware Technology Utiliz-
ing Cognitive Computing. https://www.qualcomm. com/news/releases/2015/08/
31/qualcomm- announces - breakthrough-mobile-anti-malware-technology-
utilizing. Aug. 2015.

Qualcomm. Secure Boot and Image Authentication - Technical Overview. https : / /

www . qualcomm . com / documents / secure - boot - and - image - authentication -
technical-overview. Oct. 2016.

139

https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/drivers/misc/qseecom.c
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/drivers/misc/qseecom.c
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/drivers/clk/qcom/clock-krait.c
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/drivers/clk/qcom/clock-krait.c
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/drivers/clk/qcom/clock-krait.c
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/arch/arm/mach-msm/krait-regulator.c
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/arch/arm/mach-msm/krait-regulator.c
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/arch/arm/mach-msm/krait-regulator.c
https://www.qualcomm.com/news/releases/2015/08/31/qualcomm-announces-breakthrough-mobile-anti-malware-technology-utilizing
https://www.qualcomm.com/news/releases/2015/08/31/qualcomm-announces-breakthrough-mobile-anti-malware-technology-utilizing
https://www.qualcomm.com/news/releases/2015/08/31/qualcomm-announces-breakthrough-mobile-anti-malware-technology-utilizing
https://www.qualcomm.com/documents/secure-boot-and-image-authentication-technical-overview
https://www.qualcomm.com/documents/secure-boot-and-image-authentication-technical-overview
https://www.qualcomm.com/documents/secure-boot-and-image-authentication-technical-overview

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

Qualcomm. Snapdragon 54 Processors: System on Chip Solutions for a New Mobile Age.
https://www.qualcomm. com/documents/snapdragon-s4-processors-system—
chip-soluti

ons-new-mobile-age. July 2013.

Qualcomm. Whitepaper: Pointer Authentication on ARMv8.3. https://www.qualcomm.
com/documents/whitepaper-pointer-authentication-armv83. Jan. 2017.

Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuflrida, and Herbert Bos.
“Flip Feng Shui: Hammering a Needle in the Software Stack”. In: 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX, 2016, pp. 1-18.

Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A method for obtaining digital signa-
tures and public-key cryptosystems”. In: Communications of the ACM 21.2 (1978), pp. 120—
126.

STMicroelectronics. E-fuses. http://www.st.com/en/power-management/e-fuses.
html?querycriteria=productId=SC1532. How-swap power management.

Mark Seaborn and Thomas Dullien. “Exploiting the DRAM rowhammer bug to gain kernel
privileges”. In: Black Hat (2015).

Jeff Seibert, Hamed Okkhravi, and Eric Soderstrom. “Information leaks without memory
disclosures: Remote side channel attacks on diversified code”. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. ACM. 2014, pp. 54—
65.

R Sekar, Mugdha Bendre, Dinakar Dhurjati, and Pradeep Bollineni. “A fast automaton-
based method for detecting anomalous program behaviors”. In: Security and Privacy, 2001.
S&P 2001. Proceedings. 2001 IEEE Symposium on. IEEE. 2001, pp. 144-155.

Simha Sethumadhavan, Salvatore J Stolfo, Angelos Keromytis, Junfeng Yang, and David
August. “The sparchs project: Hardware support for software security”. In: SysSec Work-
shop (SysSec), 2011 First. IEEE. 2011, pp. 119-122.

Hovav Shacham. “The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86)”. In: Proceedings of the 14th ACM conference on Computer and
communications security. ACM. 2007, pp. 552-561.

Findlay Shearer. Power Management in Mobile Devices. Newnes, 2011.

Kai Shen, Ming Zhong, Sandhya Dwarkadas, Chuanpeng Li, Christopher Stewart, and

Xiao Zhang. “Hardware counter driven on-the-fly request signatures”. In: Proceedings of
the 13th international conference on Architectural support for programming languages and

140

https://www.qualcomm.com/documents/snapdragon-s4-processors-system-chip-soluti
https://www.qualcomm.com/documents/snapdragon-s4-processors-system-chip-soluti
ons-new-mobile-age
http://www.st.com/en/power-management/e-fuses.html?querycriteria=productId=SC1532
http://www.st.com/en/power-management/e-fuses.html?querycriteria=productId=SC1532

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

operating systems. ASPLOS XIII. ACM, 2008, pp. 189-200. 1SBN: 978-1-59593-958-6. DOI:
10.1145/1346281.1346306.

Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. “Just-in-time code reuse: On the effectiveness of
fine-grained address space layout randomization”. In: Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE. 2013, pp. 574-588.

Kevin Z Snow, Roman Rogowski, Jan Werner, Hyungjoon Koo, Fabian Monrose, and
Michalis Polychronakis. “Return to the zombie gadgets: Undermining destructive code
reads via code inference attacks”. In: Proceedings of the 2016 IEEE Symposium on Security
and Privacy. IEEE. 2016.

Anil Somayaji and Stephanie Forrest. “Automated response using system-call delays”. In:
Proceedings of the 9th USENIX Security Symposium. Vol. 70. 2000.

Chengyu Song, Chao Zhang, Tielei Wang, Wenke Lee, and David Melski. “Exploiting and
protecting dynamic code generation”. In: Proceedings of the 2015 Network and Distributed
System Security (NDSS) Symposium. 2015.

Sherri Sparks and Jamie Butler. Raising The Bar For Windows Rootkit Detection. http :
//phrack.org/issues/63/8.html. 2005.

Brinkley Sprunt. “Pentium 4 performance-monitoring features”. In: Ieee Micro 22.4 (2002),
pp. 72-82.

Z Stamenkovi¢, V Petrovi¢, and G Schoof. “Fault-tolerant ASIC: Design and implementa-
tion”. In: Facta universitatis-series: Electronics and Energetics 26.3 (2013), pp. 175-186.

Patrick Stewin. “A Primitive for Revealing Stealthy Peripheral-Based Attacks on the
Computing Platform’s Main Memory”. In: Research in Attacks, Intrusions, and Defenses.
Springer, 2013, pp. 1-20.

Patrick Stewin and Iurii Bystrov. “Understanding DMA malware”. In: Detection of Intru-
sions and Malware, and Vulnerability Assessment. Springer, 2013, pp. 21-41.

Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lachmund, and
Thomas Walter. “Breaking the memory secrecy assumption”. In: Proceedings of the Second
European Workshop on System Security. ACM. 2009, pp. 1-8.

Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “SoK: Eternal War in Memory”.
In: Proceedings of the 2013 IEEE Symposium on Security and Privacy. SP ’13. Washington,
DC, USA: IEEE Computer Society, 2013, pp. 48-62. 1SBN: 978-0-7695-4977-4. por1: 10 .
1109/SP.2013.13. URL: http://dx.doi.org/10.1109/SP.2013.13.

141

http://dx.doi.org/10.1145/1346281.1346306
http://phrack.org/issues/63/8.html
http://phrack.org/issues/63/8.html
http://dx.doi.org/10.1109/SP.2013.13
http://dx.doi.org/10.1109/SP.2013.13
http://dx.doi.org/10.1109/SP.2013.13

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

Peter Szor. The art of computer virus research and defense. Pearson Education, 2005.

Adrian Tang, Simha Sethumadhavan, and Salvatore J Stolfo. “Unsupervised anomaly-
based malware detection using hardware features”. In: International Workshop on Recent
Advances in Intrusion Detection. Springer. 2014, pp. 109-129.

Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. “CLKSCREW: Exposing the
Perils of Security-Oblivious Energy Management”. In: 26th USENIX Security Symposium
(USENIX Security 17). USENIX Association, 2017, pp. 1057-1074.

Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. “Heisenbyte: Thwarting mem-
ory disclosure attacks using destructive code reads”. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM. 2015, pp. 256-267.

PaX Team. PaX address space layout randomization (ASLR). 2003.

David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John
Mitchell, and Mark Horowitz. “Architectural Support for Copy and Tamper Resistant Soft-
ware”. In: Proceedings of the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS IX. Cambridge, Massachusetts,
USA: ACM, 2000, pp. 168-177. 1sBN: 1-58113-317-0. po1: 10.1145/378993.379237. URL:
http://doi.acm.org/10.1145/378993.379237.

David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John
Mitchell, and Mark Horowitz. “Architectural Support for Copy and Tamper Resistant Soft-
ware”. In: Proceedings of the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS IX. Cambridge, Massachusetts,
USA: ACM, 2000, pp. 168-177. 1sBN: 1-58113-317-0. po1: 10.1145/378993.379237. URL:
http://doi.acm.org/10.1145/378993.379237.

Jacob Torrey. More shadow walker: Tlb-splitting on modern x86. Blackhat USA. 2014.
Xeno Kovah Trammell Hudson and Corey Kallenberg. Thunderstrike 2: Sith Strike - A Mac-
Book firmware worm. https://www.blackhat.com/docs/us-15/materials/us-15-
Hudson-Thunderstrike-2-Sith-Strike.pdf. Aug. 2015.

TrendMicro. The Crimeware Evolution (Research Whitepaper). 2012.

Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. “Differential Fault Analysis of
the Advanced Encryption Standard using a Single Fault”. In: IFIP International Workshop
on Information Security Theory and Practices. Springer. 2011, pp. 224-233.

P.C. Van Oorschot, A. Somayaji, and G. Wurster. “Hardware-assisted circumvention of

self-hashing software tamper resistance”. In: Dependable and Secure Computing, IEEE
Transactions on 2.2 (2005), pp. 82-92. 1sSN: 1545-5971. por: 10.1109/TDSC. 2005 . 24.

142

http://dx.doi.org/10.1145/378993.379237
http://doi.acm.org/10.1145/378993.379237
http://dx.doi.org/10.1145/378993.379237
http://doi.acm.org/10.1145/378993.379237
https://www.blackhat.com/docs/us-15/materials/us-15-Hudson-Thunderstrike-2-Sith-Strike.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Hudson-Thunderstrike-2-Sith-Strike.pdf
http://dx.doi.org/10.1109/TDSC.2005.24

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clementine
Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida. “Dram-
mer: Deterministic Rowhammer Attacks on Mobile Platforms”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security (CCS). Nov. 2016.
URL: https://vvdveen.com/publications/drammer.pdf.

Rajesh Velegalati, Kinjal Shah, and Jens-Peter Kaps. “Glitch Detection in Hardware Im-
plementations on FPGAs Using Delay Based Sampling Techniques”. In: Proceedings of the
2013 Euromicro Conference on Digital System Design. DSD "13. Washington, DC, USA: I[EEE
Computer Society, 2013, pp. 947-954. 1SBN: 978-1-4799-2978-8. por: 10.1109/DSD.2013.
107. urL: http://dx.doi.org/10.1109/DSD.2013.107.

Bo Wang, Leibo Liu, Chenchen Deng, Min Zhu, Shouyi Yin, and Shaojun Wei. “Against
Double Fault Attacks: Injection Effort Model, Space and Time Randomization Based
Countermeasures for Reconfigurable Array Architecture”. In: IEEE Transactions on Infor-
mation Forensics and Security 11.6 (2016), pp. 1151-1164.

Ke Wang, Janak] Parekh, and Salvatore] Stolfo. “Anagram: A content anomaly detector
resistant to mimicry attack” In: Recent Advances in Intrusion Detection. Springer. 2006,
pp- 226-248.

Xueyang Wang and Ramesh Karri. “NumChecker: Detecting kernel control-flow modify-
ing rootkits by using hardware performance counters”. In: Proceedings of the 50th Annual
Design Automation Conference. DAC ’13. Austin, Texas: ACM, 2013, 79:1-79:7. 1SBN: 978-
1-4503-2071-9. por: 10.1145/2463209.2488831.

Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and Zhigiang Lin. “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code”. In: Proceedings of the
2012 ACM conference on Computer and communications security. ACM. 2012, pp. 157-168.

Richard Wartell, Yan Zhou, Kevin W Hamlen, Murat Kantarcioglu, and Bhavani Thurais-
ingham. “Differentiating code from data in x86 binaries”. In: Machine Learning and Knowl-
edge Discovery in Databases. Springer, 2011, pp. 522-536.

Vincent M Weaver. Advanced Hardware Profiling and Sampling (PEBS, IBS, etc.): Creating
a New PAPI Sampling Interface. Aug. 2016.

Vincent M Weaver and Sally A McKee. “Can hardware performance counters be trusted?”
In: Workload Characterization, 2008. ISWC 2008. IEEE International Symposium on. IEEE.
2008, pp. 141-150.

Vincent M Weaver, Dan Terpstra, and Shirley Moore. “Non-determinism and overcount
on modern hardware performance counter implementations”. In: Performance Analysis of
Systems and Software (ISPASS), 2013 IEEE International Symposium on. IEEE. 2013, pp. 215—
224.

143

https://vvdveen.com/publications/drammer.pdf
http://dx.doi.org/10.1109/DSD.2013.107
http://dx.doi.org/10.1109/DSD.2013.107
http://dx.doi.org/10.1109/DSD.2013.107
http://dx.doi.org/10.1145/2463209.2488831

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

Ralf-Philipp Weinmann. Concurrency: A problem and opportunity in the exploitation of
memory corruptions. https : / / cansecwest . com/ slides /2014 / rpw - csw2014 -
merged.pdf. 2014.

Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. “Scheduling for Reduced
CPU Energy”. In: Proceedings of the 1st USENLX Conference on Operating Systems Design
and Implementation (OSDI). 1994.

Jan Werner, George Baltas, Rob Dallara, Nathan Otterness, Kevin Z Snow, Fabian Mon-
rose, and Michalis Polychronakis. “No-execute-after-read: Preventing code disclosure in
commodity software”. In: Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security. ACM. 2016, pp. 35-46.

Wikipedia. Shellcode. https://en.wikipedia.org/wiki/Shellcode.

David Williams-King, Graham Gobieski, Kent Williams-King, James P. Blake, Xinhao
Yuan, Patrick Colp, Michelle Zheng, Vasileios P. Kemerlis, Junfeng Yang, and William
Aiello. “Shuffler: Fast and Deployable Continuous Code Re-Randomization”. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). USENIX
Association, 2016, pp. 367-382.

Rafal Wojtczuk. “Poacher turned gamekeeper: Lessons learned from eight years of break-
ing hypervisors”. In: Black Hat. 2014.

Rafal Wojtczuk and Corey Kallenberg. Attacks on UEFI Security. https://bromiumlabs.
files.wordpress.com/2015/01/attacksonuefi_slides.pdf. 2015.

Rafal Wojtczuk and Alexander Tereshkin. Attacking Intel BIOS. http://www.blackhat.
com/presentations/bh-usa-09/WOJTCZUK/BHUSAO9-Wojtczuk-AtkIntelBios-
SLIDES.pdf. Aug. 2009.

Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. “CFIMon: Detecting violation of con-
trol flow integrity using performance counters”. In: Proceedings of the 2012 42nd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). DSN ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 1-12. 1SBN: 978-1-4673-1624-8.

Yuval Yarom and Katrina Falkner. “FLUSH+RELOAD: A High Resolution, Low Noise, L3
Cache Side-Channel Attack”. In: 23rd USENIX Security Symposium (USENIX Security 14).
2014, pp. 719-732. 1SBN: 978-1-931971-15-7.

Liwei Yuan, Weichao Xing, Haibo Chen, and Binyu Zang. “Security breaches as PMU devi-

ation: detecting and identifying security attacks using performance counters”. In: APSys.
2011, p. 6.

144

https://cansecwest.com/slides/2014/rpw-csw2014-merged.pdf
https://cansecwest.com/slides/2014/rpw-csw2014-merged.pdf
https://en.wikipedia.org/wiki/Shellcode
https://bromiumlabs.files.wordpress.com/2015/01/attacksonuefi_slides.pdf
https://bromiumlabs.files.wordpress.com/2015/01/attacksonuefi_slides.pdf
http://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf
http://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf
http://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf

[177]

[178]

Xiaokuan Zhang, Yuan Xiao, and Yingian Zhang. “Return-Oriented Flush-Reload Side
Channels on ARM and Their Implications for Android Devices”. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security (CCS). 2016.

btarunr. Rejoice! Base Clock Overclocking to Make a Comeback with Skylake. https://

www . techpowerup.com/218315/rejoice-base-clock-overclocking-to-make-a-
comeback-with-skylake. TechPowerup. 2015.

145

https://www.techpowerup.com/218315/rejoice-base-clock-overclocking-to-make-a-comeback-with-skylake
https://www.techpowerup.com/218315/rejoice-base-clock-overclocking-to-make-a-comeback-with-skylake
https://www.techpowerup.com/218315/rejoice-base-clock-overclocking-to-make-a-comeback-with-skylake

Appendix

A.1 Example Glitch in RSA Modulus

Original Modulus N:
...f3ba...

Corrupted Modulus N 4:

c44dc735£6682a261a0b8545262dd13df4c646abeded82cef85892 bbaal811£a0284766b3d1d2b4d6893df4d9c045ef e3e84d8c5d036
31b25420£1231d8211e2322eb7eb524dabc1e8fbdc3aedasi5cal3 d1e0591£5c64e8e711b3726215cec59ed0ebe6bb042b917d445288
87915£df764d£691d183e16£31baled94c84baT6e74b488463e855 51022021763a3a3264ddf 105¢1530ef 3f c£7e54233e5d3a4747bbb
17328a63e6e3384ac25e80054bd566855e2eb59a2fd168d3643e4 4851acf0d118£b03c73ebc099bsadd59c39367d6c91£498d8d607a
£2e57cc73e3b5718435a81123£080267726a2a9¢1cc94b9Ic6bb681 7427b85d8c670£9a53a777511b

Factors of N 4:

0x3, 0x11b, Oxcb9, 0x4a70807d6567959438227805b12a19a73 4365bd998c6a6£7dfd595360ed3bae4d765170d5afb7£426fddb21
91c3£902c5d049dc745b339e884a601e17e081f2facalb2ea70e64 8b09176143a9f£745a46497b1b30£fc8b378ac7d05f46eaceb41b99
47ffca%9a810d4e80baf2f3b03236ab6£243de50976d91eaeb25cc3 9b083c796bd34b66e6c3a0c65c26a30e447cda7b51c556b1842ea6
86e148dfab21bbd1fea2357ad7d151511979fea097c92e4a75b707 £6525a020ecal81b1976£31£408547c9557f6b7cd74334147a5b41
ee70a8abf377dd5babd85cefadedaf9af2052f403669675464ed3d 1cf£75000d42f33ef0d31124b88£83b5690ae3a3883

Public Exponent e:
0x10001

Private Exponent d 4:
04160eecc648a3dal9abdc42af4cfb41a798e5eb8b1b49c2c29. ..

146

A.2 Deep Dive into Intel Power Management Controls

In this Appendix section, we explore the power management (PM) mechanisms at the architec-
tural layer of a recent commodity processor — the Intel Haswell processor [59]. Two key advances
in this processor, the fully integrated voltage regulator and additional independent voltage/fre-
quency domains, open up new degrees of freedom for the management of dynamic power. We
highlight in detail various architectural “knobs” (including some undocumented ones) that are
exposed to the software layer for finer-grained power management.

A.2.1 Preliminaries

We perform our walk-through and any empirical measurements using an Intel Core i7-4790k
Haswell Quad-Core Desktop processor? and Z97 chipset-based motherboard, running Linux De-
bian 7 OS. While we demonstrate the variety of PM features using Linux, these Haswell-specific
features are agnostic to the OS used, and should be available on other OSes such as Windows.
Many architectural PM “knobs” exposed to the software can be interrogated and controlled using
readily available tools. To aid in our exploration, we leverage two open-sourced tools, which we
can install by running the following:

$ sudo apt-get install msr-tools devmem2

Additionally, we provide code snippets in cases where these tools are insufficient to show the
features.

A.2.2 Review of Existing Intel PM Technologies

Before we delve into the newer features on the Haswell processor, we first briefly review two
existing Intel technologies pertaining to power management. For each technology we detail its
motivation, working mechanisms and ways to view its settings and control these mechanisms
from software. We also include snippets of shell commands for readers who want to experience
first-hand specific concepts related to each technology. We wrap up this section by showing
some empirical measurements of frequency and voltage scaling that are enabled with these two
technologies.

A.2.2.1 Enhanced Intel SpeedStep Technology (EIST)

EIST is a processor technology that enables software to dynamically manage the power con-
sumption of a processor (when the processor is actively executing instructions in the CO state)
by initiating performance state, a.k.a. P-states, changes. At different P-states, EIST dynamically
changes the operating frequency and voltage of the processor at the hardware level. Conceal-
ing the gory details of the hardware-level scaling mechanisms from software, EIST empowers
software with the ability to control underlying performance states via Model-Specific Register
(MSR). These MSRs are special x86-specific control registers that can be read from and written to
using the privileged rdmsr and wrmsr instructions.

?Advertised to operate at a base frequency of 4GHz up to the max turbo frequency of 4.4GHz

147

e 2\
Processor Package

Freqee, = BCLK/2 * Ratiog, ! Processor Graphics
Freqeome = BCLK * Ratio oqe ! | Core
-
= [Core
o
Le (2 ©
o g Core
Freqg,g = BCLK * Ratiog, o | Core
A L [L '
Freq,,s, = BCLK * Ratio, " (1 or 1.33) IMC System PCle
Agent (SA) DMI
Freqg, = BCLK * Ratioyc oy, |
— J
— N
BCLK @ 100/125/166 MHz
(+/- 5-7%)

" _ This only applies to Haswell+ processors L Platform Controller Hub (PCH))

Figure 6.1.1: Intel clock distribution tree.

Before we discuss how software can control frequency changes of the processor, we back up
a moment to review how operating frequencies at the microarchitectural level are determined.
Beginning from Nehalem processors, Intel replaces the Front-side Bus (FSB), an I/O bus, with the
more efficient QuickPath Interconnect (QPI). This introduces a revised clock distribution tree,
where the frequencies of various microarchitectural components are derived from a main Base
Clock (BCLK) frequency at varying multiplier ratios. Serving as a master clock of sorts on the
Intel platform, this BCLK frequency affects the operating frequencies of the cores, DDR memory,
the uncore System Agent (SA) (— need to verify the part on SA and recraft this —), the integrated
graphics controller and more recently in the Haswell processor, the ring interconnect.

Figure 6.1.1 displays a visual summary of how the frequencies of various microarchitectural
components are drawn from the BCLK. At a broad level, if we increase the BCLK, all the fre-
quencies of various components will increase correspondingly. For finer-grained control over
frequencies of individual components, we modify the respective multiplier ratios via various
controls exposed to software.

EIST allows P-state changes based on only the selection of the frequency multiplier ratio,
Ratiocorg. In the default mode, the operating voltage will be automatically optimized and con-
figured by PCU. In later sections, we shall see how the processor frequency and voltage can be
controlled independently on the newer Haswell processor.

To initiate a change to a desired P-state, software can select the P-state based on Ratiocorg,
by writing this value into the TA32_PERF_CTL M S Ry,199[15:8]°. For example, using msr-tools,
we can initiate a change to the P-state with Ratiocorp = 16 using the following shell command:

wrmsr 0x199 “echo $((16 << 8))°

*For brevity, we refer to the bit offsets of bl to bh (inclusive) of the MSR of index x as M S R, [bh:bl]. If only one
bit is used, we use only the bl offset as M SR, [bl].

148

EIST offers a feedback mechanism to software to read the currently configured P-state ratio,
Ratiocorp, from another designated MSR, the TA32_PERF_STATUS M S Ry,195[15:8]. With this
ratio, we can derive the current operating frequency by multiplying this ratio with the BCLK
frequency. We read the current P-state ratio as follows:

rdmsr -df 15:8 0x198
16

To disable EIST, we can zero out the bit at the TA32 MISC _ENABLE M .S Ry.140[16], in which
case any P-state change request via further writes to M .S R,195[15:8] will be ignored. Likewise,
to know if EIST mode is enabled on a system, we can read the same bit, where a value of 1
indicates that EIST is enabled.

rdmsr -f 16:16 0x1a0
1

So far, we have discussed three MSRs related to power management. A noteworthy point
is that all these (and subsequently discussed) MSRs exist on a per-core basis, unless otherwise
stated. Each logical core has its own set of MSRs.

However, even so, on current Intel architecture, the cores on multi-core processors share the
same frequency (and voltage) if they reside in the same processor package. This implies that P-
state changes affect all cores at the package level*. We can easily verify this by registering a new
P-state on one core and reading the measured P-state on another. The new P-state ratio will be
reflected in the second core (and the rest of the cores in the same processor package). We can
read and configure different values from these MSRs for different cores, using the -p flag on the
rdmsr and wrmsr command-line tools, as follows’:

rdmsr -p 1 -df 15:8 0x198

8

wrmsr -p 0 0x199 “echo $((16 << 8))"
rdmsr -p 1 -df 15:8 0x198

16

A.2.2.2 Intel Turbo Boost 2.0

Intel Turbo Boost 2.0 is a processor technology that dynamically increases the frequencies of
active processor cores above the Thermal Design Power (TDP) limits for short periods of time
to give a temporary “boost” to system performance. The key insight to this technology is the
observation that not all the processor cores are active (in C0 or C1 state) at the same time when
a system is running certain workloads - some cores in the same processor package could be
inactive (in C3 or C6 state). This technology harnesses the additional power leeway afforded by
the inactive cores in the form of increased frequency of the active cores to reap the benefits of
higher burst performance while staying within the power and thermal limits.

*Unlike P-states, C-states can be managed at the granularity of per-physical core basis.

*The default ondemand CPUfreq governor will make P-state changes dynamically. To ensure the P-state changes
that we make in this code snippet remain in effect, we have to use the userspace CPUfreq governor instead.

149

Intel Core i7-4790k processor Control Key Enabling

Empirical measurements of frequency/voltage across P-states Visibility Frequency Technology
4.5 : :

- Max Turbo
« } po| HW Ratio Limit Turbo
--m o Control Boost
4.0t o e mmmmmmmm oo r---P1 <—HFM
o mmmmmmmmm——m o F-- P2
3.5 o
< 3-0f =
N o
O} Sw
5‘ 25 o Control EIST
c %000¢
‘é’ . (Visible to
i} 0S)
Lt 2.0r -~
1.5} 3000000¢
1.0f —
asoos < = = = = = = = —mmmmmmm oo mmeme] ---Pn <—LFM /
037 08 0.9 1.0 11 12 1y Dote
Voltage (V) - Can be controlled by software for K-series or

X-series processors

Figure 6.1.2: Empirical measurements of combinations of frequency and voltages across different
P-states.

The temporary and opportunistic boost in frequency is primarily hardware-managed by the
PCU. The instantaenous core frequency and the length of time the cores stay in the Turbo Boost
mode are dependent on a number of factors, including the following:

CPU specification: Frequency limits vary for different CPU SKUs.

Number of active cores: The type of workload determines the number of cores used. The
fewer the active cores, the higher the Turbo frequencies achievable.

Estimated current and power consumption: Frequencies can be raised subject to these
physical limits.

Processor temperature: Frequencies can only be raised subject to a safe thermal envelope.

When not in Turbo Boost mode, every processor has a stipulated hard limit on the minimum
and maximum frequency a core can reach. These frequencies, referred to respectively as Low Fre-
quency Mode (LFM) and High Frequency Mode (HFM), can be read from the MSR_PLATFORM_INFO
MSRy,cr. The LFM is reflected in M S Ry,c[47:40], and HFM in M S Ry,.cg[15:8]. The former,
the maximum frequency that can be supported by the minimum processor voltage, is also known
as the maximum efficiency ratio. The latter is sometimes called the TSC frequency, because the
Time Stamp Counter (TSC), a MSR that increments every clock cycle, always counts at this HFM
frequency.

On systems with Turbo Boost technology, the highest guaranteed P-state that software can
request for is the P1 state, which corresponds to the HFM. When Turbo Boost is enabled, (this
can be done by zero-ing the bit at M .S Ry;140[38]), only then can the highest P-state, P0, be

150

requested by software. The PCU is activated into Turbo mode when software requests for PO.
Unlike the other P-states, PO represents an opportunistic range of performance states that the
PCU can transition the system into, but with a range of maximum Turbo frequency limits. These
limits vary depending on the number of active cores, and can be read from and written to the
MSR_TURBO_RATIO_LIMIT M SRoz14p- Every 8 bits in this MSR represents the maximum Turbo
mode clock ratio limit for different number of active cores.

Not only can software read the current Turbo ratio limits, it can also re-configure these limits
provided the processor allows them to be modified. A bit value of 1 in M S Ry,cr[28] indicates
that the limits can be changed. The bash script in Listing 6.1 demonstrates how these frequency
limits for both non-Turbo and Turbo modes can be read from the MSRs. Using this bash script, we
can read the non-Turbo LFM and HFM frequencies, as well as the Turbo maximum frequencies.

Listing 6.1: Bash script to read key frequency limits

#!/bin/bash
Filename: read_turbo.sh

BCLK=0.1

1fm_ratio="rdmsr -df 47:40 Oxce"”

1fm="echo "$BCLK*$1lfm_ratio" | bc -1°
hfm_ratio="rdmsr -df 15:8 Oxce~
hfm="echo "$BCLK*$hfm_ratio" | bc -1°

t_on="rdmsr -f 38:38 0x1a0"
if ((t_on==0));then t_on=0N;else t_on=0FF; fi

tc_on="rdmsr -f 28:28 Oxce”
if ((tc_on==1));then tc_on=YES;else tc_on=N0; fi

t_ratiol="rdmsr -df 7:0 Oxlad”

t_ratio2="rdmsr -df 15:8 Oxlad"
t_ratio3="rdmsr -df 23:16 Oxlad"
t_ratio4="rdmsr -df 31:24 Oxlad"

t_fql="echo "$BCLK*$t_ratiol" | bc -1°

t_fq2="echo "$BCLK*$t_ratio2" | bc -1°

t_fqg3="echo "$BCLK*$t_ratio3" | bc -1°
|

t_fq4="echo "$BCLK*$t_ratio4d" bc -1°
printf "Non-Turbo LFM: %.1f GHz\n" ${1lfm}
printf " HFM: %.1f GHz\n" ${hfm}
printf "Turbo mode: %s\n" "${t_on}"

printf "- 1 active core: %.1f GHz\n" ${t_fql}
printf "- 2 active core: %.1f GHz\n" ${t_fq2}
printf "- 3 active core: %.1f GHz\n" ${t_£fq3}
printf "- 4 active core: %.1f GHz\n" ${t_fq4l}
printf "Programmable Turbo ratio limits: %s\n" "${tc_onl}"

./read_turbo.sh
Non-Turbo LFM: 0.8 GHz
HFM: 4.0 GHz
Turbo mode: ON
- 1 active core: 4.4 GHz
- 2 active core: 4.4 GHz
- 3 active core: 4.3 GHz
- 4 active core: 4.2 GHz
Programmable Turbo ratio limits: YES

151

The Turbo mode is controlled by the PCU hardware in most Intel processors, so the maximum
P-state mode with software writes to M S Ry,199 is the HFM. Any values above the HFM written
to M S Ryz199 Will be ignored. However, to cater to users who are enthusiastic about overclocking
their systems, Intel has released a series of processors with unlocked core clock multipliers that
can be made to exceed the HFM ratio. These are known as the K-series or X-series processors.
On these processors, software can set Ratiocorp to values above the HFM, albeit subject to the
maximum Turbo ratio limits.

While these maximum Turbo ratio limits can be changed, there are hard ceiling to how much
these Turbo ratio limits can be raised. These hard limits are typically fused at the hardware level
and cannot be changed by software. The process of raising these Turbo limits beyond the default
is commonly referred to as overclocking (OC). In the later Section § 6.1, we shall see how to read
these fused Turbo ratio hard limits on the newer Haswell processor.

A.2.2.3 Empirical Measurements of Core V/F

Now that we have described the EIST and Turbo Boost technologies, it is helpful to observe them
live in action on a real system. Since the operating voltage are changed in tandem with the core
frequencies, we want to measure the different combinations of both frequencies and voltages of
the cores at each P-state.

The core frequency can be read using the method described in the preceding sections.
As for the measurement of voltage, we take advantage of a new field introduced into the
IA32_PERF_STATUS M SRy,108[47:32] in the Haswell processors. The voltage regulators (VR)
in the processors supply the requested voltage based on a number of digital signal bits called
Voltage Identification Digital (VID) lines. The 13-bit VID codes used by Intel VRs can be read
from this MSR field, which gives a coded Voltage ID (VID) number we can then use to derive
the currently supplied core voltage. To get the current core voltage in V', we divide the VID by
213 Listing 6.2 describes the bash script that can be used to read both the instantaneous core
frequency and voltage.

Listing 6.2: Bash script to read core frequency and voltage

#!/bin/bash
Filename: read_vf.sh

BCLK=0.1

freq_mul="rdmsr -df 15:8 0x198°"
volt_vid="rdmsr -df 47:32 0x198°"
freq="echo "$BCLK*$freq_mul" | bc -1°
volt="echo "$volt_vid/2713" | bc -1"

printf "freq: %.1f GHz\n" "${freql}"
printf "volt: %.3f V\n" "${volt}"

./read_vf.sh
freq: 1.5 GHz
volt: 0.832 V

We run a variant of above measurement script that continuously records the combination
of frequency and voltages on the system over a period of time. We use the default ondemand

152

Legacy Processors Haswell+ Processors

Motherboard Motherboard

Processor Package Processor Package

Gfx VR VaFx Processor Graphics Processor Graphics

Core v
VR GORE Core Core

Core Core

LLC LLC

Ring
Ring

Core Core

Core PLL
Core PLL

Stage | eow>| FIVR

Core CoreN|
VRING b
1
IO VR Vio [T [T
mc | System e Vioaiop mc | System e

Agent DMI Agent DMI
SAVR || vSA> ,

AN

PLL VR VpLL

Ly 4

&

Figure 6.1.3: Comparison of voltage regulator (VR) design in legacy vs Haswell+ processors.

CPUfreq governor that dynamically requests for P-state changes based on the system utilization.
The system is exercised to perform a variety of different workloads.

Figure 6.1.2 summarizes the empirical measurements of the various discrete combinations of
frequency and voltages across different P-states. Each red cross on the diagram shows a specific
frequency/voltage combination. While the frequency is changed by software in the non-Turbo
mode, we see how the supply voltage is adjusted by the hardware PCU in real time. Note that
each P-state from P1 to Pn is discrete state in terms of the frequencies. The PO state is in fact a
range of states with different frequencies managed by the PCU in the Turbo mode. This figure
neatly demonstrates the interplay of the two key technologies that enable the seamless dynamic
scaling of core frequency and voltages at runtime.

A.2.3 Recent PM Advances in Haswell
A.2.3.1 Fully Integrated Voltage Regulator

In the pre-Haswell processors, multiple off-die voltage regulators deliver the required power to
various components in the processor package. To address the need for more individually con-
trolled voltage rails and the need for a smaller physical footprint for newer mobile form factors,
starting from the Haswell processors, Intel combines the various disparate voltage regulators into
a Fully Integrated Voltage Regulator (FIVR) onto the processor package. Apart from the obvious
benefit of area savings, the FIVR gives rise to the following optimization opportunities:

« Lower transition latencies when changing voltages for different domains

« More available power to accommodate burst performance, where the FIVR has at its dis-
posal the entire package power to channel power to the domain that needs the most power
at runtime

« A one-stop solution for regulating voltage changes for different domains

153

A.2.3.2 Extension of Clock/Voltage Domains

The Haswell processors enable finer-grained control over the clock frequencies by separating the
cores and LLC/ring into separate clock domains. Unlike in the older processors where the cores
and the LLC/ring have to operate at the same frequency, separating the different components
into separate clock domains allows scope for optimizing the individual operating frequencies for
enery-efficient performance according to the nature of the workload. For example, for memory-
bound workloads, we can capitalize on the fact that CPU is not fully utilized while waiting for
the memory units to complete the operation. We can thus achieve energy savings by having the
option of decreasing the core frequency (and voltage) separately without having to decrease the
LLC/ring frequency.

Major Architectural Domains. In Figure 6.1.1, we see how the base clock signal is dis-
tributed to various components in the processor. Several components can share the same clock
signal provided by a PLL source, in which case we refer to them as sharing a single clock do-
main. Like a clock domain, a voltage domain encompasses a group of components sharing the
same voltage source controlled by a VR. Both clock and voltage domains constitute the following
major independent architectural domains found in Haswell processors:

« Core: The cores in the processor packages

« Graphics (GFX): Integrated graphics processor

+ Ring: High bandwidth communication interconnect designed in a ring topology to connect
the cores, graphics processor, system agent and lower-level cache

« System Agent (SA): The uncore portion of the processor that includes the DRAM integrated
memory controller, display engine and integrates the Direct Media Interface (DMI) and PCI
Express (PCle) controller

« 1/0 Analog (IOA): (This domain only applies to voltage)

« 1/0 Digital (IOD): (This domain only applies to voltage)

A.2.4 New PM Controls in Haswell

With several key advances in power management in the Haswell processors, a number of new
PM “knobs” and controls are introduced to provide additional ways for software to interface with
the underlying PCU and FIVR. In this section, we describe these new controls and ways to use
them for dynamic power management.

A.2.41 Newly Introduced MSR for PM

Intel introduces a new MSR in the Haswell processors to enable runtime fine-grained control of
various voltage regulation and miscellaneous functionality related to overclocking. This MSR has
an index of 0x150 and is readable and writable from software with kernel privileges. For lack of
a name in official documents and the fact that there are some oblique references to this MSR as
the mailbox MSR, we term this new MSR MSR_0C_MAILBOX. We show the various fields and the
corresponding bit offsets in this MSR in Figure 6.1.4.

154

Bit Offset 6362 48 47 40 39 32 31 0
Field |B| reserved domain [command | command-specific data

Figure 6.1.4: Newly introduced MSR_0C_MAILBOX.

At the instruction level, as with other MSRs, software interfaces with this MSR_0C_MAILBOX
MSR with the x86 rdmsr and wrmsr instructions. However, its implementation is slightly
different from the rest of the MSRs. Both configuring and interrogating settings with the
MSR_OC_MAILBOX require two steps. First we need to issue a wrmsr to the MSR with a read
or write command in one of the fields. Then we perform a rdmsr on the MSR to retrieve the
configuration settings requested and a possible error code if the operation fails.

We will describe these operations in detail later in the section. We begin by giving an overview
of the fields in MSR_0C_MAILBOX:

« Command: There are two types of commands, namely read and write commands, which
we can use with the MSR_0C_MAILBOX. Listed under the Command ID column in Table 6.1.1,
the read and write commands apply to different type of configuration settings. Some con-
figuration are read-only, in which case the use of the write command will be ignored.

» Command-specific data: For read commands, the command-specific data field will contain
the configuration settings returned from the MSR. For write commands, this field has to be
populated with the desired settings for the MSR to propagate to the underlying hardware.
This command-specific data consists of many sub-fields. We see a summary of these sub-
fields under the command-specific data in Table 6.1.1.

« Busy bit (B): Due to the stateful operation of the MSR_OC_MAILBOX, a special ready/busy
bit is reserved to tell if a read/write operation is underway. A busy bit value of 1 indicates
that this MSR is busy, in which case further reads or writes to this MSR are not allowed.

« Domain: Notice in Table 6.1.1, some commands are generic and some apply only to a
specific domain. For the former commands, this domain field is set to 0. Conversely, for
the latter, this field is used to indicate the architectural domain in a read/write request to
this MSR. Each domain has a specific ID associated with it as follows — (Core: 0), (GFX: 1),
(Ring: 2), (SA: 3), (IOA: 4), (IOD: 5).

155

(‘surpwop qOJ puv
VOI VS ay1 u1 asn 1of piypa aiv spjaif omg asayy AquO -) "XOGTIVW D0 ¥SKW 2} Ul sp[ay uoneIndyuo)) :1°1°9 J[qe],

‘MY Se uotssTad LI -pUE-pedy pue Oy Se uorssrurrad A[uQ-peay 210Uap oA\ ‘suolsstuiad JUSISYIp 9A®Y Sp[RY-qns 3say], ,

- () 19sgo Beyon [12:1¢€]
-opowr 2an3depe J[nejop 10j ¢ pue ‘Opou J1je)s 10J T 0} 19§ (M) opowr a3e3jop [02]
*STY} 2INSYU0D 0] MOY UO S[TR}dP 10 1°9 § UOT}D3G 0] 19y (M) 28e10A O1RYS 1931R], [8:61]
"anpea a3ejfoa jo81e] 93EdIPUI 03 (qIAS Hq-Z1 L1 ot
“8UN{20[219A0 10 ST} SUISN UO [°9 § UOIJIIG 03 I9Joy] (M) oryex Yoo xely [0:£]
L(O¥) 19syo a3eyjoa 103 310ddng [12:1¢]
‘310ddns sajedrpul T Jo anfea g (OY) opow oryess aGejjoa 103 3roddng [0z] o
(0Y) Sunyooro1940 onjer yoopd 103 Jroddng [8:61] VN !
“urewrop STy} Ul o1jeI }20[d 10y jruar] raddn pasny AfeorsAyg (0Y) 3w prey onjer oo xelNy [0:£]
OIIDAdS-NIVINOd
- (M) ruowaGeurwr AOUSTIIYD YALT o[qesid [1]
"9dejjoa pue (M) uonoajoxd ey YALT o[qesta (o] r 0¢
JUDIIND JATSSIIXD JsUTeSe S}MOII Uor}oajoid a[qesIp 03 T 19§
- (M) dIAS 219esta [1€] o1 o1
- (M) 23e3j0a 393183 QIAS [0:11]
(0¥) O - yuy prey T¥OSoyvyy Xe [vz:1¢]
$HH 0001y 10§ Sy O (O¥) O¢ - 3wy prey T¥ 0201wy xeN [91:¢¢] -
-eI 0qIn], 10§ sjur] 1addn pasny A[TeotrsAyg (0Y) Oz -] prey 0001107 XeN [8:6T] VN ¢
(0¥) Ot - 31wy prey 400wy XeN [0:4]
TVIANIO
uondrosaQg ((SuoIssTuLIdg) PPLI-qNS 19SPO N | ALIAM pedy
eje(q oyloadg-puewiuro) I puewuro)

156

A.2.4.2 Basic MSR_OC_MAILBOX Operations

We describe the key steps in initiating read or write operations on MSR_0C_MAILBOX using the
python-style code snippet in code Listing 6.3. Depending on what read or write commands used,
the sub-fields in the command-specific data are populated with specific format. Table 6.1.1 de-
scribes these command-specific sub-fields in detail. Care must be taken to ensure that the busy
bit is not set when reading from or writing to the MSR. This is a snippet from the full Python
code Listing 6.3, which contains the various helper functions and scaffolding code.

Listing 6.3: Python-style code to read or write to OC MSR

def rd_wr_ocmsr (command, domain, readop=True, data=None):

This method returns when MSR is ready for read/write
wait_ocmsr_ready ()

Build 'packet' value to initiate operation with MSR
val = OL

val |= make(val, BUSY_BIT, 63, 1) # busy bit
val |= make(val, domain, 40, 8) # domain
val |= make(val, command, 32, 8) # read/write cmd

Write operations require additional data
if not readop:
val |= data # cmd-specific data

Two-step process to interrogate MSR
wrmsr (MSR_OC_MAILBOX, val)
wait_ocmsr_ready ()

val = rdmsr (MSR_OC_MAILBOX)

Check for an error code
errcode = bitfield(val, 32, 8)
if errcode != 0:
raise Exception('ERROR reading from MSR_OC_MAILBOX')

Return the value for read operations
if readop:
return val

To demonstrate interfacing with MSR_0C_MAILBOX, we create a Python script (in code Listing
6.3 to read all possible PM-related settings via this MSR. We show a subset of the script output
here. It is interesting to see how much additional PM-related information we can get using this
newly introduced MSR. For example, in the output below, we easily learn that the maximum
possible Turbo ratio that can be overclocked (a setting that is typically fused at the hardware

level) is 80.

python read_mb.py

<...snip...>

Domain: Core

Max clock ratio hard limit: 80

Support for clock ratio overclocking: 1

Support for voltage static mode: 1

Support for voltage offset: 1
<...snip...>

Voltage mode: 0O

Target static voltage: O

157

- Voltage offset: O
<...snip...>

Max core ratio hard limit:

- 1 active core : 80

- 2 active cores: 80
<...snip...>

A.2.43 Fine-grained Voltage Management

In the earlier sections, we show empirically how voltage and frequency are changed in tandem
at runtime. This is the default mode where the PCU manages the voltage settings dynamically
as frequency changes are initiated by software. Using the newly introduced MSR_0C_MAILBOX,
software has additional control over the management of voltage settings. Furthermore, control
over the supply voltage can be managed at a per-domain basis.

Re-configuring the voltage settings on the core requires writing to the MSR_0C_MAILBOX with
command ID of 17 and domain ID of 0. To configure the core voltage with a fix target value, we
write a 12-bit SVID value to M S Ry,150[19:8] and set 1 to the bit M S Ry,150[20]. Not all SVID
values correspond to a discrete voltage. In fact, several SVID values may map to the same voltage
value. If we denote the SVID value as /Dy and the target voltage value as V', V' can be computed
as follows:

[L2 | x40 4 10
213

Put simply, every block of 5 consecutive SVID values results in a different target voltage.

Changing the SVID value by 5 makes approximately 4.88mV adjustments to the target voltage.

Using the equation 6.1, we will set the target core voltage to roughly 1.368V using a SVID value

of 0x577. Remember to read back the value of the MSR after write to verify that the return code

is 0 (which indicates a successful operation). We shall assume the core frequency has been fixed
at 1 GHz.

target voltage, V =

(6.1)

wrmsr 0x150 0x8000001100157700
rdmsr 0x150

0

./read_vf.sh

freq: 1.0 GHz

volt: 1.368 V

Other than setting the target voltage to a static value, we can only apply a positive or negative
voltage offset to the currently configured voltage. This voltage offset can be applied to both the
static and adaptive voltage modes. This voltage offset is specified as a 11-bit ID that works the
same way as the SVID value - changing the offset ID by 5 changes the target voltage by roughly
4.88mV. Negative offsets are represented using the two’s complement.

Continuing from the above example, we will proceed to apply a positive voltage offset of
roughly 15mV. This is configured using an offset ID of +15.

wrmsr 0x150 0x8000001101£57700

rdmsr 0x150
0

158

(Intel Core i7-4790k Processor)
Empirical Measurements of Freq/Voltage Across P-States

4.5- xxx Adaptive (Default) R

+++ Voltage Offset L *

**x% Voltage Override o *

4.0t HoH *

X +H+ *

3.5¢ o *

K +Ht+ *

— MK HH *
T 3.0

(G] MK +H+ *

>

O XK HH *
S 2.5t

S R HHE *

8_ MK *

—

Y- 2.0f

XK HHH *

MBRK HHH *

1.5 MK HH *

R HHH *

1.0- SRR *

DB HHHHH *

087 0.8 0.9 1.0 1.1 12 13 1.4
Voltage (V)

Figure 6.1.5: Freq/Voltage in different voltage modes.

./read_vf.sh
freq: 1.0 GHz
volt: 1.383 V

To reset the core voltage mode to be back to the adaptive mode (i.e. the PCU will adjust an
appropriate voltage given the core frequency) and zero voltage offset, we set the voltage mode
bit M S Ry,150[20] to 0, together with the zero command-specific field.

wrmsr 0x150 0x8000001100000000
rdmsr 0x150

0

./read_vf.sh

freq: 1.0 GHz

volt: 0.773 V

To demonstrate that the core voltage settings can be configured via MSR_0C_MAILBOX, we
use a variant of our measurement script (in code Listing 6.2) to record the voltage and frequency
combinations, while we make changes to the core voltage settings.

In one instance, we change the core Target static voltage to 1.368V. In another instance, we
apply an additional core Voltage offset of 48.8mV. Figure 6.1.5 shows the different combinations of
measured core voltage and frequency as we make the various changes to the core voltage settings.

159

A.2.4.4 Overclocking with Turbo Ratio Limits

All Intel processors are shipped with hard limits to the core Turbo clock ratios. These limits are
physically fused in hardware and cannot be changed in software. We have seen in Section § 6.1
how to read these limits from hardware. Running the script in Listing 6.3 will give us this limit,
Max clock ratio hard limit, for the core domain.

Unlike the non-K series processors, K-series processors offer software the opportunity for
further overclocking of the default Turbo ratio limits up to these hard limits®. We can see there
is room for further increase of the various Turbo ratio limits.

python read_mb.py
<...snip...>

Max core ratio hard limit:

- 1 active core : 80

- 2 active cores: 80
<...snip...>

rdmsr Oxlad

2a2b2c2c

Merely raising the Turbo ratio limits in the MSR_TURBO_RATIO_LIMIT M SRy, 4p is insuffi-
cient to enable the overclocking. As we shall see below, even when we change the Turbo ratio
limits to a maximum frequency of 4.5GHz using a clock ratio of 45 (hex value 0x2d), the operating
frequency can only be set to a maximum of the default Turbo ratio limits, i.e. 4.4Ghz.

wrmsr Oxlad 0x2d2d2d2d
rdmsr Oxlad

2d2d2d2d

wrmsr 0x199 0x2d00

./read_vf.sh

freq: 4.4 GHz

volt: 1.280 V

Several steps are necessary to effectively perform overclocking with the Turbo ratio limits.
In the physical memory of the processor, there is a range of memory-mapped I/O configuration
space, MCHBAR, that comprise a range of registers related to functions including memory con-
trol, power and thermal control. To perform realtime overclocking, we need to access a register
in this configuration space to reflect the raised Turbo ratio limit.

The physical address of this overclocking register is at the address offset 0x5990 of the MCH-
BAR base address. We can get the MCHBAR base address at offset 0x48 at physical memory
of device 0 in the PCI configuration space. We will use 1spci to first get the base address of
MCHBAR, and then use devmem? to access the overclocking register.

1lspci -s00:00.0
00:00.0 Host bridge: Intel Corporation 4th [...]

1lspci -s00:00.0 -xxx | grep 40:

“These hard limits are only theoretical limits physically fused into hardware, and do not necessarily guarantee
stable operation of the system for frequencies beyond the default Turbo ratio limits.

160

40: 01 90 d1 fe 00 00 00 00 01 00 d1 fe 00 00 00 0O

devmem2 0xfed15990

/dev/mem opened.

Memory mapped at address 0x7£04b97£9000.

Value at address OxFED15990 (0x7£04b97£9990): OxFF

We now know that the physical address of the overclocking register is 0xFED15990. Raising
the Turbo ratio limits consists of the following steps:

1. Get base physical address of MCHBAR (i.e. 0xfed10000), and the physical address of over-
clocking register (i.e. 0xfed15990)

Raise Turbo ratio limits in M SRo,14p

Write the maximum Turbo ratio limit to the overclocking register

Update the target operating core ratio in TA32_PERF_CTL M S Ro,199[15:8]

Issue write command for the core domain with the target operating core ratio in
MSR_0C_MAILBOX M.S Ros150[7:0]

G N

We demonstrate the concrete steps using the bash shell as follows:

./read_vf.sh
freq: 1.0 GHz
volt: 0.778 V

rdmsr Oxlad
2a2b2c2c

wrmsr Oxlad 0x2d2d2d2d

rdmsr Oxlad
2d2d2d2d

devmem2 0xfed15990 b 0x2d

/dev/mem opened.

Memory mapped at address 0x7fc71a6ca000.

Value at address OxFED15990 (0x7fc71a6ca990): 0x2C
Written 0x2D; readback 0x2D

wrmsr 0x199 0x2d00
wrmsr 0x150 0x800000110000002e
./read_vf.sh

freq: 4.5 GHz
volt: 1.280 V

161

'spey Surpuodsaiiod pue SYSIA [91U] Paje[RI-NJ JO ATewruung :z°1°9 3[qel

*0130] 10 }1q UoneINSYUO0d djeredas e vIA A[UQ-Peay P[eY-qns STy} ewr ued arempie}] ‘suorssturod py sey pPy-qns siyf, ,

'2IN109)1YdIR 193] 10

uraTeyaN JO $10ss9001d 9] UT pUNOJ 9q Ued P[ay-qns STy} Jey] sueawr , - WHN, ‘O[duwrexa 10 *([omseH : M SH) ‘(28p1ig AT :gAJ) ‘(o8prig Apueg
:GINS) ‘(WTeyaN :WHN) :SMO[[0F SB 2IN30)TYIIE [o3u] Jo[eur o1} 9)0UdP dA) 2IN303)IYdIe oygrads o3 Ajdde AJuo Aewr sy ay3 ur sp[ey YL, ,

(M) 2100 ¥ 10] JTUII] OTjRI XRN [H2:1¢]

‘9 @ UOT}09S 0] I9J9Y 'S9100 9ATO®

162

(M) 2100 ¢ T0§ Jreurf ORI XBY [91:€7] avixo
JO IoquINU JUSISJIP I0J 9pow 0qiny, - . - WHN _ o _
Ul ONEI PO 910D Xeu oJedrpu] (M) 2100 g J03 JTUNI] OTJeI Xe]N [8:GT] LINIT OILVHY OddNL YSKW
o ’ (MY) 2100 | 107 JIuT] onjRI XN [0:Z]
9pout oqIng 9[qesIp 01 T 03 19§ (m¥) dpowr oqing, o[qestq [8¢] - INHN 0V1X0
"LSId 2[qBUS 03 T 33§ (M) parqeus spow I1S1d [91] * ATYNA DSIW ZEVI
‘opowr oqIny, A[qesip 0} T 03 135 (M) opowr oqIng o[qesiq [z€] 661X0
. . . * - ANS - -
1°9 § U0 03 13y "HHUO0D0YDY (M) onex deys-4 398IeL, [8:6T] TLD dYdd CEVI
03 sy} Surpas Aq a8ueyd ajels-4 3sanbay
"dIA PaInseajy (OY) dIA 28e10A 9jels-J JuaIIn)) [2€:L¥] .- MSH 861X0
"AHOD01DY] paINSeIN (OY) onjex ageys-4 Juarm) [g:6T] « - NS SOLYLS A4ad ZEVI
"D0 d[qesIp 01 T 03 198 (1Y) X201 (D0) SurpopIA0 [07] « = GAI P6IX0
- (0¥y) pawtoddns surq 9O Jo qunN_ [LT:61] « - NS LIV~ YaTI HSK
- () dBeyoaenxd 50 [0:4] | IAIL- ENS
1q Asn
59 0] 19 AL pue DWWMMWM M\Mwww wwwaomm WME MSH 0STX0
50RJISIUT 0F YW PIONPONUI A[AON (My) puewrwiod [ze:6€] XO4TIVH D0 ¥SH
(M) 'rep oymoads-puewuo) [0:1¢€]
AT - 93e3s-J WNWIuIj (0Y) oryex Aouaroyye wNWIXe [0F:L¥]
- (O¥) S[PA9] JA1. 8yuod Jo 1squinN [£€:H¢] « " HAL I0%0
- () o1qeuo ypumgf omod_[62] 0ANI WHMOALYTd YSH
"paSueyd 2q UED)W O1el 0qIN], Ay} JI 24edIpu] (OY) S| oner oquny, a[qeisnlpy [ge] «~ WHN
"‘INAH - 91e1s-J 0qInI-Uou WNWIXeA (O¥) onjex oqiny-uou Xely [8:61]
uondrsaq (suorssTuLIdg) Pl 19SPO yeduro) Xxopuj

nd / dUeN YSW

A.2.5 Intel PM MSRs in a Nutshell

To provide a quick reference for readers, we summarize all the Intel MSRs related to power man-
agement and their corresponding fields in Table 6.1.2.

A.3 Code Availability

The code for the respective projects are available at the following repositories:

« CLKscrew: https://github.com/0x0atang/clkscrew
« Heisenbyte: https://github.com/0x0atang/heisenbyte
« Hades: https://github.com/0x0atang/hades

163

https://github.com/0x0atang/clkscrew
https://github.com/0x0atang/heisenbyte
https://github.com/0x0atang/hades

	List of Figures
	List of Tables
	Introduction
	Convergence of Attacks and Defenses at Interfaces
	Hardware-Oriented Defenses
	Hardware-Oriented Attacks

	Interface is the problem. Interface is the solution.
	Full-System Security
	Commodity Hardware Support for Security
	Hardware-Software Interaction Matters

	Thesis
	Thesis Statement
	Contributions
	Dissertation Roadmap

	Background on Attacks and Defenses
	Attack Model and Defense Principles
	Generic Defense Principles

	CLKscrew: Motivating Security-Aware Energy Management
	Overview
	Background
	Energy Management Systems
	Dynamic Voltage & Frequency Scaling
	Hardware Support for DVFS
	Software Support for DVFS

	Achieving the First CLKscrew Fault
	How Timing Faults Occur
	Challenges of CLKscrew Attacks
	Characterization of Regulator Limits
	Containing the Fault within a Core
	CLKscrew Attack Steps
	Isolation-Agnostic DVFS

	TZ Attack #1: Inferring AES Keys
	Trustzone AES Decryption App
	Timing Profiling
	Fault Model
	Putting it together

	TZ Attack #2: Loading Self-Signed Apps
	Trustzone Signature Authentication
	Attack Strategy and Cryptanalysis
	Timing Profiling
	Fault Model
	Putting it together

	Discussion and Related Works
	Applicability to other Platforms
	Hardware-Level Defenses
	Software-Level Defenses
	Subverting Cryptography with Faults
	Relation to Rowhammer Fault Attacks
	Relation to Meltdown/Spectre Side-Channel Attacks

	Conclusions

	Heisenbyte: Stemming Code Reuse Exploits with Destructive Code Reads
	Introduction
	Background
	Dynamic Code Reuse Attacks
	Previous Works
	Assumptions

	Heisenbyte Design
	Destructive Code Reads
	Statically Separating Code and Data

	System Implementation
	Offline Static Binary Rewriting
	Heisenbyte Core Monitoring Components

	Evaluation
	Security Effectiveness
	Performance Overhead

	Related Work and Enhancements
	Discussion
	Conclusions

	Hades: Detecting Malware with Microarchitectural Profiling
	Introduction
	Background
	Experimental Setup
	Exploits
	Measurement Infrastructure
	Sampling Granularity
	Labeling Measurements with Exploit Data
	Collection of Clean and Infected Measurements

	Building Models
	Feature Selection

	Results
	Anomalies Not Directly Detectable
	Power Transform
	Evaluation Metrics for Models
	Detection Performance of Models
	Results for Adobe PDF Reader

	Analysis of Evasion Strategies
	Defenses

	Discussion
	Architectural Enhancements for Malware Detection
	Related Work
	Conclusions

	Conclusion
	Future Directions

	Bibliography
	Appendix
	A.1 Example Glitch in RSA Modulus
	A.2 Deep Dive into Intel Power Management Controls
	A.2.1 Preliminaries
	A.2.2 Review of Existing Intel PM Technologies
	A.2.3 Recent PM Advances in Haswell
	A.2.4 New PM Controls in Haswell
	A.2.5 Intel PM MSRs in a Nutshell

	A.3 Code Availability

