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Abstract

Hardware-Software Co-design for Practical Memory Safety

Mohamed Tarek Bnziad Mohamed Hassan

A vast amount of software, from low-level systems code to high-performance applications, is

written in memory-unsafe languages such as C and C++. The lack of memory safety in C/C++ can

lead to severe consequences; a simple buffer overflow can result in code or data corruption any-

where in the program memory [1]. The problem is even worse in systems that constantly operate

on inputs of unknown trustworthiness. For example, in 2021 a memory safety vulnerability was

discovered in sudo, a near-ubiquitous utility available on major Unix-like operating systems [2].

The vulnerability, which remained silent for over 10 years, allows any unprivileged user to gain

root privileges on a victim machine using a default sudo configuration. As memory-safe lan-

guages are unlikely to displace C/C++ in the near future, efficient memory safety mechanisms for

both existing and future C/C++ code are needed.

Both industry and academia have proposed various techniques to address the C/C++ memory

safety problem over the last three decades, either by software-only or hardware-assisted solutions.

Software-only techniques such as Google’s AddressSanitizer [3] are used to detect memory er-

rors during the testing phase before products are shipped. While sanitizers have been shown to

be effective at detecting memory errors with little effort, they typically suffer from high runtime

overheads and increased memory footprint. Hardware-assisted solutions such as Oracle’s Applica-

tion Data Integrity (ADI) [4] and ARM’s Memory Tagging Extension (MTE) [5] have much lower

performance overheads, but they do not offer complete protection. Academic proposals manage to



minimize the performance costs of memory safety defenses while maintaining fine-grained secu-

rity protection. Unfortunately, state-of-the-art solutions require complex metadata that increases

the program memory footprint, complicates the hardware design, and breaks compatibility with

the rest of the system (e.g., unprotected libraries).

To address these problems, the research within this thesis innovates in the realm of compiler

transformations and hardware extensions to improve the state of the art in memory safety solutions.

Specifically, this thesis shows that leveraging common software trends and rethinking computer

microarchitectures can efficiently circumvent the problems of traditional memory safety solu-

tions for C and C++. First, I present a novel cache line formatting technique, dubbed Califorms [6].

Califorms builds on a concept called memory blocklisting, which prohibits a program from access-

ing certain memory regions based on program semantics. State-of-the-art hardware-assisted mem-

ory blocklisting, while much faster than software blocklisting, creates memory fragmentation for

each use of the blocklisted location. To prevent this issue, Califorms encodes the metadata, which

is used to identify the blocklisted locations, in the blocklisted (i.e., dead) locations themselves.

This inlined metadata can be then integrated into the microarchitecture by changing the cache line

format. As a result, both the metadata and data are fetched together, eliminating the need for extra

memory accesses. Hence, Califorms reduces the performance overheads of memory safety while

providing byte-granular protection and maintaining very low hardware overheads.

Secondly, I explore how leveraging common software trends can reduce the performance and

memory costs of memory permitlisting (also known as base & bounds). Thus, I present No-

FAT [7], a novel technique for enforcing spatial and temporal memory safety. The key obser-

vation that enables No-FAT is the increasing adoption of binning allocators. No-FAT, when used

with a binning allocator, is able to implicitly derive an allocation’s bounds information (i.e., the

base address and size) from the pointer itself without relying on expensive metadata. Moreover,

as No-FAT’s memory instructions are aware of allocation bounds information, No-FAT effectively

mitigates certain speculative attacks (e.g., Spectre-V1, which is also known as bounds checking by-

pass) with no additional cost. While No-FAT successfully detects memory safety violations, it falls



short against physical attacks. Hence, I propose C-5 [8], an architecture that complements No-FAT

with strong data encryption. C-5 strictly uses access control in the L1 cache and encrypts program

data at the L1-L2 cache interface. As a result, C-5 mitigates both in-process and physical attacks

without burdening system performance.

In addition to memory blocklisting and permitlisting, a cost-effective way to alleviate the mem-

ory safety threats is by deploying exploit mitigation techniques (e.g., Intel’s CET [9] and ARM’s

PAC [10]). Unfortunately, current exploit mitigations offer incomplete security protection in order

to save on performance. This thesis investigates potential opportunities to boost the security guar-

antees of exploit mitigations while maintaining their low overheads. Thus, I present ZeRØ [11], a

hardware primitive that preserves pointer integrity at no performance cost, effectively mitigating

pointer manipulation attacks such as ROP, COP, JOP, COOP, and DOP. ZeRØ proposes unique

memory instructions and a novel metadata encoding scheme to protect code and data pointers

from memory safety violations. The combination of instructions and metadata allows ZeRØ to

avoid explicitly tagging every word in memory. On 64-bit systems, ZeRØ encodes the pointer type

and location in the currently unused upper pointer bits. This way ZeRØ reduces the performance

overheads of enforcing pointer integrity to zero while requiring simple hardware modifications.

Finally, although current mitigation techniques excel at providing efficient protection for high-

end devices, they typically suffer from significant performance and energy overheads when ported

to the embedded domain. As a result, there is a need for developing new defenses that (1) have

low overheads, (2) provide high security coverage, and (3) are especially designed for embedded

devices. To achieve these goals I present EPI, an efficient pointer integrity mechanism that is

tailored to microcontrollers and embedded devices [12]. Similar to ZeRØ, EPI assigns unique tags

to different program assets and uses unique memory instructions for accessing them. However, EPI

uses a 32-bit friendly encoding scheme to inline the tags within the program data. EPI introduces

runtime overheads of less than 1%, making it viable for embedded and low-resource systems.
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Chapter 1: Introduction

The C and C++ programming languages are the gold standard for implementing a wide range of

software systems such as safety critical firmware, operating system kernels, and network protocol

stacks for performance and flexibility reasons. As these languages do not guarantee the validity of

memory accesses (i.e., enforce memory safety), seemingly benign program bugs can lead to silent

memory corruption, difficult-to-diagnose crashes, and, most importantly, security exploitation. At-

tackers can compromise the security of the whole computing ecosystem by exploiting a memory

safety error with a suitably crafted input. Since the first documented overflow attack in 1972 [13],

there has been a long-lasting arms race between attackers and defenders, as shown in Figure 1.1.

New attacks are followed by potential mitigations that aim at preventing the attackers’ malicious

effects while current mitigations are followed by novel attacks that propose new approaches for

bypassing the deployed mitigations. Despite massive advances in exploit mitigations, memory

safety errors have risen to be the most exploited vulnerabilities because current mitigations do not

address the root cause of the problem, which is the lack of memory safety.

1.1 What Is Memory Safety?

Memory safety is a program property that guarantees memory objects can only be accessed

between their intended bounds, during their lifetime, and given their original (or compatible) type.

Violating any of these requirements results in a memory corruption. For example, accessing objects

beyond their intended bounds is called spatial memory safety violation (e.g., buffer overflow). On

the other hand, accessing objects beyond their lifetime is called temporal memory safety violation

(e.g., use-after-free and uninitialized reads). Finally, accessing objects with an incompatible type

is referred to as type confusion, which can lead to both spatial and temporal violations.
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Figure 1.1: Timeline for memory safety exploitation techniques (marked with demons) and miti-
gations (marked with shields).

Unfortunately, memory safety vulnerabilities are common. They are easy for programmers

to introduce unintentionally, especially in large code bases and systems with complex logic. For

example, Microsoft recently revealed that the root cause of around 70% of all exploits targeting

their products is software memory safety violations [14]. Similarly, roughly 70% of all serious

security bugs that have been fixed in the Google Chrome stable branch since 2015 are memory

safety bugs, with half of them being use-after-free vulnerabilities [15]. Moreover, the Project Zero

team at Google reports that memory corruption issues are the root-cause of 68% of listed CVEs

for zero-day vulnerabilities between 2014 and 2019 [16]. With the increasing number of memory

safety vulnerabilities discovered each year, a natural question to ask is: why does the memory

safety problem persist despite the large efforts done by software vendors?

1.2 Why Is Memory Safety Still A Concern?

To better understand why memory safety threats have not been completely resolved till now,

we need to have a look on the available solutions so far.
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1.2.1 Memory-Safe Languages

One possible solution to the memory (un)safety problem is to refrain from using languages

that rely on programmers to manually manage memory (i.e., C/C++). Instead, developers can

use languages that provide automatic memory management (i.e., memory safe languages), such as

Java, Python, and Rust. While those languages are widely-adopted, they are not going to replace

C/C++ anytime soon for the following reasons.

• Performance. C offers high performance as it allows the programmer to directly interact

with the underlying hardware. Alternative safe languages use automatic memory manage-

ment, which adds extra overheads that are not acceptable, especially for real time systems.

• Communication. C is more suitable for system level code as it allows communication be-

tween different entities via memory. For example, a program can write to a memory-mapped

location that will be consumed externally by another device in the system. Memory-safe lan-

guages do not guarantee this unless the entire system is written with them and compiled as a

whole program.

• Completeness. Even for safe languages, the automatic memory management runtimes them-

selves are written in C and C++. The runtimes may have bugs that can be exposed through

programs written in memory safe languages.

• Maturity. Existing developer skills and the huge ecosystem of tools and libraries around C

and C++ means that shifting to new languages would be a slow and long-term process. We

may have to wait at least as long as it took for C/C++ to become mainstream (i.e., decades).

• Legacy Code. There is a vast amount of legacy C code deployed throughout the world in

operating systems, web browsers, shared libraries, and embedded software. Such systems

consist of millions of lines of C code, preventing the complete transition away from C or its

variants anytime soon.
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The above reasons necessitate the development of memory safety solutions for C and C++

applications.

1.2.2 Testing & Verification

To address the threat of memory safety violations, software testing tools (e.g., Google’s Ad-

dressSanitizer [3]) and fuzz testing are widely deployed. In software fuzz testing binaries are

instrumented with a tool like AddressSanitizer in order to detect memory safety vulnerabilities,

then run with inputs mutated from a set of exemplary inputs in the hopes of detecting bugs before

deployment. Google has reported that it has been performing fuzzing on about 25, 000 machines

continuously since 2016, which has resulted in the identification of many critical bugs in software

such as Google Chrome and several open source projects [17]. Assuming 15 cents per CPU hour

for large memory machines—a requirement for reasonable performance on fuzz testing—the in-

vestment in software fuzzing for detecting memory errors could be close to a billion dollars at just

one company.

Despite a Herculean effort by software vendors, memory safety vulnerabilities continue to slip

through, ending up in deployed systems. Recognizing that pre-deployment fuzz tests can never be

complete, companies have also proposed post-deployment crowdsourced fuzz testing [18, 19, 20,

21]. For instance, Google recently proposed fuzzing Android software in the field on user phones

when they are plugged into power. Assuming that these tests run when phones are being charged,

and assuming most users leave their phone charged overnight, on a global scale, the amount of

energy invested in producing reliable software may be even higher than the amount of time running

the software with crowdsourced testing. Thus, developing more efficient memory error detectors

can have significant green benefits in addition to improving security and reliability.

1.2.3 Hardware-Based Mitigations

Both academia [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] and industry [4, 33, 5, 9, 10] have

proposed various hardware-based techniques to address the C/C++ memory safety problem over

5



the last three decades. Prior work can be broadly categorized into the following four classes:

• Memory Blocklisting. This class of memory safety techniques (also known as tripwires)

aims to detect overflows by marking the memory regions on either side of an allocation, and

flagging accesses to them. For example, REST [30] stores a predetermined 8–64B random

number, dubbed a token, in the memory to be invalidated. Spatial memory safety violations

are detected by comparing cache lines with the token when they are fetched.

• Memory Permitlisting. This class of memory safety solutions (also known as base &

bounds) attaches bounds metadata to every pointer or allocation. The metadata can be stored

in a shadow (also known as disjoint) memory region (e.g., Hardbound [26], Intel’s MPX [33],

CHEx86 [31], and AOS [32]) or be marshaled with the pointer by extending its size (e.g.,

CHERI [29]).

• Memory Tagging. This class of memory safety techniques associates a “color” with newly

allocated memory, and stores the same color in the upper bits of the data pointer that is

used to access the allocated memory. At runtime, the hardware enforces spatial memory

safety by comparing the colors of the pointer and accessed memory. For example, SPARC’s

ADI [4] assigns 4-bit colors to every 64B of memory (i.e., limiting the minimum allocation

size to 64B), while ARM’s MTE [5] uses 4-bit colors per every 16B of memory [34]. Since

metadata bits are acquired along with the corresponding data, no extra memory operations

are needed.

• Exploit Mitigation. This class of defenses neither detects nor prevents memory safety viola-

tions. Instead, exploit mitigations focus on preventing the attackers from manipulating main

program assets (e.g., return addresses and function pointers) to protect the victim machine.

Examples include Intel’s CET [9], which uses a shadow stack to protect return addresses

and ARM’s PAC [10], which uses cryptographic message authentication codes to protect the

integrity of pointers.
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The main advantage of hardware-assisted solutions is its low performance overheads compared

to software-based techniques. Thus, hardware solutions can be used as always-on mitigations to

catch memory safety bugs in the field, if those bugs escape testing. Unfortunately, state-of-the-art

hardware proposals suffer from other limitations.

1.3 Why Are Current Hardware-Based Solutions Impractical?

Current hardware-based memory safety proposals suffer from one or more of the following

limitations, making them impractical to use in deployed systems:

• Complex metadata management. Techniques that store the metadata (e.g., per pointer base

and bounds information) in disjoint shadow memory [26, 33, 32, 31] require extra memory

accesses per pointer load/store to fetch and update the metadata. Besides the performance

cost, frequently accessing the disjoint metadata may introduce atomicity problems for mul-

tithreading applications. A practical memory safety solution needs to efficiently manage and

access its own metadata.

• Breaking binary compatibility. To avoid disjointly storing the metadata, some techniques

(also known as FAT pointers [29, 35]) increase the pointer width to include the metadata.

Using FAT pointers changes objects layouts in memory and breaks compatibility with the

rest of the system (e.g., unprotected libraries). A practical memory safety solution needs to

be compatible with the other system entities without introducing (de)serialization penalties.

• Incomplete protection. Memory tagging techniques associate a tag with newly allocated

memory, and store the same tag in the upper bits of the data pointer that is used to access

the allocated memory. Due to the tag’s limited size, memory tagging solutions offer low

entropy for temporal protection and non-adjacent spatial violations. A practical memory

safety solution needs to provide strong guarantees against different memory safety threats.

• Side-channel resiliency. Speculative side-channel attacks (also known as Spectre) represent

a major concern to current memory safety techniques, as Spectre can be used to undermine
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their security guarantees. For example, attackers can infer the memory tag value of some

memory region without triggering a memory tagging violation and use that to bypass mem-

ory tagging solutions [36]. A practical memory safety solution needs to consider speculative

side-channel attacks and ensure they cannot be used to bypass the solution itself.

1.4 Thesis Statement & Contributions

In light of the above discussion, this dissertation makes the following thesis statement:

Leveraging common software trends and rethinking computer microarchitectures can

efficiently circumvent the problems of traditional memory safety solutions for C and C++.

To support the above thesis statement, this dissertation makes the following contributions:

1.4.1 Califorms

The first contribution of this thesis is novel Cache Line Formats (Califorms) [6]. Califorms

uses a two-fold approach for reducing memory safety overheads. First, instead of checking access

bounds for each pointer access, Califorms blocklists all memory locations that should never be

accessed. This reduces the additional work required to enforce memory safety, such as comparing

bounds. Second, Califorms uses a novel metadata storage scheme for storing blocklisted infor-

mation. The key observation is that by using dead memory spaces in the program, we can store

necessary memory safety metadata for free for nearly half of the program’s objects. These dead

spaces can occur for several reasons, including language alignment requirements. When we cannot

find naturally occurring dead spaces, we automatically insert them using compiler transformation.

In order to distinguish the dead bytes from normal bytes in memory, Califorms uses a compressed

encoding that requires one bit per each 64B cache line. If an attacker accesses these dead (i.e.,

blocklisted) regions, we detect this rogue access without any additional metadata accesses as our

metadata resides inline.
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Experimental results from the SPEC CPU2006 benchmark suite indicate that the overheads

of Califorms are quite low: software overheads range from 2 to 14% slowdown (or alterna-

tively, 1.02x to 1.14x performance overhead) depending on the amount and location of padding

bytes used. The hardware induced overheads are also negligible, on average less than 1%. These

overheads are substantially lower compared to the state-of-the-art software or hardware supported

schemes (viz., 2.2x performance and 1.1x memory overheads for EffectiveSan [37], and 1.7x per-

formance and 2.1x memory overheads for Intel’s MPX [38]).

1.4.2 No-FAT

The second contribution of this thesis is a novel technique, dubbed No-FAT [7], for enforc-

ing spatial and temporal memory safety by implicitly deriving the metadata information from the

pointer itself. The key observation that enables No-FAT is the increasing adoption of binning al-

locators. We observe that current memory allocators use bags of pages (called bins), where each

bin allocates objects of the same size. Using bins enables the allocator to quickly serve allocation

requests and increases performance by maintaining allocation locality [39, 40, 41, 42]. No-FAT,

when used with a binning allocator, is able to implicitly derive allocations bounds information

(i.e., the base address and size) from the pointer itself without relying on expensive metadata. The

hardware/software contract has to be tweaked slightly to facilitate the cooperation of No-FAT with

binning allocators: the standard allocation sizes used by a binning allocator need to be supplied to

the hardware and special load and store instructions are created to access the allocation sizes. In

other words, the memory allocation size (e.g., malloc size) becomes an architectural feature.

No-FAT introduces an average of 8% performance overheads on the SPEC CPU2017 bench-

mark suite. No-FAT also provides resilience against the growing threat of speculative execution at-

tacks. For example, Spectre-V1 [43] attacks exploit speculative execution to access out-of-bounds

memory, effectively bypassing software based bounds checks. No-FAT’s memory instructions are

aware of allocation bounds information. Thus, allocation bounds information can be used to verify

if memory accesses are within valid bounds even for speculatively executed instructions.
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1.4.3 C-5

During program execution, user data can be manipulated from within the victim program (e.g.,

via a memory safety vulnerability) or from outside the program (e.g., via an inter-process side-

channel attack). A recent work from Intel Labs, called Cryptographic Capability Computing (C3),

claims to provide resiliency against in-process and physical attacks [44]. In this thesis, I conduct a

detailed assessment of the C3’s security claims. I uncover four different attack vectors against C3,

dubbed C-4, and show how these attacks can bypass the C3’s spatial and temporal memory safety

guarantees, in addition to breaking its data confidentiality. My attacks exploit C3’s fundamental

design choices, such as (1) using a fixed one-time pad for per-object data encryption, (2) lack-

ing bounds checking on pointer arithmetic and usages, (3) providing low entropy against temporal

safety violations, and (4) leaving the application’s stack, global, and intra-allocation objects unpro-

tected. Naively addressing the proposed attacks will require redesigning C3 to use bounds checking

and a stronger cipher, which will result in high performance overheads and negate C3’s stateless

and compatibility claims.

Thus, the third contribution of this thesis is C-5, a Counter C-4 Architecture [8]. C-5 integrates

strong data encryption with No-FAT to mitigate both in-process and physical attacks without bur-

dening the system performance. Our evaluation results using the SPEC CPU2017 benchmark suite

show that Counter C-4 Architecture introduces no runtime cost. Furthermore, we evaluate C-5 on

the Nginx web server [45] and observe negligible overheads on the transfer rate and throughput for

various file sizes.

1.4.4 ZeRØ

The aforementioned three contributions of this thesis focus on detecting memory safety errors

to secure software written in C and C++. Another prominent way of thwarting memory safety

attackers is by using exploit mitigation techniques. Due to their low overheads, hardware vendors

have invested in deploying exploit mitigations such as Intel’s CET [9] and ARM’s PAC [10]. So,

can leveraging software properties and rethinking microarchitectures help to enhance the security
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guarantees of exploit mitigations while maintaining their low overheads? The answer is “yes”.

The fourth contribution of this thesis is ZeRØ, a hardware primitive that provides zero-overhead

resilient operation under pointer integrity attacks [11]. ZeRØ leverages the currently unused upper

bits in 64-bit pointers to store metadata that identifies different pointer types and distinguish them

from regular non-pointer data. The hardware then uses special memory access instructions to

access pointers based on their encoded types and hence prevents any malicious memory accesses

(via buffer overflows for example) from corrupting pointers.

ZeRØ uses a novel metadata encoding scheme that allows it to precisely store all the required

metadata to identify different program assets with a single bit per every cacheline in L2 and main

memory (less than 0.2% memory overheads). Additionally, ZeRØ avoids crashing the victim pro-

gram upon detecting an attack. Instead, ZeRØ raises an advisory exception to the operating system

and continues program execution after skipping the violating memory access. This prevents the

attacker from abusing ZeRØ to launch a denial-of-service attack. Our experimental results on the

SPEC CPU2017 benchmark suite indicate that the software overheads of ZeRØ are 0% compared

to a baseline. Additionally, our VLSI implementation results show that ZeRØ can be efficiently

added to modern processors with negligible performance, area, and power overheads. Unlike other

pointer authentication solutions, ZeRØ does not need to dedicate an energy budget to cryptographic

co-processors [46, 10, 47] or standalone shadow stacks [9].

1.4.5 EPI

Embedded systems interact with many aspects of our daily lives, ranging from cell phones

and life saving medical devices to aircraft and satellite systems. Due to their resource-constrained

nature, embedded applications and firmwares are typically written in C to take advantage of its

direct memory management and high performance, making them vulnerable to memory corruption

attacks. Unfortunately, state-of-the-art exploit mitigation techniques are mainly designed for 64-bit

processors and thus perform poorly when deployed on non 64-bit processors, the common choice

for embedded systems [48, 49]. As a result, there is a need for solutions to the problem of securing
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embedded 32-bit systems with minimal performance, power, and area overheads. Hence, my fifth

contribution is Efficient Pointer Integrity (EPI), a hardware-based technique that mitigates memory

safety-based attacks by ensuring the integrity of valuable application assets (i.e., pointers) [12].

Similarly to ZeRØ, EPI assigns unique tags to different program assets and uses unique memory

instructions for accessing them. Unlike ZeRØ, which relies on the currently unused upper bits

in 64-bit pointers to inline its metadata, EPI implements a novel metadata encoding scheme that

is tailored for 32-bit architectures. The key observation that enables our EPI encoding is that

leveraging common software properties allows for harvesting extra bits from pointers on 32-bit

architectures. Examples for such properties include aligning stack frames and program functions,

compacting code space, and inserting padding bytes. Our experimental results show that EPI’s

software introduces an average of 0.88% runtime overheads on the SPEC CPU2017 benchmark

suite while having negligible latency and energy overheads.

1.5 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 provides an overview on program seg-

ments and memory safety in the C and C++ programming languages. Chapter 3 presents Califorms

as an efficient memory blocklisting technique. Chapter 4 summarizes the key components of my

permitlisting solution, No-FAT. Next, Chapter 5 discusses the C-5 architecture for mitigating both

in-process and physical attacks. Afterwards, I illustrate my exploit mitigation technique, ZeRØ

in Chapter 6 and its 32-bit variant, EPI in Chapter 7. Chapter 8 outlines how the techniques de-

scribed in this thesis are different compared to prior work in the area of memory safety error

detection and exploit mitigation. Finally, Chapter 9 concludes the thesis.
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Chapter 2: Background

This chapter provides the necessary background information on the different concepts that will

be needed over the course of this thesis. First, I summarize the main components of a computer

program . Then, I introduce the memory safety problem in C and C++. Afterwards, I provide an

overview of memory corruption attacks to further motivate the need for stronger defenses.

2.1 Program Components

As memory safety vulnerabilities can affect any segment of a program’s memory, this section

summarizes the main components of a program’s address space. Figure 2.1 shows the memory

layout of a typical C program. The top of the address space (i.e., addresses closer to 0x0), is

reserved for the operating system. The remaining parts are usable by the user-land process and

include the program’s code and data sections in addition to the dynamically changing regions of

memory—the heap and the stack.

Operating system

max

0x0

Stack

Heap

Data

Code

Figure 2.1: The main components of a program’s address space.
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2.1.1 Code

The code segment (also known as the .text section) is used to store the program instructions

that need to be executed at runtime. This segment is typically marked as read-only in order to

prevent attackers (or benign program errors) from modifying the instructions.

2.1.2 Globals

Global variables are seen by the entire program and are typically stored on the .data and

.bss memory segments. Specifically, the .data segment stores global variables and static vari-

ables that are initialized by the programmer. On the other hand, the .bss segment contains unini-

tialized static data, i.e., global variables and local static variables that are initialized to zero or do

not have explicit initialization in the program source code. For example, a global variable declared

as int k = 7; would be stored in the .data segment, whereas a global variable declared int

m; would be stored in the .bss segment.

2.1.3 Stack

Local variables, which are used by individual program functions, are stored in the stack. When

a function is called, the return address (and the caller saved registers) are pushed to the stack. The

newly called function then allocates room on the stack for storing its own local variables. This way

the stack grows (and shrinks) dynamically as the program runs. The stack pointer is used to track

the top of the stack during program execution.

2.1.4 Heap

The heap part of a program’s address space is used to store dynamically allocated memory. It

is managed by memory management functions such as malloc, calloc, realloc, and free

which are provided by a memory allocator. A memory allocator is responsible for partitioning the

heap memory space and serving the requested allocation sizes in a timely manner while minimizing

internal and external fragmentation.
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Memory allocators can be categorized into two main categories: binning and coalescing. Bin-

ning memory allocators divide the available space into fixed-size regions, where each region is

used to allocate objects of a pre-determined size. Thus, the memory size returned to a program

is rounded up to one of the standard sizes offered by the allocator. Examples of binning memory

allocators include Jemalloc [40], Microsoft’s Mimalloc [42], and Google’s TCmalloc [39]. On the

other hand, coalescing memory allocators dynamically join and split memory regions depending

on the requested chunk size. Thus, they can provide the exact amount of memory requested by the

program at the cost of an additional allocation header to store its size. An example for coalescing

memory allocators is Dlmalloc [50]. In general, memory allocators use system calls, such as brk,

sbrk, and mmap for expanding the heap size.

2.2 Memory Safety Definition

For a C or C++ application to be memory safe, all memory objects should only be accessed: (1)

between their intended bounds, (2) during their lifetime, and (3) given their original (or compatible)

type. Violating any of the above requirements can lead to silent memory corruption, difficult-to-

diagnose crashes, and, most importantly, security exploitation [1].

Root cause

7

Program 
code

Code 
corruption

Control-flow
hijacking

Return 
address

Function 
pointer

Data 
pointer

Non-pointer 
data

Data-flow
hijacking

Data 
corruption

Asset

Result

Asset

Result

Memory safety vulnerability

TemporalSpatial

ContiguousNon-
contiguous

Use-after-
free

Uninitialized 
read

Memory Attacks Taxonomy

Figure 2.2: Memory corruption root causes, targets, and end results.
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2.2.1 Spatial Memory Safety

This class of memory safety vulnerabilities occurs when a pointer is used to access an object

beyond its intended bounds (i.e., base address and size) [51]. Examples include buffer under-

/overflows, in which the application writes beyond the buffer’s original bounds, causing a memory

corruption in a different memory object. As shown in Figure 2.2, spatial violations can be further

categorized into contiguous violations (in which the attacker overwrites an adjacent buffer) or a

non-contiguous violation (in which the attacker overwrites arbitrary locations in memory). Finally,

if the victim buffer is a field within a C struct or a member within a C++ class, such a violation is

referred to as an intra-object spatial memory safety violation.

2.2.2 Temporal Memory Safety

This type of memory safety violations occurs when a pointer is used to access an object beyond

its lifetime (e.g., use-after-free or uninitialized read). In use-after-free vulnerabilities the applica-

tion uses a dangling pointer to access a heap object after it is deleted, or a stack object after its

stack frame has been destroyed. For uninitialized reads, the programmer allocates an object and

starts reading from it before writing anything to it. As a result, previous contents of the object

might be leaked, violating memory safety.

2.2.3 Type Memory Safety

This class of memory safety violations (also known as type confusion) occurs when a memory

location is accessed with an incompatible type. For example, the program first allocates (or ini-

tializes) a memory object using one type, and then accesses the same object later using a type that

is incompatible with the original type due to an unsafe typecasting. Type confusion can trigger a

spatial memory safety violation if the sizes of the two confused objects do not match. It can also

trigger a temporal memory safety violation if the same memory region was allocated to one object

and then assigned to an object of a different type after the original object was deleted.
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2.3 Memory Safety Attacks

No matter what memory safety vulnerability a program has, an attacker can exploit it to ma-

nipulate one of the program assets, as shown in Figure 2.2. Valuable assets include program code,

return addresses on the stack, function and data pointers on the heap, and non-pointer data (i.e.,

local variables and struct fields). Based on what asset is manipulated, an attacker can achieve

different end results.

2.3.1 Code Corruption

Traditional approaches for exploiting memory vulnerabilities aimed at either (i) overwriting

program instructions in memory with an attacker’s payload or (ii) dumping the attacker’s code

discretely to the program stack and executing it. Nowadays, code corruption attacks are ineffective

due to the widespread deployment of W^X [52]. In other words, an attacker cannot overwrite

program data (i.e., code is marked as readable and executable but not writable) and cannot write

and execute their own code (i.e., data is marked as readable and writable but not executable).

2.3.2 Control-Flow Hijacking

This line of attacks, which are also known as code reuse attacks (CRAs), exploits memory

vulnerabilities to overwrite code pointers stored in memory. Corrupting a code pointer can cause

a control-flow transfer to anywhere in executable memory. Code pointers include return addresses

on the stack and function pointers anywhere in memory. As code pointers are stored in program

memory (stack and heap), they are a common target for attackers. For example, return oriented

programming (ROP) [53, 54] corrupts return addresses, whereas call- and jump-oriented program-

ming [55, 56] corrupt function pointers (or indirect code addresses in general).

To mount a CRA, the attacker has to first analyze the code to identify the attack gadgets, or

sequences of instructions in the victim program that end with a return or jump instruction. Second,

the attacker uses a memory corruption vulnerability to inject a sequence of target addresses corre-
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sponding to a sequence of gadgets. When the function returns (or a code pointer is dereferenced),

it moves to the location of the first gadget. As that gadget terminates with a control flow instruc-

tion (e.g., return), it transfers program execution to the next gadget, and so on. As CRAs execute

existing instructions belonging to the program, they are not prevented by W^X.

2.3.3 Data-Flow Hijacking

In contrast to control-flow hijacking attacks, data-oriented programming (DOP) attacks can

cause malicious end results without changing the control flow of the program. Prior works show

that manipulating data pointers in memory is sufficient for the attacker to achieve arbitrary compu-

tations on program input [57, 58, 59]. As DOP attacks do not alter the program control flow, they

can easily bypass all control-flow integrity solutions. Thus, DOP is an appealing attack technique

for future run-time exploitation defenses.

2.3.4 Data Corruption

This last class of attacks targets non-pointer data items while stored in memory. Examples

include manipulating program flags to bypass selective checks and changing configuration param-

eters [60]. Mitigating non-pointer data corruption attacks requires full memory safety solutions,

which traditionally come with high performance overheads.
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Part II

Rethinking Microarchitectures For Efficient

Memory Blocklisting
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Chapter 3: Cache Line Formats

Historically, program memory safety violations have provided a significant opportunity for

exploitation by attackers. To address this threat, software checking tools [3] and commercial hard-

ware support for memory safety [4, 33] have enabled programmers to detect and fix memory safety

violations before deploying software. Current software and hardware-supported solutions excel at

providing coarse-grained inter-object memory safety, which involves detecting memory access be-

yond arrays and heap allocated regions (malloc’d struct and class instances). However, these

solutions are not suitable for fine-grained memory safety (i.e., intra-object memory safety or de-

tecting overflows within objects, such as fields within a struct, or members within a class) due to the

high performance overheads and/or need for making intrusive changes to the source code [51]. For

instance, a recent work that aims to provide intra-object overflow protection functionality incurs

a 2.2x performance overhead [37]. These overheads are problematic because they not only re-

duce the number of pre-deployment tests that can be performed, but also impede post-deployment

continuous monitoring, which researchers have pointed out is necessary for detecting benign and

malicious memory safety violations [34]. Thus, a low overhead memory safety solution that can

enable continuous monitoring and provide complete program safety has been elusive.

In this chapter I propose Califorms, a novel hardware primitive that allows blocklisting of a

memory location (i.e., if accessed due to programming errors or malicious attempts, it reports a

privileged exception) at byte granularity with low area and performance overheads. The main ob-

stacle to blocklisting a memory region at a fine granularity (e.g., to prevent intra-object overflows)

is the overhead of maintaining metadata. We solve this problem based on the following key obser-

vation: a blocklisted region need not store its metadata (indicating it is blocklisted) separately, but

can rather store it within itself (since it contains no useful data!). With this principle, we utilize

existing or added bytes between object elements to blocklist a region. This in-place compact data
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When dead bytes are present,
cache lines are califormed

When dead bytes are not present,
cache lines are preserved

Figure 3.1: A high level overview of how Califorms works. Califorms offers memory safety by
detecting accesses to dead bytes in memory. Dead bytes are not stored beyond the L1 data cache
and identified using a special header in the L2 cache (and beyond) resulting in very low overhead.
The conversion between these formats happens when lines are filled or spilled between the L1 and
L2 caches. The absence of dead bytes results in the cache lines stored in the same natural format
across the memory system.

structure avoids additional operations for accessing the metadata, making it very performant in

comparison.

The challenge lies in how to reduce the additional hardware overhead required to identify nor-

mal data versus metadata. A naive implementation requires additional one bit (to specify normal

data or metadata) per byte, which results in 12.5% area overhead. We manage to reduce the over-

head substantially, to one bit per cache line (typically 64 bytes, thus area overhead of 0.2%), by

changing how data is stored within a cache line. For cache lines which contain metadata (within

blocklisted bytes), the actual data is stored following the “header”, which indicates the location of

blocklisted bytes, as shown in Figure 3.1.

The remainder of this chapter is organized as follows. Section 3.1 provides further motivation

for Califorms. Section 3.2 explains the full system overview of Califorms. Section 3.3 discusses

the Califorms architectural support. Section 3.4 details the microarchitectural design of Califorms

whereas Section 3.5 specifies its software design. Section 3.6 analyzes the Califorms security guar-

antees. Section 3.7 evaluates the hardware and software overheads of Califorms. Section 3.8 sum-

marizes the chapter.
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3.1 Motivation

struct A {
char c;
int i;
char buf[64];
void (*fp)();
}

(a) Original.

struct A_opportunistic {
char c;
/* compiler inserts

* padding bytes

* for alignment */
char padding_bytes[3];
int i;
char buf[64];
void (*fp)();
}

(b) Opportunistic.

struct A_full {
/* we protect every field

* with random

* security bytes */
char security_bytes[2];
char c;
char security_bytes[1];
int i;
char security_bytes[3];
char buf[64];
char security_bytes[2];
void (*fp)();
char security_bytes[1];
}

(c) Full.

struct A_intelligent {
char c;
int i;
/* we protect boundaries

* of arrays and pointers

* with random

* security bytes */
char security_bytes[3];
char buf[64];
char security_bytes[2];
void (*fp)();
char security_bytes[3];
}

(d) Intelligent.

Figure 3.2: Califorms Insertion Polices. (a) Original source code and examples of three security
bytes harvesting strategies: (b) opportunistic uses the existing padding bytes as security bytes, (c)
full protect every field within the struct with security bytes, and (d) intelligent surrounds arrays and
pointers with security bytes.

One of the key ways in which we mitigate the overheads for fine-grained memory safety is by

opportunistically harvesting padding bytes in programs to store metadata. So how often do these

occur in programs? Before we answer the question let us concretely understand padding bytes

with an example. Consider the struct A defined in Figure 3.2a. Let us say the compiler inserts

a three-byte padding in between char c and int i as in Figure 3.2b because of the C language

requirement that integers should be padded to their natural size (which we assume to be four bytes

here). These types of paddings are not limited to C/C++ but also required by many other languages

and their runtime implementations. To obtain a quantitative estimate on the amount of paddings,

we developed a compiler pass to statically collect the padding size information. Figure 3.3 presents

the histogram of struct densities for SPEC CPU2006 C and C++ benchmarks and the V8 JavaScript

engine. Struct density is defined as the sum of the size of each field divided by the total size of

the struct including the padding bytes (i.e., the smaller or sparse the struct density the more

padding bytes the struct has). The results reveal that 45.7% and 41.0% of structs within SPEC

and V8, respectively, have at least one byte of padding. This is encouraging since even without

introducing additional padding bytes (no memory overhead), we can offer protection for certain
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(a) SPEC CPU2006 C and C++ benchmarks.
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(b) V8 JavaScript engine.

Figure 3.3: Struct density histogram of SPEC CPU2006 benchmarks and the V8 JavaScript engine.
More than 40% of the structs have at least one padding byte.
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Figure 3.4: Average performance overhead with additional paddings (one byte to seven bytes)
inserted for every field within structs (and classes) of SPEC CPU2006 C and C++ benchmarks.

compound data types restricting the remaining attack surface.

Naturally, one might inquire about the safety for the rest of the program. To offer protection

for all defined compound data types, we can insert random sized padding bytes, also referred to

as security bytes, between every field of a struct or member of a class as in Figure 3.2c (full

strategy). Random sized security bytes are chosen to provide a probabilistic defense as fixed sized

security bytes can be jumped over by an attacker once she identifies the actual size (and the exact

memory layout). By carefully choosing the minimum and maximum of random sizes, we can keep

the average size of security bytes small (few bytes). Intuitively, the higher the unpredictability (or

randomness) within the memory layout, the higher the security level we can offer.

While the full strategy provides the widest coverage, not all of the security bytes provide the

same security utility. For example, basic data types such as char and int cannot be easily

overflowed past their bounds. The idea behind the intelligent insertion strategy is to prioritize

insertion of security bytes into security-critical locations as shown in Figure 3.2d. We choose

23



data types which are most prone to abuse by an attacker via overflow type accesses: (1) arrays

and (2) data and function pointers. In Figure 3.2d, the array buf[64] and the function pointer

fp are protected with random sized security bytes. While it is possible to utilize padding bytes

present between other data types without incurring memory overheads, doing so would come at an

additional performance overhead.

In comparison to opportunistic harvesting, the other more secure strategies (full and intelligent)

come at an additional performance overhead. We analyze the performance trend in order to decide

how many security bytes can be reasonably inserted. For this purpose we developed an LLVM pass

which pads every field of a struct and member of a class with fixed size paddings. We mea-

sure the performance of SPEC CPU2006 benchmarks by varying the padding size from one byte to

seven bytes (since eight bytes is the finest granularity that state-of-the-art technique can offer [30]).

The detailed evaluation environment and methodology are described later in Section 3.7.

Figure 3.4 demonstrates the average slowdown when inserting additional bytes for harvesting.

As expected, we can see the performance overheads grow as we increase the padding size, mainly

due to ineffective cache usage. On average the slowdown is 3.0% for one byte and 7.6% for seven

bytes of padding. The figure presents the ideal (lower bound) performance overhead when fully

inserting security bytes into compound data types; the hardware and software modifications we

introduce add additional overheads on top of these numbers. We strive to provide a mechanism

that allows the user to tune the security level at the cost of performance and thus explore several

security byte insertion strategies to reduce the performance overhead in this work.

3.2 System Overview

The Califorms framework consists of the following three components:

• Architecture Support. We introduce a new instruction called BLOC, mnemonic for Block-

list LOCations, that blocklists memory locations at byte granularity and raises a privileged

exception upon misuse of blocklisted locations (Section 3.3).
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• Microarchitecture Design. We invent a new cache line formats, or Califorms, that enable

low cost access to the metadata. We propose different Califorms for L1 cache versus L2

cache and beyond (Section 3.4).

• Software Design. We explain compiler, memory allocator and operating system extensions

which insert the security bytes at compile time and manages them via the BLOC instruction

at runtime (Section 3.5).

At compile time, each compound data type (struct or class) is examined and security

bytes are added according to a user defined insertion policy viz. opportunistic, full or intelligent,

by a source-to-source translation pass. At execution time when compound data type instances are

dynamically created in the heap, we use a new version of malloc that issues BLOC instructions to

arrange the security bytes after the space is allocated. When the BLOC instruction is executed, the

cache line format is transformed at the L1 cache controller (assuming a cache miss) and is inserted

into the L1 data cache. Upon an L1 eviction, the L1 cache controller transforms the cache line to

meet the Califorms of the L2 cache.

While we add additional metadata storage to the caches, we refrain from doing so for main

memory and persistent storage to keep the changes local within the CPU core. When a califormed

cache line is evicted from the last-level cache to main memory, we keep the cache line califormed

and store the additional one metadata bit into spare ECC bits similar to Oracle’s ADI [4, 34].1

When a page is swapped out from main memory, the page fault handler stores the metadata for all

the cache lines within the page into a reserved address space managed by the operating system; the

metadata is reclaimed upon swap in. Therefore, our design keeps the cache line format califormed

throughout the memory hierarchy. A califormed cache line is un-califormed only when the corre-

sponding bytes cross the boundary where the califormed data cannot be understood by the other

end, such as writing to I/O (e.g.,pipe, filesystem or network socket). Finally, when an object is

freed, the freed bytes are filled with security bytes and quarantined for offering temporal memory

1ADI stores four bits of metadata per cache line for allocation granularity enforcement while Califorms stores one
bit for sub-allocation granularity enforcement.
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safety. At runtime, when a rogue load or store accesses a security byte the hardware returns a priv-

ileged, precise security exception to the next privilege level which can take any appropriate action

including terminating the program.

3.3 Architecture Support

3.3.1 BLOC Instruction

The format of the instruction is “BLOC R1, R2, R3”. The value in register R1 points to the

starting (64B cache line aligned) address in the virtual address space, denoting the start of the 64B

chunk which fits in a single cache line. Table 3.1 represents a K-map for the BLOC instruction.

The value in register R2 indicates the attributes of said region represented in a bit vector format (1

to set and 0 to unset the security byte). The value in register R3 is a mask to the corresponding

64B region, where 1 allows and 0 disallows changing the state of the corresponding byte. The

mask is used to perform partial updates of metadata within a cache line. We throw a privileged

exception when the BLOC instruction tries to set a security byte to an existing security byte, or

unset a security byte from a normal byte.

Table 3.1: BLOC instruction K-map. X represents “Don’t Care”.

R2, R3

X, Allow Set, Allow Set, Allow

In
iti

al Regular Byte Regular Byte Exception Security Byte

Security Byte Security Byte Regular Byte Exception

The BLOC instruction is treated similarly to a store instruction in the processor pipeline since

it modifies the architectural state of data bytes in a cache line. It first fetches the corresponding

cache line into the L1 data cache upon an L1 miss (assuming a write allocate cache policy). Next,

it manipulates the bits in the metadata storage to appropriately set or unset the security bytes.
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3.3.2 Privileged Exceptions

When the hardware detects an access violation (i.e., access to a security byte), it throws a priv-

ileged exception once the instruction becomes non-speculative. There are some library functions

which violate the aforementioned operations on security bytes such as memcpy so we need a way

to suppress the exceptions. In order to permitlist such functions, we manipulate the exception mask

registers and let the exception handler decide whether to suppress the exception or not. Although

privileged exception handling is more expensive than handling user-level exceptions (because it re-

quires a context switch to the kernel), we stick with the former to limit the attack surface. We rely

on the fact that the exception itself is a rare event and would have negligible effect on performance.

3.4 Microarchitecture Design

The microarchitectural support for our technique aims to keep the common case fast: L1 cache

uses the straightforward scheme of having one bit of additional storage per byte. All califormed

cache lines are converted to the straightforward scheme at the L1 data cache controller so that

typical loads and stores which hit in the L1 cache do not have to perform address calculations to

figure out the location of original data (which is required for Califorms of L2 cache and beyond).

This design decision guarantees that the common case latencies will not be affected due to security

functionality. Beyond the L1, the data is stored in the optimized califormed format, i.e., one bit

of additional storage for the entire cache line. The transformation happens when the data is filled

in or spilled from the L1 data cache (between the L1 and L2), and adds minimal latency to the L1

miss latency.

3.4.1 L1 Cache: Bit Vector Approach

To satisfy the L1 design goal we consider a naive (but low latency) approach which uses a

bit vector to identify which bytes are security bytes in a cache line. Each bit of the bit vector

corresponds to each byte of the cache line and represents its state (normal byte or security byte).
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Figure 3.5: Califorms-bitvector Format: L1 Califorms implementation using a bit vector that indi-
cates whether each byte is a security byte. HW overhead of 8B per 64B cache line.
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Figure 3.6: Pipeline diagram for the L1 cache hit operation. The shaded blocks correspond to
Califorms components.

Figure 3.5 presents a schematic view of this implementation califorms-bitvector. The bit vector

requires a 64-bit (8B) bit vector per 64B cache line which adds 12.5% storage overhead for the L1

data cache (comparable to ECC overhead for reliability).

Figure 3.6 shows the L1 data cache hit path modifications for Califorms. If a load accesses

a security byte (which is determined by reading the bit vector) an exception is recorded to be

processed when the load is ready to be committed. Meanwhile, the load returns a pre-determined
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Figure 3.8: Logic diagram for Califorms conversion from the L1 cache (califorms-bitvector) to L2
cache (califorms-sentinel). The shaded blocks are constructed using 64 shift blocks followed by a
single comparator. The circled numbers refer to the corresponding steps in Algorithm 1.

value for the security byte (in our design the value zero which is the value that the memory region

is initialized to upon deallocation). Returning this fixed value is meant to be a countermeasure

against speculative side-channel attacks that seek to identify security byte locations (discussed in

greater detail in Section 3.6). On store accesses to security bytes, we report an exception when the

store commits.

3.4.2 L2 Cache and Beyond: Sentinel Approach

For L2 and beyond, we take a different approach that allows us to recognize whether each byte
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1: Read the Califorms metadata for the evicted line and OR them
2: if result is 0 then
3: Evict the line as is and set Califorms bit to zero
4: else
5: Set Califorms bit to one
6: if num security bytes (N) < 4 then
7: Get locations of first N security bytes
8: Store data of first N bytes in locations obtained in 7
9: Fill the first N bytes based on Figure 3.7
10: else
11: Get locations of first four security bytes
12: Scan least 6-bit of every byte to determine sentinel
13: Store data of first four bytes in locations obtained in 11
14: Fill the first four bytes based on Figure 3.7
15: Use the sentinel to mark the remaining security bytes
16: end
17: end

Algorithm 1: Califorms conversion from the L1 cache (califorms-bitvector) to L2 cache
(califorms-sentinel).

is a security byte with fewer bits, as using the L1 metadata format throughout the system will

increase the cache area overhead by 12.5%, which may not be acceptable. We propose califorms-

sentinel, which has a 1-bit or 0.2% metadata overhead per 64B cache line. For main memory, we

store the additional bit per cache line size in the DRAM ECC spare bits, thus completely removing

any cycle time impact on DRAM access or modifications to the DIMM architecture.

The key insight that enables the savings is the following observation: the number of bits re-

quired to address all the bytes in a cache line, which is six bits for a 64 byte cache line, is less than

a single byte. For example, let us assume that there is (at least) one security byte in a 64B cache

line. Considering a byte granular protection there are at most 63 unique values (bytes) that non-

security bytes can have. Therefore, we are guaranteed to find a six bit pattern that is not present in

any of the normal bytes’, for instance least significant, six bits. We use this pattern as a sentinel

value to represent the security bytes in the cache line. Now if we store this six bit (sentinel value)

as additional metadata, the storage overhead will be seven bits (six bits plus one bit to specify if the

cache line is califormed) per cache line. In this work, we further propose a new cache line format

which stores the sentinel value within a security byte to reduce the metadata overhead down to one

bit per cache line.

As presented in Figure 3.7, califorms-sentinel stores the metadata into the first four bytes (at

most) of the 64B cache line. Two bits of the first (0th) byte are used to specify the number of
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security bytes within the cache line: 00, 01, 10 and 11 represent one, two, three, and four or

more security bytes, respectively. The sentinel is used only when we have more than four security

bytes. If there is only one security byte in the cache line, we use the remaining six bits of the 0th

byte to specify the location of the security byte, and the original value of the 0th byte is stored in

the security byte. Similarly when there is two or three security bytes in the cache line, we use the

bits of the second and third bytes to locate them. The key observation is that, we gain two bits per

security byte since we only need six bits to specify a location in the cache line. Therefore when

we have four security bytes, we can locate four addresses and have six bits remaining in the first

four bytes. This remaining six bits can be used to store a sentinel value, which allows us to have

any number of additional security bytes.

Although the sentinel value depends on the actual values within the 64B cache line, it works

naturally with a write-allocate L1 cache (which is the most commonly used cache allocation policy
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1: Read the Califorms bit for the inserted line
2: if result is 0 then
3: Set the Califorms metadata bit vector to [0]
4: else
5: Check the least significant 2-bit of byte 0
6: Set the metadata of byte[Addr[0-3]] to one based on 5
7: Set the metadata of byte[Addr[byte==sentinel]] to one
8: Set the data of byte[0-3] to byte[Addr[0-3]]
9: Set the new locations of byte[Addr[0-3]] to zero
10: end

Algorithm 2: Califorms conversion from the L2 cache (califorms-sentinel) to L1 cache (califorms-
bitvector).

in modern microprocessors). The cache line format is transformed upon L1 cache eviction and

insertion (califorms-bitvector to/from califorms-sentinel), while the sentinel value only needs to

be found upon L1 cache eviction (L1 miss). Also, it is important to note that califorms-sentinel

supports critical-word first delivery since the security byte locations can be quickly retrieved by

scanning only the first 4B of the first 16B flit.

3.4.3 L1 to/from L2 Califorms Conversion

Figure 3.8 and Algorithm 1 show the logic diagram and the high-level process of the spill (L1 to

L2 conversion) module, respectively. The circled numbers in the figure refer to the corresponding

steps in the algorithm. There are four components presented in the figure. From the left, the first

block details the process of determining the sentinel value (line 12). We scan the least 6-bits of

every byte, decode them, and OR the output to construct a used-values vector. The used-values

vector is then processed by a “find-index” block to get the sentinel value. The find-index block

takes a 64-bit input vector and searches for the index of the first zero value. It is constructed

using 64 shift blocks followed by a single comparator. In the second block, L1 cache (califorms-

bitvector) metadata for the evicted line is ORed to construct the L2 cache (califorms-sentinel)

metadata. The third block shows the logic for getting the locations of the first four security bytes

(lines 7 and 11). It consists of four successive combinational find-index blocks (each detecting one

security byte) in our evaluated design. This logic can be easily pipelined into four stages if needed,

to completely hide the latency of the spill process in the pipeline. Finally in the last block, we form

the L2 cache line based on Figure 3.7.

32



Figure 3.9 shows the logic diagram for the fill (L2 to L1 conversion) module, as summarized

in Algorithm 2. The shaded blocks F and G are constructed using logic comparators. The one

bit metadata of L2 Califorms is used to control the value of the L1 cache (califorms-bitvector)

metadata. The first two bits of the L2 cache line are used as inputs for the comparators (block F) to

detect how many security bytes the cache line contain. Block F outputs four signals (En0 to En3)

which enable the four decoders. Only if those two bits are 11, the sentinel value is read from the

fourth byte and fed, with the least 6-bits of each byte, to 60 comparators simultaneously to set the

rest of the L1 metadata bits. Such parallelization reduces the latency impact of the fill process.

3.4.4 Load/Store Queue Modifications

Since the BLOC instruction updates the architectural state, it is functionally a store instruction

and handled as such in the pipeline. However, there is a key difference: unlike a store instruction,

the BLOC instruction should not forward the value to a younger load instruction whose address

matches within the load/store queue (LSQ) but instead return the value zero. This functionality is

required to provide tamper-resistance against side-channel attacks. Additionally, upon an address

match, both load and store instructions subsequent to an in flight BLOC instruction are marked

for Califorms exception; exception is thrown when the instruction is committed to avoid any false

positives due to misspeculation.

In order to detect an address match in the LSQ with a BLOC instruction, first a cache line

address should be matched with all the younger instructions. Subsequently upon a match, the value

stored in the LSQ for the BLOC instruction which contains the mask value (to set/unset security

bytes) is used to confirm the final match. To facilitate a match with a BLOC instruction, each LSQ

entry should be associated with a bit to indicate whether the entry contains a BLOC instruction.

Detecting a complete match may take multiple cycles, however, a legitimate load/store instruction

should never be forwarded a value from a BLOC instruction, and thus the store-to-load forwarding

from a BLOC instruction is not on the critical path of the program (i.e., its latency should not affect

performance), and we do not evaluate its effect in our evaluation. Alternately, if LSQ modifications
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are to be avoided, the BLOC instructions can be surrounded by memory serializing instructions (i.e.,

ensure that BLOC instructions are the only in flight memory instructions).

3.5 Software Design

We describe the memory allocator, compiler and the operating system changes to support Cal-

iforms in the following section.

3.5.1 Dynamic Memory Management

We can consider two approaches to applying security bytes: (1) Dirty-before-use. Unallocated

memory has no security bytes. We set security bytes upon allocation and unset them upon deal-

location; or (2) Clean-before-use. Unallocated memory remains filled with security bytes all the

time. We clear the security bytes (in legitimate data locations) upon allocation and set them upon

deallocation.

Ensuring temporal memory safety in the heap remains a non-trivial problem [61]. We therefore

choose to follow a clean-before-use approach in the heap, so that deallocated memory regions

remain protected by security bytes.2 In order to provide temporal memory safety (to mitigate

use-after-free exploits), we do not reallocate recently freed regions until the heap is sufficiently

consumed (quarantining). Additionally, both ends of the heap allocated regions are protected by

security bytes in order to provide inter-object memory safety. Compared to the heap, the security

benefits are limited for the stack since temporal attacks on the stack (e.g., use-after-return attacks)

are much rarer. Hence, we apply the dirty-before-use scheme on the stack.

3.5.2 Compiler Support

Our compiler-based instrumentation infers where to place security bytes within target objects,

based on their type layout information. The compiler pass supports three insertion policies: the
2It is natural to use a variant of BLOC instruction which bypasses (does not store into) the L1 data cache, just like

the non-temporal (or streaming) load/store instructions (e.g., MOVNTI, MOVNTQ, etc) when deallocating a memory
region; deallocated region is not meant to be used by the program and thus polluting the L1 data cache with those
memory is harmful and should be avoided. However, we do not evaluate the use of such instructions in this thesis.
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first opportunistic policy supports security bytes insertion into existing padding bytes within the

objects, and the other two support modifying object layouts to introduce randomly sized security

byte spans that follow the full or intelligent strategies described in Section 3.1. The first policy

aims at retaining interoperability with external code modules (e.g., shared libraries) by avoiding

type layout modification. Where this is not a concern, the latter two policies help offer stronger

security coverage—exhibiting a tradeoff between security and performance. Finally, Califorms is

fully compatible with multi-threaded applications as the metadata is accessed simultaneously with

regular program data in the L1 data cache.

3.5.3 Operating System Support

Privileged Exceptions. As the Califorms exception is privileged, the operating system needs to

properly handle it as with other privileged exceptions (e.g., page faults). We also assume the

faulting address is passed in an existing register so that it can be used for reporting/investigation

purposes. Additionally, for the sake of usability and backwards compatibility, we have to ac-

commodate copying operations similar in nature to memcpy. For example, a simple struct to

struct assignment could trigger this behavior, thus leading to a potential breakdown of software

with Califorms support. Hence, in order to maintain usability, we allow permitlisting functionality

to suppress the exceptions. This can either be done with a privileged store (requiring a syscall) or

an unprivileged store. Both options represent different design points in the performance-security

tradeoff spectrum.

Page Swaps. As we have discussed in Section 3.2, data with security bytes is stored in main

memory in a califormed format. When a page with califormed data is swapped out from main

memory, the page fault handler needs to store the metadata for the entire page into a reserved

address space managed by the operating system; the metadata is reclaimed upon swap in. The

kernel has enough address space in practice (kernel’s virtual address space is 128TB for a 64-bit

Linux with 48-bit virtual address space) to store the metadata for all the processes on the system

since the size of the metadata is minimal (8B for a 4KB page or 0.2%).
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3.6 Security Analysis

This section defines the threat model and discusses the security claims of Califorms.

3.6.1 Threat Model

We assume a threat model comparable to that used in contemporary related works [30, 35, 29].

We assume the victim program to have one or more vulnerabilities that an attacker can exploit to

gain arbitrary read and write capabilities in the memory; our goal is to prevent both spatial and

temporal memory violations. Furthermore, we assume that the adversary has access to the source

code of the program, therefore she is able to glean all source-level information. However, she

does not have access to the host binary (e.g., server-side applications). Finally, we assume that all

hardware is trusted—it does not contain and/or is not subject to bugs arising from exploits such as

physical or glitching attacks. Due to its recent rise in relevance however, we maintain side-channel

attacks in our design of Califorms within the purview of our threats. Specifically, we accommodate

attack vectors seeking to leak the location and value of security bytes.

3.6.2 Hardware Attacks and Mitigations

Metadata Tampering Attacks. A key feature of Califorms is the absence of metadata that is

accessible by the program via regular load-stores. This makes our technique immune to attacks

that explicitly aim to leak or tamper metadata to bypass the defense. This, in turn, implies a smaller

attack surface as far as software maintenance/isolation of metadata is concerned.

Bit-Granular Attacks. Califorms’s capability of fine-grained memory protection is the key en-

abler for intra-object overflow detection. However, our byte granular mechanism is not enough

for protecting bit-fields without turning them into char bytes functionally. This should not be a

major detraction since security bytes can still be added around composites of bit-fields.

Side-Channel Attacks. Our design takes multiple steps to be resilient to side-channel attacks.

Firstly, we purposefully avoid having our hardware modifications introduce timing variances to
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avoid timing based side-channel attacks. Additionally, to avoid speculative execution side channels

ala Spectre [43], our design returns zero on a load to camouflage security byte with normal data,

thus preventing speculative disclosure of metadata. We augment this further by requiring that

deallocated objects (heap or stack) be zeroed out in software [62]. This is to reduce the chances

of the following attack scenario: consider a case if the attacker somehow knows that the padding

locations should contain a non-zero value (for instance, because she knows the object allocated at

the same location prior to the current object had non-zero values). However, while speculatively

disclosing memory contents of the object, she discovers that the padding location contains a zero

instead. As such, she can infer that the padding there contains a security byte. If deallocations

were accompanied with zeroing, however, this assumption can be made with a lower likelihood.

Hence, making Califorms return a fixed value (zero), complemented by software actively zeroing

out unused locations, reduces the attacker’s probability of speculatively predicting security byte

locations, as well as leaking its exact value.

3.6.3 Software Attacks and Mitigations

Coverage-Based Attacks. For emitting BLOC instructions to work on the padding bytes (in an

object), we need to know the precise type information of the allocated object. This is not always

possible in C-style programs where void* allocations may be used. In these cases, the compiler

may not be able to infer the correct type, in which case intra-object support may be skipped for such

allocations. Similarly, our metadata insertion policies (viz., intelligent and full) require changes to

the type layouts. This means that interactions with external modules that have not been compiled

with Califorms support may need (de)serialization to remain compatible. For an attacker, such

points in execution may appear lucrative because of inserted security bytes getting stripped away

in those short periods. We note however that the opportunistic policy can still remain in place to

offer some protection. On the other hand, for those interactions that remain oblivious to type layout

modifications (e.g., passing a pointer to an object that shall remain opaque within the external

module), our hardware-based implicit checks have the benefit of persistent tampering protection,
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even across binary module boundaries.

Permitlisting Attacks. Our concession of allowing permitlisting of certain functions was neces-

sary to make Califorms more usable in common environments without requiring significant source

modifications. However, this also creates a vulnerability window wherein an adversary can piggy

back on these functions in the source to bypass our protection. To confine this vector, we keep the

number of permitlisted functions as minimal as possible.

Derandomization Attacks. Since Califorms can be bypassed if an attacker can guess the security

bytes location, it is crucial that it be placed unpredictably. For the attacker to carry out a guessing

attack, the virtual address of the target object has to be leaked, in order to overwrite a certain

number of bytes within that object. To know the address of the object of interest, she typically

has to scan the process’s memory: the probability of scanning without touching any of the security

bytes is (1 − 𝑃/𝑁)𝑂 where 𝑂 is number of allocated objects, 𝑁 is the size of each object, and 𝑃

is number of security bytes within that object. With 10% padding (𝑃/𝑁 = 0.1), when 𝑂 reaches

250, the attack success goes to 10−20. If the attacker can somehow reduce 𝑂 to 1, which represents

the ideal case for the attacker, the probability of guessing the element of interest is 1/7𝑛 (since we

insert 1–7 wide security bytes), compounding as the number of padding spans to be guessed (= 𝑛)

increases.

The randomness is, however, introduced statically akin to randstruct plugin introduced in

recent Linux kernels which randomizes structure layout of those which are specified (it does not

offer detection of rogue accesses unlike Califorms does) [63, 64]. The static nature of the technique

may make it prone to brute force attacks like BROP [65] which repeatedly crashes the program

until the correct configuration is guessed. This could be prevented by having multiple binaries

of the same program with different padding sizes or simply by better logging, when possible.

Another mitigating factor is that BROP attacks require specific type of program semantics, namely,

automatic restart-after-crash with the same memory layout. Applications with these semantics can

be modified to spawn with a different padding layout in our case and yet satisfy application level

requirements.
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3.7 Evaluation

3.7.1 Hardware Overheads

Cache Access Latency Impact of Califorms. Califorms adds additional state and operations to

the L1 data cache and the interface between the L1 and L2 caches. The goal of this section is to

evaluate the access latency impact of the additional state and operations described in Section 3.4.

Qualitatively, the metadata area overhead of L1 Califorms is 12.5%, and the access latency should

not be impacted as the metadata lookup can happen in parallel with the L1 data and tag accesses;

the L1 to/from L2 Califorms conversion should also be simple enough so that its latency can be

completely hidden. However, the metadata area overhead can increase the L1 access latency and

the conversions might add little latency. Without loss of generality, we measure the access latency

impact of adding califorms-bitvector on a 32KB direct mapped L1 cache in the context of a typical

energy optimized tag and data, formatting L1 pipeline with multicycle fill/spill handling. For the

implementation we use the 65nm TSMC core library, and generate the SRAM arrays with the

ARM Artisan memory compiler.

Table 3.2: Area, delay and power overheads of Califorms (GE represents gate equivalent). L1
Califorms (califorms-bitvector) adds negligible delay and power overheads to the L1 cache access.

L1 Califorms Area (GE) Delay (𝑛𝑠) Power (𝑚𝑊)

L1 Overheads [+18.69%] 412,263.87 [+1.85%] 1.65 [+2.12%] 16.17

Fill Module 8,957.16 1.43 0.18
Spill Module 34,561.80 5.50 0.52

Table 3.2 summarizes the results for the L1 Califorms (califorms-bitvector). As expected, the

overheads associated with the califorms-bitvector are minor in terms of delay (1.85%) and power

consumption (2.12%). We found the SRAM area to be the dominant component in the total cache

area (around 98%) where the overhead is 18.69% (higher than 12.5%).

The results of fill/spill modules are reported separately in the bottom half of Table 3.2. The

latency impact of the fill operation is within the access period of the L1 design. Thus, the transfor-

mation can be folded completely within the pipeline stages that are responsible for bringing cache
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lines from L2 to L1. The timing delay of the less performance sensitive spill operation is larger

than that of the fill operation (5.5𝑛𝑠 vs. 1.4𝑛𝑠) as we use pure combinational logic to construct the

califorms-sentinel format in one cycle, as shown in Figure 3.8. This cycle period can be reduced

by dividing the operations of Algorithm 1 into two or more pipeline stages. For instance, getting

the locations of the first four security bytes (lines 7 and 11) consists of four successive combina-

tional blocks (each detecting one security byte) in our evaluated design. This logic can be easily

pipelined into four stages. Therefore we believe that the latency of both the fill and spill operations

can be minimal (or completely hidden) in the pipeline.

Performance with Additional Cache Access Latency. Our VLSI implementation results imply

that there will be no additional L2/L3 latency imposed by implementing Califorms. However, this

might not be the case depending on several implementation details (e.g., target clock frequency)

so we pessimistically assume that the L2/L3 access latency incurs additional one cycle latency

overhead. In order to evaluate the performance of the additional latency posed by Califorms, we

perform detailed microarchitectural simulations.

We run SPEC CPU2006 benchmarks with ZSim [66] processor simulator for evaluation. All

the benchmarks are compiled with Clang version 6.0.0 with “-O3 -fno-strict-aliasing”

flags. We use the ref input sets and representative simulation regions are selected with Pin-

Points [67]. We do not warmup the simulator upon executing each SimPoint region, but instead

use a relatively large interval length of 500M instructions to avoid any warmup issues. MaxK

used in SimPoint region selection is set to 30.3 Table 3.3 shows the parameters of the processor,

an Intel Westmere-like out-of-order core which has been validated against a real system whose

performance and microarchitectural events to be commonly within 10% [66]. We evaluate the

performance when both L2 and L3 caches incur additional latency of one cycle.

As shown in Figure 3.10 slowdowns range from 0.24% (hmmer) to 1.37% (xalancbmk).

3For some benchmark-input pairs we saw discrepancies in the number of instructions measured by Pin-
Points vs. ZSim and thus the appropriate SimPoint regions might not be simulated. Those inputs are:
foreman_ref_encoder_main for h264ref and pds-50 for soplex. Also, due to time constraints, we
could not complete executing SimPoint for h264ref with sss_encoder_main input and excluded it from the
evaluation.
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Table 3.3: Hardware configuration of the simulated system for Califorms.

Core x86-64 Intel Westmere-like OoO core at 2.27GHz
L1 inst. cache 32KB, 4-way, 3-cycle latency
L1 data cache 32KB, 8-way, 4-cycle latency

L2 cache 256KB, 8-way, 7-cycle latency
L3 cache 2MB, 16-way, 27-cycle latency

DRAM 8GB, DDR3-1333
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Figure 3.10: Califorms slowdown with additional one-cycle access latency for L2 and L3 caches.

The average performance slowdown is 0.83% which is well in the range of error when executed on

real systems.

3.7.2 Software Performance Overheads

Our evaluations so far revealed that the hardware modifications required to implement Cali-

forms add little or no performance overhead. Here, we evaluate the overheads incurred by the

software based changes required to enable inter-/intra-object and temporal memory safety with

Califorms: the effect of underutilized memory structures (e.g., caches) due to additional security

bytes, the additional work necessary to issue BLOC instructions (and the overhead of executing the

instructions themselves), and the quarantining to support temporal memory safety.

Evaluation Setup. We run the experiments on an Intel Skylake-based Xeon Gold 6126 processor

running at 2.6GHz with RHEL Linux 7.5 (kernel 3.10). We omit dealII and omnetpp due to

library compatibility issues in our evaluation environment, and gcc since it fails when executed

with the memory allocator with inter-object spatial and temporal memory safety support. The re-

41



maining 16 SPEC CPU2006 C/C++ benchmarks are compiled with our modified Clang version

6.0.0 with “-O3 -fno-strict-aliasing” flags. We use the ref inputs and run to com-

pletion. We run each benchmark-input pair five times and use the shortest execution time as its

performance. For benchmarks with multiple ref inputs, the sum of the execution time of all the

inputs are used as their execution times. We use the arithmetic mean to represent the average

slowdown.4

We estimate the performance impact of executing a BLOC instruction by emulating it with a

dummy store instruction that writes some value to the corresponding cache line’s padding byte.

Since a single BLOC instruction is able to caliform the entire cache line, issuing one dummy store

instruction per to-be-califormed cache line suffices. In order to issue the dummy stores, we im-

plement a LLVM pass to instrument the code to hook into memory allocations and deallocations.

We then retrieve the type information to locate the padding bytes, calculate the number of dummy

stores and the address they access, and finally emit them. Therefore, all the software overheads we

need to pay to enable Califorms are accounted for in our evaluation.

For the random sized security bytes, we evaluate three variants: we fix the minimum size to one

byte while varying the maximum size to three, five and seven bytes (i.e., on average the amount of

security bytes inserted are two, three and four bytes, respectively). In addition, in order to account

for the randomness introduced by the compiler, we generate three different versions of binaries for

the same setup (e.g., three versions of astar with random sized paddings of minimum one byte

and maximum three bytes). The error bars in the figure represent the minimum and the maximum

execution times among 15 executions (three binaries × five runs) and the average of the execution

times is represented as the bar.

Performance of the Opportunistic and Full Insertion Policies with BLOC Instructions. Fig-

ure 3.11 presents the slowdown incurred by three set of strategies: full insertion policy (with

random sized security bytes) without BLOC instructions, the opportunistic policy with BLOC in-

4The use of arithmetic mean of the speedup (execution time of the original system divided by that of the system
with additional latency) means that we are interested in a condition where the workloads are not fixed and all types of
workloads are equally probable on the target system [68, 69].
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structions, and the full insertion policy with BLOC instructions. Since the first strategy does not

execute BLOC instructions it does not offer any security coverage, but is shown as a reference to

showcase the performance breakdown of the third strategy (cache underutilization vs. executing

BLOC instructions).

First, we focus on the three variants of the first strategy, which are shown in the three left

most bars. We can see that different sizes of (random sized) security bytes does not make a large

difference in terms of performance. The average slowdown of the three variants are 5.5%, 5.6%

and 6.5%, respectively. This can be backed up by our results shown in Figure 3.4, where the

average slowdowns of additional padding of two, three and four bytes ranges from 5.4% to 6.2%.

Therefore in order to achieve higher security coverage without losing performance, using a random

sized bytes of, minimum of one byte and maximum of seven bytes, is promising. When we focus

on individual benchmarks, we can see that a few benchmarks including h264ref, mcf, milc

and omnetpp incur noticeable slowdowns (ranging from 15.4% to 24.3%).

Next, we examine the opportunistic policy with BLOC instructions, which is shown in the mid-

dle (fourth) bar. Since this strategy does not add any additional security bytes, the overheads are
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purely due to the work required to setup and execute BLOC instructions. The average slowdown of

this policy is 7.9%. There are benchmarks which encounter a slowdown of more than 10%, namely

gobmk, h264ref and perlbench. The overheads are due to frequent allocations and dealloca-

tions made during program execution, where we have to calculate and execute BLOC instructions

upon every event (since every compound data type requires security bytes management). For in-

stance perlbench is notorious for being malloc-intensive, and reported as such elsewhere [3].

Lastly the third policy, the full insertion policy with BLOC instructions, offers the highest se-

curity coverage in Califorms based system with the highest average slowdown of 14.0% (with the

random sized security bytes of maximum seven bytes). Nearly half (seven out of 16) the bench-

marks encounter a slowdown of more than 10%, which might not be suitable for performance-

critical environments, and thus the user might want to consider the use of the following intelligent

insertion policy.

Performance of the Intelligent Insertion Policy with BLOC Instructions. Figure 3.12 shows the

slowdowns of the intelligent insertion policy with random sized security bytes (with and without

BLOC instructions, in the same spirit as Figure 3.11). First we focus on the strategy without

executing BLOC instructions (the three bars on the left). The performance trend is similar such that

the three variants with different random sizes have little performance difference, where the average

slowdown is 0.2% with the random sized security bytes of maximum seven bytes. We can see that

none of the programs incurs a slowdown of greater than 5%. Finally with BLOC instructions

(three bars on the right), gobmk and perlbench have slowdowns of greater than 5% (16.1%

for gobmk and 7.2% for perlbench). The average slowdown is 1.5%, where considering its

security coverage and performance overheads the intelligent policy might be the most practical

option for many environments.

3.8 Summary

In this chapter I presented Califorms, a hardware primitive which allows blocklisting a memory

location at byte granularity with low area and performance overhead. A key observation behind
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Califorms is that a blocklisted region need not store its metadata separately but can rather store

them within itself. Califorms utilizes byte-granular existing or added space between object ele-

ments to blocklist a region. This in-place compact data structure avoids additional operations for

fetching the metadata making it very performant in comparison. Further, by changing how data is

stored within a cache line, Califorms reduces the hardware area overheads substantially. Subse-

quently, if the processor accesses a blocklisted byte or a security byte, due to programming errors

or malicious attempts, it reports a privileged exception.

To provide memory safety, Califorms inserts security bytes between and within data structures

(e.g.,between fields of a struct) upon memory allocation and clear them on deallocation. No-

tably, by doing so, Califorms can even detect intra-object overflows in a practical manner, thus

addressing one of the prominent open problems in area of memory safety and security.
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Part III

Leveraging Current Software Trends For

Efficient Memory Permitlisting
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Chapter 4: Architectural Support for Low Overhead

Memory Safety Checks

As we approach the end of Moore’s Law, there is a need to develop better hardware that can run

software programs faster without compromising security. One promising approach is to rethink the

current software-hardware interface. In current architectural abstractions, lots of software proper-

ties are lost during compilation and thus are not transferred to hardware. Such a narrow interface

limits the hardware’s ability to accelerate software execution. If software properties are provided

to hardware, we can significantly enhance the overall performance. However, care must be taken

to ensure that the software-hardware interface is not too wide, since providing more software in-

formation to the hardware may badly impact portability. Thus, we need innovative abstractions

that strike the right balance not only to improve security but also to serve broader needs.

This chapter presents No-FAT1, which is an example of a balanced abstraction that efficiently

exposes memory allocation sizes to the architecture to enhance security while maintaining portabil-

ity. The key observation that enables No-FAT is that if memory allocation sizes (e.g., malloc sizes)

are made an architectural feature, then it is possible to implicitly derive the allocation bounds

information (i.e., the base address and size) from the pointer itself without relying on explicit

metadata. Our No-FAT abstraction is inline with the software development trend towards using

binning memory allocators, which makes them attractive for software such as Chrome, Android,

and Windows applications. Binning allocators place similarly-sized objects in collections of pages

(called bins). Using bins enables the allocator to quickly serve allocation requests and increases

performance by maintaining allocation locality [39, 40, 41, 42]. This technological change facili-

tates the idea of standardizing memory allocation sizes in No-FAT.

1The name is an allusion to No-Fat Milk, which has fewer calories. Also, closely related work in this area refers to
their schemes as Fat and Low Fat pointers.
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This new abstraction enables multiple security and performance benefits, such as:

• Improving fuzz-testing time. Currently companies spend hundreds of millions of dollars

testing software programs for bugs. A majority of these bugs tend to be intricate memory

safety bugs. Exposing allocation sizes to hardware simplifies the checks for memory safety

and improves the fuzz testing bandwidth by over 10x based on state-of-the-art solutions (e.g.,

AddressSanitizer based fuzzing).

• Improving run-time security. Despite the best effort of software engineers to produce bug-

free code, some of these bugs do end up in production, and pose a risk to end users. If

users wish to protect against remaining residual risk, our solution offers the lowest overhead

protection among all published memory safety solutions that thwart data corruption attacks.

• Improving resilience to Spectre-V1 attacks. Exposing allocation sizes to the hardware

allows the hardware to effectively perform bounds checking even for speculative memory

accesses.

The remainder of this chapter is organized as follows. Section 4.1 motivates No-FAT. Sec-

tion 4.2 provides an overview of how No-FAT works. Section 4.3 enumerates the No-FAT in-

struction set extensions. Section 4.4 details the microarchitectural design of No-FAT whereas Sec-

tion 4.5 specifies its software design. Section 4.6 analyzes the security guarantees of No-FAT and

discusses its deployment considerations. Section 4.7 evaluates the software and hardware costs

of No-FAT. Section 4.8 summarizes the chapter.

4.1 Motivation

To minimize the damage caused by memory safety violations, software vendors have highly

invested in static and dynamic checking tools. Due to the limited scope of static analysis tech-

niques, specifically when applied to large code bases, dynamic tools (also known as sanitizers)

have gained more popularity. To detect memory safety errors, applications are instrumented with
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tools like Google’s AddressSanitizer [3] and run with randomly generated inputs. In 2016, Google

announced its OSS-Fuzz project for continuously fuzzing open source software [70]. Between

2016 and 2021, over 500 critical open source projects have been integrated into the OSS-Fuzz

program, resulting in over 6, 500 vulnerabilities and 21, 000 functional bugs being fixed [20]. This

large investment in software fuzzing with its promising results motivates the need for more efficient

memory safety solutions that can accelerate the fuzzing process and uncover more bugs.

Chapter 3 presented one instance of hardware-based techniques that achieves a byte-granularity

protection via memory blocklisting, namely Califorms. While blocklisting-based systems come

with minimal performance overheads, they could be bypassed by non-adjacent buffer overflows

(i.e., when the attacker guesses the size of the tripwired region and jumps over them), which

represents 27% of Microsoft’s memory safety CVEs [36]. Thus, there is a need to develop low

overhead base & bounds techniques that can catch different instances of memory safety violations

with deterministic security guarantees.

4.2 System Overview

4.2.1 Preliminaries

Binning memory allocators have gained prominence in the past decade and are now widely

used [39, 40, 41, 42]. In a binning alloctor, the heap is divided into regions where each region is

used to allocate objects of a pre-determined size. Thus, the memory size returned to a program is

rounded up to one of the standard sizes offered by the allocator. For example, allocation requests

that are less than 16 bytes come from the first region, allocation requests for 16 to 32 bytes come

from the second region and so on. In contrast, non-binning allocators can provide the exact amount

of memory requested by the program at the cost of an additional allocation header to store its

size [50]. Binning allocators trade off a little memory fragmentation for faster allocation and

deallocation times, and practically speaking, the fragmentation overheads tend to be negligible for

most programs. In this work, we expose the pre-determined sizes offered by a binning memory
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allocator to the hardware to provide memory safety.2

4.2.2 How does No-FAT provide Inter-allocation Spatial Memory Safety?

The goal of inter-allocation spatial memory safety is to be able to identify pointer-based ac-

cesses that access addresses outside the region of memory allocated to that pointer. To perform

this check we need three pieces of information: (1) the starting address of the allocation, (2) the

size of the space allocated to the pointer, and (3) the address of the pointer-based access. The

benefit of binning allocators is that (1) and (2) can be computed from (3) using simple arithmetic

and concurrently with the data access.

Given a pointer address, we determine the region that the pointer is from. Say each region is S

GiB, and the heap starts at address H. Then the region of the pointer is (𝑝𝑡𝑟−𝐻) >> 𝑙𝑜𝑔2(𝑆). Once

the region is known, we can know the size of the allocation because all allocations from the region

are of the same size. The base address of the allocation can be computed by b(𝑝𝑡𝑟/𝑠𝑖𝑧𝑒)c ∗ 𝑠𝑖𝑧𝑒,

whereas the combination of integer division and multiplication has the effect of rounding 𝑝𝑡𝑟 down

to the nearest 𝑠𝑖𝑧𝑒(𝑝𝑡𝑟)-aligned boundary, which is the base address.

For example, let us assume that the heap starting address is 𝐻 = 0x380000000000 and the

memory allocator uses 64 bins (i.e., regions) each of size 32 GiB, where the third region is used to

store allocations of size 32B. When the program executes char* A = malloc(32), the memory

allocator might return the following base address: 0x381000000040. Now, given an arbitrary

pointer 𝑝𝑡𝑟 = 0x381000000045, the hardware computes the region number by subtracting the

heap starting address (i.e., 0x001000000045) and ignoring the 35 LSBs (i.e., 0x002, which is

the third region). Then, the hardware retrieves the allocation size from the hardware table. Finally,

the base address can be computed as b(0x381000000045/32)c ∗ 32 = 0x381000000040.

How does this information help protect against attacks? Let us say an attacker has the ability to

control the index variable of a dynamically allocated array. With this ability, the attacker can cause

the pointer to go out-of-bounds and subvert the memory instruction in order to read/write from a

2A recent study [71] proposes passing semantic information from software to hardware to achieve better resource
utilization and enhance performance. However, neither allocation size nor fine-grained security were included.
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different allocation. If we simply calculated the base address from the attacker modified address

we would not be able to catch the attack since we do not have an expectation of what the base

address ought to have been. To avoid this case, No-FAT extends memory access instructions with

an extra operand that carries a trusted base address. The trusted base address is simply the base

address returned by malloc. This way we can verify the correctness of the access by computing

the base address of the input pointer and matching it against the trusted base address, which is part

of the instruction.

Computing the base address of a pointer for every memory access instruction is a costly op-

eration as it includes a 64-bit division operation followed by a 64-bit multiplication. Division is

a relatively expensive operation even on modern CPUs. To simplify the bounds checking opera-

tion, No-FAT uses the following check 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 (𝑝𝑡𝑟, 𝑏𝑎𝑠𝑒) = 𝑝𝑡𝑟 − 𝑏𝑎𝑠𝑒 < 𝑠𝑖𝑧𝑒(𝑏𝑎𝑠𝑒). The idea

is simple. As the instruction holds the trusted base address, we first compute its corresponding

size by extracting the region number as explained before. Then, we compare this size to the differ-

ence between the input pointer and the trusted (i.e., instruction-based) base address. If the pointer

overflows to an adjacent allocation, the difference will be larger than the computed difference. If

the pointer underflows to a previous allocation, 𝑝𝑡𝑟 − 𝑏𝑎𝑠𝑒 will be a negative number that will be

interpreted as a large positive number that is ≥ 𝑠𝑖𝑧𝑒(𝑏𝑎𝑠𝑒) as we use unsigned arithmetic.

In order to better understand how No-FAT enforces spatial memory safety, let us consider the

example shown in Figure 4.1. The program reserves a 12B allocation on the heap in Line 2 and

writes ’A’ to the second byte, ptr[1]. To make the allocation an architectural feature, No-

FAT maintains the allocation sizes that are used by each bin in a hardware structure, called the

memory allocation size table (MAST). It then modifies the compiler to propagate the allocation

base address, ptr, from malloc output to memory instructions (i.e., secure_store). During

the execution of the secure_store instruction in Line 3, No-FAT’s Bounds Checking Module

verifies the validity of the memory access by (1) computing the difference between the memory

address, ptr[1], and the propagated allocation base address, ptr, and (2) comparing this offset

to the standard size that is retrieved from the MAST.
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int main(){
  char* ptr = malloc(12*sizeof(char));    // ptrtrusted 
  ptr[1] = 'A'; // secure_store ptr[1], 'A', ptrtrusted
  ...
  ptr = ptr + 2;
  foo(ptr);     // verify_bounds ptr, ptrtrusted
  ... 
}
void foo(char* xptr){
  ...           // xptrtrusted <-- compute_base(xptr)
  xptr[7] = 'B' // secure_store xptr[7], 'B', xptrtrusted
  ...
}
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bin  = xptr >> log2(S)

  size = getEntrySize(bin)
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Figure 4.1: A high level overview of how No-FAT enforces spatial memory safety. No-FAT takes
advantage of binning memory allocators, which divide the program virtual memory into S-Byte
bins where each bin holds objects of a pre-defined size (e.g., 16𝐵, 32𝐵, 48𝐵, · · · , 𝑒𝑡𝑐). No-FAT
uses a compiler pass to insert new instructions that (1) perform the bounds checking in parallel to
the memory access and (2) implicitly recompute the allocation base address inside new functions.

To make No-FAT compatible with unprotected code, memory instructions that need to per-

form the check are emitted using special instructions. Specifically No-FAT uses Secure Load

(secure_load) and Secure Store (secure_store) instructions (see Section 4.3) that use the

allocation base address as a distinct operand. This operand is propagated in the binary using a

compiler pass (see Section 4.5). This way secure_load and secure_store can verify ac-

cess boundaries using the 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 check, as described above. On machines which do not have

hardware support for No-FAT, secure_load can be interpreted as a regular load and the third

operand will be ignored.

4.2.3 How does No-FAT provide Intra-allocation Spatial Memory Safety?

The goal of intra-allocation spatial memory safety is to prevent overflows from one field to

another within the same allocation. The strategy used by No-FAT for intra-allocation safety is to

convert the intra-allocation memory safety problem to an inter-allocation problem. No-FAT uses a

source-to-source transformation, Buf2Ptr, which has been previously used in the area of data layout

optimizations for enhancing performance [72, 73, 74]. Buf2Ptr promotes buffer fields, which exist

in C/C++ structs (or classes), into their own allocations. To illustrate Buf2Ptr, consider the example

in Listing 4.2. The array field, buf[10], within the struct, Foo, is replaced with a promoted
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pointer, p_buf, and a new variable for the original array is defined (Foo_buf[10]). As a result

of this transformation, allocations, deallocations, and usages of the original field must also be

properly promoted. For example, an allocation for a composite data type (e.g., Foo) becomes

separate allocations based on the number of fields promoted (e.g., Foo_buf). As the standalone

allocations have their own base address, they can be protected with No-FAT, as described above.

1

2struct Foo {
3 char buf[10];
4 int value;
5};
6

7

8struct Foo *f = malloc(
9 sizeof(struct Foo));

10

11

12

13f->buf[7] = 'A';
14

15free(f);
16

(a) Original

// Promoted Type
char Foo_buf[10];
struct Foo {

char *p_buf;
int value;

};
// Promoted Allocations
struct Foo *f = malloc(

sizeof(struct Foo));
f->p_buf = malloc(

sizeof(Foo_buf));
// Promoted Usages
f->p_buf->buf[7] = 'A';
// Promoted Deallocations
free(f->p_buf);
free(f);

(b) Transformed

Listing 4.2: An example of Buf2Ptr transformation.

4.2.4 How does No-FAT provide Temporal Memory Safety?

To enforce temporal memory safety, No-FAT tags the upper 16-bits of data pointers on 64-bit

systems with a random value upon malloc. This value is propagated in our new instructions (i.e.,

secure_load and secure_store) as part of the memory address and the allocation base

address. This way, comparing the tag of the memory address with the tag of the allocation base

address catches temporal safety violation with a probability of 1 − (1/216) = 99.9984%. When a

virtual memory region is reallocated to a different object it receives a new random tag, implicitly

nullifying all dangling pointers which used to point to the old object, as they are likely to have

different tags. The work-flow is as follows:

1. Upon calling malloc or new, a 16-bit random tag is generated and inserted in both, the
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pointer upper bits and the memory object at memory [trusted base + size - 2].

2. Every secure_load or secure_store instruction within a function scope compare

the tag of the memory address versus the tag of the trusted base address (i.e., the malloc

output) for temporal correctness.

3. If a pointer is used in a different function scope (or context), its tag will be retrieved from

memory [trusted base + size - 2] as part of executing the compute_base in-

struction directly after computing the trusted base address.

4. When the object is deallocated, we set the 16-bit tag in the memory object to a unique pattern,

0xFFFF, to prevent any dangling pointer from accessing the deleted object.

Listing 4.3 shows a typical temporal memory safety violation example, in which the program

first allocates an object (Line 4), stores the pointer to this object into a global variable (Line 8),

and deallocates the object without freeing the reference in the global variable (Line 10). Later on,

another function, Bar, accidentally accesses the global variable, q, which is still pointing to the

deallocated object causing a use-after-free violation. With No-FAT, the aforementioned memory

access (Line 15) will fail due to a mismatch between the tag of the global pointer (i.e., 0xCAFE)

and the tag of the memory object (i.e., 0xFFFF), which is retrieved from memory as part of

executing the compute_base instruction in the beginning of function Bar. This way No-FAT

provides temporal protection even if the temporal violation occurs in different function scope. If

the use-after-free is delayed until the memory region is allocated to another object, No-FAT can still

catch the temporal safety violation with a probability of 1− (1/216) = 99.9984% as the new object

will likely get a different tag other than 0xCAFE. Finally, as No-FAT enforces spatial memory

safety, an attacker cannot manipulate the tags while being stored in memory.

4.2.5 Handling Procedure Calls and Nested Pointers

Consider the following: q = p + 16; x = Bar(q);. Here, p is a pointer to a 32B allocation,

and q is a derived pointer to a field within the allocation. In this case, the use of a pointer happens in
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1 int *q; // global pointer
2 void Bar();
3 int main() {
4 int *p = (int*) malloc(12); /* generate a random
5 tag, 0xCAFE, store it in the upper bits of p
6 and to memory location[base + size - 2] */
7 ...
8 q = p; // propagate the tag from p to q
9 ...

10 free(p); // set memory[base + size - 2] to 0xFFFF.
11 ...
12 Bar();
13 }
14 void Bar() {
15 *q = 0xABC; // use-after-free violation
16 /* With No-FAT, the compute_base instruction
17 computes the base address of q and retrieves
18 its tag from memory[base + size - 2]. As the
19 pointed-to object was previously deleted, its
20 tag is set to 0xFFFF, which causes the above
21 store instruction to fail */
22 }

Listing 4.3: A use-after-free example.

a different function (i.e., context) than the one where it was originally created. Thus, all functions

using the base pointer (i.e., p) or its derivatives (e.g., q) need to be given access to the base

address. One way to do this would use a source-to-source transformation to add an extra operand

to all functions that use pointer arguments. This way the address would be in the stack of the

needed function. This solution requires changing the function signature and breaks compatibility

with unprotected code.

Instead, we use a different, simpler abstraction. Whenever a data pointer goes out of con-

text (i.e., passed to another function or spilled to memory), we first verify that it is an in-bounds

pointer using a Verify Bounds (verify_bounds) instruction (see Section 4.3). When a pointer

is loaded from memory, we first compute its base address using a compute_base instruction

and propagate this base address to all the following memory instructions as a third operand.

With this approach, can the attacker abuse pointers that escape to another function? This is not

possible because (1) we verify the bounds of the pointer before spilling it to memory and (2) we

protect the memory with No-FAT so we are assured that the pointer stored in memory cannot be
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overwritten. This abstraction also permits No-FAT to use only intra-procedural analysis, which

simplifies the implementation. Going back to our example, we first verify the bounds of q before

calling Bar(q). This is done with one verify_bounds instruction that takes the base address

of q as an operand and matches it against the computed base address of p + 16. Inside Bar, we

first call compute_base with q as an operand to retrieve its base address and propagate this base

address to all memory instructions that uses q as an address.

4.3 Architecture Support

No-FAT adds the following instructions to the ISA:

• secure_store/secure_load <R1>, <R2>, <R3>: These instructions use three regis-

ter operands. The values that are stored in registers R1 and R2 point to the store/load address and

source/destination register as usual. The value in register R3 is reserved for the allocation base ad-

dress and is propagated by the compiler. Upon executing this instruction, the hardware computes

the allocation size of R3 and compares it to the difference between the address stored in R1 and

R3. An exception is thrown in case of R1 − R3 ≥ 𝑠𝑖𝑧𝑒(R3). Additionally, the hardware matches

the upper 16 bits of R1 and R3 to detect temporal memory safety violations.

• verify_bounds <R1>, <R2>: This instruction is used to check the bounds of pointers

before storing them to memory (or passing them to a different function). It uses two register

operands. The value in register R1 is a pointer whereas the value in register R2 is reserved for

the allocation base address and is propagated by the compiler. Similar to secure_store and

secure_load, upon executing this instruction, the hardware computes the allocation size of R2

and compares it to the difference between the address stored in R1 and R2. An exception is thrown

in case of R1−R2 ≥ 𝑠𝑖𝑧𝑒(R2) to indicate that an out-of-bounds pointer is being stored to memory.

• compute_base <R1>, <R2>: This instruction takes a memory address (i.e., pointer) as

input in R1 and returns the allocation base address of this pointer in R2. This instruction is used

to retrieve the correct base address of pointers that are passed to different contexts (e.g., through

function calls).
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4.4 Microarchitecture Design

In this section, we describe the four hardware components that are needed to enable No-FAT.

4.4.1 MAST

The Memory Allocation Size Table is a hardware structure, which is initialized at

program startup with a process’s allocation size configuration. The table is designed to work

with binning allocators. The MAST enables No-FAT to support generic (i.e., non-powers-of-two)

allocation sizes for each bin.3

In this work, we use a simple binning allocator that divides the heap into 𝑁 equally sized bins.

Based on our experiments, using 64 distinct bins is sufficient to balance performance and memory

utilization. Thus, we use a 64-entry MASTwith an entry size of 16B resulting in a total size of 1KB.

Each entry holds an 8B size field and an 8B inverse size field. The size field of the 𝑛th entry is used

to hold the allocation size used for the 𝑛th allocator bin. The inverse size field is an optimization

that is discussed later. As a program’s heap is contiguous, we use a single hardware register to

store the starting address of the program heap and use it to derive the starting address of all bins.

Some binning allocators (e.g., TCmalloc [39] and Jemalloc [40]) may change the allocation size

used by one bin at runtime if all objects in the bin are freed. In this case, the allocator can simply

update the MAST entry with the new size. We leave the investigation of other memory allocators

to future work.

4.4.2 Bounds Checking Module

The bounds checking module takes two 64-bit operands, 𝑃𝑡𝑟 and 𝐵𝑎𝑠𝑒𝑃𝑡𝑟 . It subtracts the two

operands and compares the result with the allocation size of 𝐵𝑎𝑠𝑒𝑃𝑡𝑟 . To compute the size of a

given base pointer, the bounds checking module first maps the pointer to an allocation bin using

simple subtract and shift operations followed by an access to the MAST to retrieve the allocation

3Using power-of-two sized objects can eliminate the need for MAST at the cost of additional memory overhead.
This is a common optimization that was used in other systems such as Baggy bounds [75].
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Figure 4.2: Pipeline diagram for the L1 cache hit operation. The bounds checking operations (top)
are pipelined to avoid adding any access latency to L1 data.

size. Next, the bounds checking module uses a subtraction operation (𝑃𝑡𝑟 − 𝐵𝑎𝑠𝑒𝑃𝑡𝑟) followed by

a 64-bit unsigned comparison with the recently retrieved size (i.e., 𝑠𝑖𝑧𝑒(𝐵𝑎𝑠𝑒𝑃𝑡𝑟)). The last step is

the temporal check, which is done with a 16-bit comparison operation between the upper 16 bits

of 𝑃𝑡𝑟 and 𝐵𝑎𝑠𝑒𝑃𝑡𝑟 .

The bounds checking module is invoked during the secure_load and secure_store

instructions to prevent out-of-bounds pointer dereference and during the verify_bounds in-

struction to prevent out-of-bounds pointers from escaping to memory. As shown in Figure 4.2, the

check operation can be totally hidden within the access latency for the L1 data cache.

4.4.3 Base Computing Module

As discussed in Section 4.2.5, pointers can be passed from one context to another. As No-

FAT relies on simple intra-procedural compiler analysis, it needs to recompute the base address

every time a pointer is loaded from memory (e.g., double pointers) or used as a function argument.
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This feature is currently implemented with compute_base instruction that invokes the Base

Computing Module.

This module takes a 64-bit 𝑝𝑡𝑟 operand and computes its base address using b𝑝𝑡𝑟/𝑠𝑖𝑧𝑒(𝑝𝑡𝑟)c ∗

𝑠𝑖𝑧𝑒(𝑝𝑡𝑟). While 𝑠𝑖𝑧𝑒(𝑝𝑡𝑟) requires one MAST lookup, the division operation is costly. No-FAT

uses a common optimization that replaces the expensive division (𝑝𝑡𝑟/𝑠𝑖𝑧𝑒(𝑝𝑡𝑟)) with a cheaper

multiplication (𝑝𝑡𝑟 ∗ (1/𝑠𝑖𝑧𝑒(𝑝𝑡𝑟))) by using fixed-point arithmetic. This approach is feasible

since the set of allocation sizes is constant, and thus the set of allocation size reciprocals can be

pre-calculated and stored in the MAST along side with allocation size.

4.4.4 Dedicated Register File

As our secure_load and secure_store instructions use a third register operand, they

may introduce register pressure. Thus, No-FAT adds a set of architectural registers that the com-

piler can exclusively use for holding and propagating allocation base addresses. The new registers

are saved in a separate register file that is accessed in parallel to the regular register file. The con-

tents of this register file are never spilled to memory as they can always be recomputed using the

compute_base instruction, if needed.

4.5 Software Design

In this section, we describe the memory allocator, compiler and operating system changes to

support No-FAT.

4.5.1 Dynamic Memory Management

One of No-FAT’s key contributions is making the allocation size an architectural feature (i.e.,

sharing the allocation size information between software and hardware). To enable this feature, No-

FAT requires binning memory allocators, in which a memory page is used to allocate objects of

the same size. No-FAT does not add any constraints on how the allocator manages its internal

metadata (e.g., free lists). No-FAT only intercepts calls to common memory management oper-
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ations. For example, No-FAT intercepts all calls to malloc/new and tags the returned pointer

with a random 16-bit value for ensuring temporal memory safety. Upon deallocation, No-FAT

intercepts the calls to free/delete and removes the tag bits before calling the allocator’s own

free/delete API. When pointers are passed to uninstrumented code, tags are ignored by the

hardware to maintain compatibility.

4.5.2 Compiler Support

Heap Instrumentation. In order to guarantee spatial protection, we implement an instrumenta-

tion pass at the LLVM IR level that replaces program loads and stores with our new instructions,

secure_load and secure_store. To prepare the allocation base address register operand,

we use simple function-level analysis to propagate the pointers returned by malloc or new intra-

procedurally. To handle out-of-context pointers (e.g., those that are loaded from memory or passed

as function arguments), our compiler pass inserts compute_base instructions in the correspond-

ing locations to resolve the allocation base address. Our pass inserts verify_bounds instruc-

tions in places where a pointer is stored to memory. This can happen due to (a) casting pointer

(ptr) to an integer (i.e., i = (int)ptr), (b) storing ptr to memory (i.e., *r = ptr), (c) pass-

ing ptr to a function (f(ptr)), and (d) returning ptr from a function (i.e., return ptr).

Source-to-Source Transformation. In order to achieve intra-allocation memory safety, we use a

source-to-source transformation (Buf2Ptr), as described in Section 4.2.3. Buf2Ptr is implemented

using Clang’s rewriter interface. First, we perform an AST traversal over each translation unit to

collect a whole program view of composite data types (e.g., structs) and their usages. Then, we

perform a second traversal to perform the actual rewriting.

Stack & Global Instrumentation. In order to achieve full memory safety on all memory seg-

ments, we extend No-FAT to protect objects that are allocated on the stack and global memory.

At compile time, No-FAT instruments all stack and global allocations (e.g., alloca) to use the

same bins, which are used to satisfy heap allocations. This way No-FAT uses a unified method to

enforce memory safety on all program memory segments. To avoid overheads related to allocating
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stack objects on the heap, we adopt the same pointer mirroring and memory aliasing techniques

used in prior work [76].

4.5.3 Operating System Support

MAST Initialization. During program initialization, the memory allocator needs to pass the allo-

cation size information to the hardware. This is a one time task that can be done with a special

system call or by writing to a hardware-mapped memory region. The size of the table is fixed, as

described in Section 4.4.

Context Switching. Upon a context switch, No-FAT requires the operating system (OS) to store

the MAST (and the dedicated register file contents) of the interrupted process and update the MAST

and register file of the new process. Both the MAST and the register file contents are of fixed size

and can be stored as part of the process control block. This step is likely to add minimal overhead

(a few load and store instructions takes ≤ 0.1𝜇S) to the OS context switch (typically 3− 5𝜇S).

Privileged Exceptions. When No-FAT’s hardware detects an access violation, it throws a priv-

ileged exception once the instruction becomes non-speculative. The operating system needs to

properly handle this exception as with other privileged exceptions (e.g., page faults). We also

assume the faulting address is passed in an existing register so that it can be used for report-

ing/investigation purposes.

Finally, as No-FAT uses regular data pointers and does not change an object’s memory layout,

it naturally supports key OS functionalities such as inter-process data sharing, copy-on-write, and

memory-mapped files. As No-FAT uses no per-word metadata, it does not require any changes to

the page swapping subsystem.

4.6 Security Analysis

In this section, we first define the threat model. Then, we analyze the security guarantees

of No-FAT and discuss its deployment considerations.
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4.6.1 Threat Model

Adversarial Capabilities. We assume a threat model comparable to that used in contemporary

related work on memory safety defenses [29, 30, 35, 31, 32]. We assume the victim program

to have one or more vulnerabilities that an attacker can exploit to gain arbitrary read and write

capabilities in the memory; our goal is to mitigate both spatial and temporal memory violations.

Furthermore, we assume that the adversary is aware of No-FAT and has access to the source code,

or binary image, of the target program. Finally, we assume that the attacker cannot tamper with the

per-process size configurations as they are stored in the MAST and are kept as read-only in kernel

memory upon context switch.

Hardening Assumptions. We assume that all hardware components including the ones proposed

in this work are trusted and tamper-resistant, and therefore consider attacks that exploit hardware

vulnerabilities, such as rowhammer [77] and side-channel attacks [78], to be out of scope. For

speculative execution attacks [43], we include Spectre-V1 (also known as bounds checking bypass)

in our threat model as it violates memory safety (speculatively). We do not include Spectre variants

that manipulate branch predictor buffers as No-FAT does not affect program branch behavior.

4.6.2 Security Discussion

Buffer Under-/Over-flows. No-FAT defends against the exploitation of buffer overflows (and

underflows) by detecting out-of-bounds pointers. No-FAT takes advantage of making the allocation

size (per memory page) an architectural feature to enforce spatial memory safety. No-FAT not

only protects heap-based allocations, but also stack and global memory regions. To do so, No-FAT

reserves alias regions for stack and global objects such that both can use the same allocation size

(per memory page) feature. No-FAT’s protection applies to both inter- and intra-allocation safety

(as Buf2Ptr reduces the intra-allocation problem to inter-allocation).

Use-after-frees. No-FAT provides temporal memory safety by tagging data pointers and validating

the tags as part of the spatial bounds checking process. The same allocated virtual/physical mem-
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ory region can have up to 216 different tags, increasing the chances of catching dangling pointers

(as dangling pointers use the old tags of the same allocated region).

Control-Flow Hijacking Attacks. In many attack scenarios, corrupting code pointers becomes

a preferred attack vector. For instance, control-flow hijacking attacks, such as ROP [53] and its

variants [79, 56], corrupt the return address of a function (or a function pointer) to hijack the control

flow of a program. As all of the aforementioned attacks typically start with a spatial/temporal

memory safety violation, No-FAT effectively stops control-flow hijacking attacks by eliminating

their root cause.

Data-Oriented Attacks. Given a memory safety vulnerability, attackers can launch a data-only

attack [60, 57, 59, 80] without abusing any code pointer. No-FAT mitigates those attacks by en-

suring that all loads/stores happen between their legitimate bounds. If attackers move a pointer

out of bounds to write to a (non-)adjacent allocation, No-FAT throws an exception as the com-

puted base address of the malicious pointer does not match the base address operand of the

secure_load/secure_store instructions.

Uninitialized Reads. No-FAT does not explicitly mitigate uninitialized read attacks, in which

attackers can leak information from stack/heap locations by loading from these locations before

doing a store operation. To mitigate this attack vector, No-FAT requires that deallocated objects

(heap or stack) be zeroed out. Prior work showed that this process can be done efficiently in

software [62].

Third-party Library Attacks. While No-FAT maintains full compatibility with third party li-

braries that are not instrumented with our compiler pass, we offer no security guarantees about

vulnerabilities that exist in such uninstrumented code. To increase the security coverage, we cre-

ate software wrappers for commonly used memory functions that appear in third-party libraries

(e.g., memcpy, memset, and memove) to ensure that they cannot be used by an attacker to un-

dermine No-FAT. For example, Listing 4.4 shows the pseudocode for our memcpy wrapper that

first computes the base address of the source/destination pointer and ensures it matches the base

address of the source/destination plus size before calling the original memcpy function.
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1 void *memcpy_wrap(void *dst, void *src, size_t n){
2 compute_base src, src_base
3 compute_base src+n, src_end_base
4 Assert(src_base == src_end_base)
5 compute_base dst, dst_base
6 compute_base dst+n, dst_end_base
7 Assert(dst_base == dst_end_base)
8 return memcpy(dst, src, n);
9 }

Listing 4.4: Example memcpy wrapper.

4.6.3 Spectre-V1 Resiliency

A key advantage of No-FAT over prior memory safety defenses is its natural resiliency to cer-

tain classes of speculative side-channel attacks, namely Spectre-V1 (bounds checking bypass) [43].

We first summarize how Spectre-V1 works. Then, we show how it can undermine prior memory

safety techniques. Finally, we describe how No-FAT mitigates it with no extra cost.

1 if (i < a->length) { // mispredicted branch
2 secret = a->data[i];
3 val = b[64 * secret]; // secret is leaked
4 }

Listing 4.5: Example speculative execution attack.

Attack Summary. To better understand how Spectre-V1 works, let us consider the example shown

in Listing 4.5, in which the attacker controls the index, i. The attacker first trains the branch

predictor by supplying multiple valid values for i (i.e., less than a->length). Then, the attacker

provides an out-of-bounds index i > a->length. While this index violates the software bounds

check in Line 1, the hardware will mispredict the condition (i.e., branch is taken) and speculatively

executes Lines 2 and 3. As a result, a speculative buffer overread occurs at Line 2 and the read

value (secret) is used as an index at Line 3. The attacker finally leaks the secret value via a

covert channel as speculative execution leaves traces in processor structures (e.g, data caches). For

example, the address in Line 3 depends on the secret, thus flushing and reloading the L1 data

cache will allow the attacker to find out which cache line was used and reveals the secret.

Prior Work. Spectre-V1 is a main concern for prior memory safety techniques as it can be used

to undermine their security guarantees. For example, attackers can infer the memory tag value
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of memory without triggering a memory tagging violation and use that to bypass memory tag-

ging solutions (i.e., SPARC’s ADI [4] and ARM’s MTE [5]) [36]. To mitigate Spectre-V1, prior

work suggested inserting serialization instructions (or fences) at certain program points to prevent

the processor from speculatively bypassing bounds checks [81]. This approach can result in up

to 10x runtime overheads [82]. Another line of work proposed isolating speculatively accessed

data to prevent leakage via covert-channels [83, 84]. While these defenses reduce the performance

overheads, they add substantial complexities to the hardware design.

No-FAT vs. Spectre-V1. No-FAT’s secure_load and secure_store instructions are re-

silient against Spectre-V1 by construction. Even if the processor mispredicted the branch instruc-

tion in Line 1 of Listing 4.5, the secure_load that is used in Line 2 holds the legitimate base

and bounds of a->data as a third operand. Thus, it immediately recognizes the speculative ac-

cess as an out-of-bounds access and does not allow a->data[i] to access the cache (to avoid

modifying the cache state). Hence, No-FAT is resilient against the recent Spectre attack, namely

the 𝜇op Disclosure Primitive, which exploits the micro-op cache as a timing channel to transmit

out-of-bounds secrets [85]. Additionally, No-FAT prevents the dependent load instruction from

executing by unmarking the ready bit on the register that has the load value (then raising an ex-

ception when the out-of-bounds access is non-speculative). We delay raising the exception until

the commit stage to avoid false alarms (i.e., if the out-of-bounds memory access happens due to a

benign branch misprediction).

Other Spectre Variants. As stated in Section 4.6.1, No-FAT does not protect against Spectre-

variants other than V1 (bounds checking bypass) as the main focus in this work is memory safety.

Examples of other Spectre variants include Spectre-V2 (also known as branch target injection),

which can be used by an attacker to pollute the branch target buffer and force the victim program

to speculatively jump to an arbitrary sequence of instructions (called a Spectre gadget). If the

Spectre gadget has memory access instructions (e.g., secure_loads), they will be speculatively

executed based on the current contents of register R1 (memory address) and register R3 (allocation

base address) even if those register contents belong to an incorrect execution context. The same
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argument applies if the Spectre gadget includes compute_base instructions. Other Spectre-V2

mitigations can be used to address this attack vector [86].

4.6.4 Deployment Considerations

In this section, we discuss the system requirements, strengths, and weaknesses of No-FAT.

System Requirements. No-FAT requires the usage of binning memory allocators. While the

internal details of the memory allocator are irrelevant to No-FAT design, the minimum requirement

is to have allocations of the same sizes per any memory page. Some allocators (e.g., non-binning

or header-based allocators) violate the above requirement by allocating objects of different sizes

in the same page. The non-binning allocators rely on an allocation header to keep track of each

allocation size. These allocators are not protected by No-FAT as the cost of deriving allocation

base addresses will be much higher (requiring a memory access to the allocation header every time

any memory instruction is executed).

Additionally, while porting No-FAT’s spatial memory protection to non-64-bit systems is pos-

sible, the temporal memory aspect strictly requires 64-bit systems in order to store the temporal

tags in the upper bits of the data pointers. On non-64-bit systems, temporal memory safety can be

achieved with less efficient approaches such as free list randomization and memory quarantining.

Handling Gnarly, Gory C Idioms. Some C programmers have the propensity to exploit undefined

behaviors. By undefined behaviors we mean behaviors that are not explicitly disallowed in the

standard. These issues are documented in an excellent exposition by the authors of the CHERI

system [87]. One of the most common of these idioms is the case of intentionally creating out-

of-bounds pointers. Although it is unclear why programmers follow this idiom, it exists, and we

strive to identify such cases.

Consider the following: q = p + 100; x = Bar(q);. Here, p is a pointer to a 32B allocation.

After the arithmetic operation, q is an out-of-bounds pointer that will be passed to function Bar.

Inside Bar, the program may do z = q - 100 before using z to access memory. Since No-FAT

only uses intra-procedural analysis, Bar will recompute the base address for q at function entry
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using compute_base. However, as q is already an out-of-bounds pointer, the resultant base

address will be wrong (i.e., it will not point to the original object pointed to by p). We refer to this

case as a data pointer escape operation. If the compiler performs only intra-procedural analysis to

determine and encode pointers into checking loads and stores, it will result in an insufficient check.

To handle this case, No-FAT uses verify_bounds to catch out-of-bounds pointers before they

escape to memory (or a different function), as described in Section 4.2.5. This functionality should

help programmers catch undefined behavior and fix it.

One special case of the benign out-of-bounds pointers is the off-by-one pointer. For a given ar-

ray, a[N], the C standard permits the programmer to generate pointers to elements a[0], a[1],

up to a[N]. While the last element does not exist, it is permitted to generate a pointer to it. How-

ever, any attempt to dereference such a pointer should result in a memory safety error. In order to

support the off-by-one pointers (i.e., avoid generating an alarm with verify_bounds whenever

they are created), we may add one padding byte for all memory allocation requests before invok-

ing the underlying memory allocator. This way No-FAT can support off-by-one pointers without

causing security violations (as the additional byte does not contain useful data) or performance

degradation (as the binning memory allocators already round up the requested allocation sizes).

Strengths. Compared to many other systems, No-FAT provides deterministic memory safety

guarantees at the finest granularity. No-FAT provides protection against a wide variety of spa-

tial/temporal memory safety violations including control flow hijacking attacks, data oriented at-

tacks, and pure data corruption. No-FAT’s protection comes with minimal performance overheads

and minor hardware changes. Furthermore, No-FAT naturally mitigates a common speculative

execution threat (Spectre-V1) at no additional cost.

Weaknesses. Buf2Ptr requires the precise type information of an allocated object. While this

is guaranteed for C++ objects, it is not always possible in C-style programs where void* allo-

cations may be used. In these cases, the compiler may not be able to infer the correct type, in

which case intra-allocation support may be skipped. This is a common limitation for techniques

that rely on source-level transformations for intra-allocation protection [6]. Our evaluation results
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in Section 4.7.5 show that the number of intra-allocation buffers is minimal compared to total allo-

cations. Cases with ambiguous types are not common and can be properly handled with program

annotations, if needed. We leave this part to future work.

4.7 Evaluation

We evaluate No-FAT across multiple dimensions. First, we measure the hardware overheads

of No-FAT. Second, we compare the performance of No-FAT against state-of-the-art pre- and post-

deployment memory safety solutions using SPEC CPU2017. Third, we analyze No-FAT’s memory

overheads. Fourth, we analyze the costs of No-FAT’s temporal tags. Fifth, we evaluate Buf2Ptr by

estimating its memory and performance for all benchmarks.

4.7.1 Hardware Overheads

No-FAT requires minimal hardware changes. Qualitatively, No-FAT requires a 1KB MAST and

extra logic to compute the allocation base address (namely, one subtract, one shift, two 64-bit mul-

tipliers) and the bounds checking module (namely, one subtract, one shift, one 64-bit comparator,

and one 16-bit comparator). As the bounds checking operations happen in parallel to the L1 data

and tag accesses, processor clock frequency should not be impacted. We quantified these overheads

by adding No-FAT to a typical energy optimized 32KB direct mapped L1 cache. We implement

our modules using Verilog and synthesize them with the Synopsys design compiler and the 45nm

NangateOpenCell library. We generate the SRAM arrays (for MAST and the tag/data arrays) with

OpenRAM [88].

Table 4.1 summarizes our VLSI implementation results. The timing delay of the bounds check-

ing module is minimal (0.81𝑛𝑠) as it uses a pipelined design that first fetches the allocation size

from MAST and then does a subtraction followed by comparison operations. This latency can

be overlapped with the access latency of L1 cache. The bounds checking module adds 6% ad-

ditional area compared to the L1 data cache. This area is dominated by the SRAMs of MAST

and the two comparators. On the other hand, the base computing module (which is invoked by
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the compute_base instruction) area is dominated by the 64-bit multiplier. The module latency

can be further optimized with a more customized multiplier.

Table 4.1: Area, delay and power overheads of No-FAT (GE represents gate equivalent).

Hardware Structure Area (GE) Delay (𝑛𝑠) Power (𝑚𝑊)

Baseline L1 data cache 503,914 1.99 29.7

Bounds checking module 32,130 0.81 1.16

Base computing module 27,346 1.50 1.17

4.7.2 Software Performance Overheads

Our VLSI measurements show that No-FAT hardware modifications add no performance over-

head. Here, we evaluate the software-based overheads. No-FAT instructions secure_load and

secure_store are similar to regular loads and stores. Thus, they do not increase code size.

While our instructions use one more register operand compared to regular memory instructions,

the extra register pressure is compensated for by adding a No-FAT-specific register file (i.e., sim-

ilar to Intel MPX). The additional functionality performed by our instructions can be totally hid-

den within the processor pipeline as shown in Section 4.7.1. However, No-FAT requires a binning

memory allocator and invokes additional instructions (verify_bounds to verify pointer bounds

before storing them to memory and compute_base to compute the allocation base address of

arbitrary pointers when they are loaded from memory).

Without loss of generality, we implement No-FAT on top of a binning allocator (Binning-

Malloc [41]) that divides the virtual memory into 64 regions, each of size 32GB. Each region

is used to satisfy heap-allocation requests of a unique size. Stack and global memory alloca-

tions are satisfied using special carved out sections of the same 32GB regions. To estimate

the compute_base instruction overheads, we implement an IR pass using the LLVM/Clang

compiler [89] to instrument the code and insert two mul instructions followed by a store in-

stead of compute_base instructions in the corresponding locations. Similarly, we insert dummy

store instructions in place of verify_bounds instructions. We use a store to make sure

69



the instruction is not omitted by compiler optimizations.

Evaluation Setup. We run our experiments on a bare-metal Intel Skylake-based Xeon Gold 6126

processor running at 2.6GHz with RHEL Linux 7.5 (kernel 3.10). We implement No-FAT using

Clang 4.0.0 and compare it against AddressSanitizer (ASan) and Intel MPX, as representa-

tives of pre- and post-deployment memory safety solutions, respectively. Each tool is run using its

best recommended settings [38]. We run each tool such that it suppresses its warnings or errors

so that benchmarks run to completion. Additionally, we disable any reporting to minimize the

performance impact this functionality may have. Given the difference in compiler versions and

optimization levels that each tool supports, we normalize each against their respective baselines

for proper comparison.4 To get better insight on No-FAT overheads, we also run a software-only

version of No-FAT that explicitly checks pointer bounds in software with no hardware support

(Software-EBB) and a malloc-only version that only uses the binning memory allocator with no

bounds checking (Binning-Malloc). We use the SPEC CPU2017 benchmark suite with ref in-

puts and run to completion. To minimize variability, each benchmark is executed 5 times and the

average of the execution times is reported.

Performance Results. Figure 4.3 summarizes the performance overheads of SPEC CPU2017 for

different tools normalized to their corresponding baseline. The geometric mean of each tool is as

follows: ASan (2.07x), MPX (2.06x)5, Software-EBB (2.0x), Binning-Malloc (1.04x) and No-FAT

(1.08x). The main reason for No-FAT overheads comes from the underlying memory allocator,

which introduces 1.04x overheads. For example, gcc allocates many small objects that are padded

to the nearest Binning-Malloc size. As a result it introduces 62% extra runtime with No-FAT,

whereas its Binning-Malloc version has a 55% slowdown. Configuring the allocation sizes at

program initialization should reduce the padding and the overheads.

4We use Clang 7.0 for ASan and GCC 7.3.1 for Intel MPX.
5gcc, perlbench, namd, and blender failed to run with MPX due to unrecoverable errors. Thus, we exclude

them from MPX averages.
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Figure 4.3: Performance overheads of the SPEC CPU2017 benchmarks for different tools normal-
ized to their corresponding baseline.

4.7.3 Software Memory Overheads

To accurately measure the memory usage of No-FAT, we use a Linux-based utility, Syrupy,

that regularly takes snapshots of the memory of a running process [90]. We measure the peak

resident set size (RSS) to get the actually used memory rather than virtual address space which

is reserved. Table 4.2 shows that the No-FAT’s binning allocator only adds 6.66% memory over-

heads on average compared to the stdlib allocator with gcc, parest, povray as outliers.

We inspect those allocation intensive benchmarks by running them with six different memory al-

locators (including No-FAT). Figure 4.4 shows that No-FAT memory overheads are comparable

to other binning (i.e., Jemalloc [40], TCmalloc [39], and Scudo [91]6) and non-binning allocators

(i.e., Dlmalloc [50]).
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Figure 4.4: Memory usage for the three allocation-intensive benchmarks with different memory
allocators.

6Scudo is a hybrid allocator that allocates similar-sized objects using bins and uses a per-object header for storing
metadata as well.
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Table 4.2: Memory usage for SPEC CPU2017 benchmarks.

Bench. Memory usage (MB) # of Heap allocations
No-FAT Buf2Ptr

perlbench [+3.27%] 160.80 [+48.7E0] 54.2E6
gcc [+20.96%] 1,555.57 [+199.3E3] 2.7E6
mcf [+0.07%] 610.64 [0.0E0] 495.4E3
namd [-3.71%] 156.53 [0.0E0] 20.2E3
parest [+26.05%] 527.07 [+107.4E6] 265.1E6
povray [+35.04%] 8.75 [+10E0] 63.4E3
lbm [+0.04%] 411.66 [0.0E0] 2.0E0
omnetpp [+3.79%] 251.36 [+1.7E6] 454E6
xalancbmk [+6.95%] 512.83 [0.0E0] 138.4E6
x264 [+1.50%] 159.40 [+1.5E0] 2.2E3
blender [+12.42%] 710.61 [+3.4E6] 9.1E6
deepsjeng [+0.25%] 702.54 [+15.0E6] 15.0E6
imagick [-0.91%] 285.05 [+1.0E0] 9.3E6
leela [-7.01%] 23.56 [+1.2E3] 53.8E6
nab [+7.74%] 159.03 [+38.1E3] 374.5E3
xz [+0.04%] 727.30 [+0.0E0] 41.0E0

4.7.4 Temporal Memory Safety Analysis

Storing a 16-bit tag as part of an object does not cause additional memory overheads as the

binning allocator already rounds allocation-sizes up to the nearest bin size. Using bin sizes from

Table 4.3, we collected heap allocations statistics for the SPEC CPU2017 benchmarks at runtime

with the reference input set.

Table 4.3: Configuration sizes per each bin in the No-FAT binning memory allocator.

Sizes

16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 192, 224, 256,
272, 320, 384, 448, 512, 528, 640, 768, 896, 1024, 1040,
1280, 1536, 1792, 2048, 2064, 2560, 3072, 3584, 4096,

4112, 5120, 6144, 7168, 8192, 8208, 10240, 12288, 16KB,
32KB, 64KB, 128KB, 256KB, 512KB, 1MB, 2MB, 4MB,

8MB, 16MB, 32MB, 64MB, 128MB, 256MB, 512MB,
1GB, 2GB, 4GB, 8GB, 16GB, 32GB

Table 4.4 shows the total number of heap allocations and the fraction of allocations that have

fewer than two padding bytes after being rounded up to the nearest bin size. For the majority of

benchmarks, allocations already have more than two extra bytes that can be used for temporal tag
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storage. The only exceptions are omnetpp and imagick, which allocate objects of irregular

sizes. For example, 50% of the allocations made by imagick are of size 79, which will have only

one byte after being rounded up to the nearest allocation size, 80. In this case, No-FAT satisfies

the allocation request by using the adjacent bin to guarantee that the last two bytes of the object

are unused. With this approach, for imagick, we noticed no additional runtime overheads over a

bin size of 80. Alternately as the bin sizes are configurable for each process, we can adjust them

to take the extra two bytes into account.

Table 4.4: Number of heap allocations that require extra padding bytes with No-FAT in SPEC
CPU2017 benchmarks.

Bench.
Total number Allocations that have less

of heap than two padding bytes
allocations (#) (%)

mcf 495,305 0 0%
namd 20,227 4 0.02%
parest 157,697,392 24 ≈ 0%
povray 62,002 169 0.27%
lbm 2 0 0%
omnetpp 452,336,434 84,193 0.02%
xalancbmk 138,365,251 4 ≈ 0%
x264 3,431 5 0.15%
deepsjeng 1 0 0%
imagick 37,234,132 18,616,657 50.0%
leela 53,759,984 0 0%
nab 336,412.00 0 0%
xz 41 0 0%

4.7.5 Buf2Ptr Analysis

Memory. The memory overheads of Buf2Ptr are reported separately. As Buf2Ptr promotes intra-

allocation buffers to standalone allocations, it adds additional heap allocations as reported between

brackets in the last column of Table 4.2. The majority of benchmarks add few extra allocations with

the exception of parest, blender, and deepsjeng. The latter is interesting as it performs

a single malloc call to 15 million structs, each with one intra-buffer. So, even though the extra
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allocations look large, the actual source code transformation is minimal as it affects one struct.

Performance. The performance overheads of promoting intra-allocation fields to standalone al-

locations are amortized over program execution. For example, a buffer field of size 64B typically

requires eight 8B loads in regular execution. With Buf2Ptr, one can argue that 16 8B loads will

be needed as every load now passes through one level of indirection. However, as we imple-

ment Buf2Ptr as a source level transformation, we take advantage of the compiler to optimize the

access to only 9 8B loads (i.e., one load to get the new base address followed by the original 8 loads

with their address adjusted to the new base). We verify this hypothesis by measuring the overhead

of implementing Buf2Ptr for the C programs in SPEC CPU2017 benchmarks. The overheads are

less than 1% compared to a baseline that uses the same memory allocator (without Buf2Ptr).

4.8 Summary

In this chapter I discussed No-FAT, a secure architecture for implicitly deriving allocation

bounds. No-FAT enforces spatial memory safety and a degree of temporal safety without increas-

ing program memory footprint, while maintaining full compatibility with unprotected code. Over-

all, No-FAT incurs 8% performance degradation compared to a 100% slowdown for its software

version, while providing extra security guarantees. This has the benefits of reducing fuzz-testing

overheads to improve pre-deployment software testing. Furthermore, if end users are willing to

pay 8% performance degradation for memory safety protection, then No-FAT is an excellent solu-

tion. The benefits of No-FAT go well beyond memory safety: for instance, having the allocation

size as an architectural feature can help accelerate garbage collectors for memory safe languages;

it also provides an opportunity for enhancing the predictability of memory prefetchers and DRAM

controllers.
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Chapter 5: A Counter C-4 Architecture

There is a lot of interest in hardware support for mitigating memory safety errors, as evidenced

by SPARC’s ADI [4], Intel’s MPX [38], and ARM’s MTE [5]. This interest has been motivated

by memory safety attacks on critical systems over the course of several years [16]. The holy grail

of research in this area is realizing a technique that provides strong security guarantees, has low

runtime and memory overheads, and requires minimal hardware changes. A recent work from

Intel Labs, called Cryptographic Capability Computing (C3) [44], claims to provide all of the

above features with negligible overheads.

In this chapter I analyze the security claims of C3 and describe four attacks to compromise

it, C-4. The attacks exploit C3’s fundamental design choices, such as (1) using a fixed one-time

pad for per-object data encryption, (2) lacking bounds checking on pointer arithmetic and usages,

(3) providing low entropy against temporal safety violations, and (4) leaving the application’s

stack, global, and intra-allocation objects unprotected. Thus, those attacks can bypass the C3

spatial and temporal memory safety guarantees, in addition to breaking its data confidentiality.

Naively addressing the proposed attacks will require redesigning C3 to use bounds checking

and a stronger cipher, which will result in high performance overheads and negate C3’s stateless and

compatibility claims. Thus, I propose an alternate implementation for the cryptographic isolation

without incurring significant overheads. This new implementation counters the attacks in C-4, and

hence we call it the Counter C-4 Architecture (or C-5 [8]). C-5 provides strong memory safety

guarantees without suffering from the shortcomings of C3. C-5 relies on two main principles to

counter C-4: (1) using strong access-control rules to prevent memory safety violation while data

is processed in the L1 data cache and (2) applying a strong cipher to protect the application data

confidentiality in L2 cache and beyond. C-5 uses No-FAT as a baseline and implements multiple

optimizations to reduce its performance cost and boost its security guarantees.

75



The remainder of this chapter is organized as follows. Section 5.1 provides further motiva-

tion. Section 5.2 describes how the C3 architecture works. Section 5.3 details the security assess-

ment of the C3 claims and describes multiple attacks to compromise it, C-4. Next, Section 5.4

presents an end-to-end attack against C3. Afterwards, Section 5.5 specifies the details of the pro-

posed solution, C-5 and shows how it addresses all the shortcomings of C3 and mitigates C-4.

Section 5.6 discusses the security benefits of C-5 and its limitations. Section 5.7 evaluates the

performance cost and security guarantees of C-5. Section 5.8 summarizes the chapter.

5.1 Motivation

While traditional memory safety techniques are good at detecting spatial and temporal software

memory safety violations, the recent development of hardware vulnerabilities that can leak secrets

(e.g., hardware side-channels [92, 93, 94], ColdBoot [95]) or corrupt memory (e.g., RowHam-

mer [77]) need different specialized approaches. The use of multiple security countermeasures

complicates the deployment of hardened software especially when operational resources and bud-

gets for security are limited. As pointed out by Saltzer and Schroeder [96], an economy of mech-

anism is valuable to handle multiple software and hardware memory security issues. Thus, there

is a need for developing solutions that can cohesively mitigate both memory safety violations, and

hardware-based vulnerabilities with minimal performance, memory, and complexity overheads.

5.2 How Does Cryptographic Capability Computing (C3) work?

C3 enforces memory safety by strongly associating each pointer with its legitimated pointed-to

memory allocation so that pointers cannot reliably access unrelated allocations [44]. C3 achieves

this goal by encrypting portions of the pointer itself to prevent pointer forgery and encrypting the

object contents before storing them in memory using the pointer as a key. In this section, we

explain how C3 interacts with the allocation life-cycle, Then, we summarize C3’s main design

choices and define the threat model.
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Radix Version
63 58 57 54 53 34 33 Radix Radix-1 0

Upper address Fixed address Offset

6-bit 24-bit encrypted part 34-bit plaintext part

Figure 5.1: The C3 pointer format as proposed in the original paper [44].

5.2.1 The Object Life-cycle in C3

(1) Object Allocation. When an object is allocated on the heap, a memory management function

such as malloc or new returns a plaintext pointer to the application to use. C3 changes the

conventional pointer format, as shown in Figure 5.1, to create the following fields.

• Radix: A 6-bit field that identifies which portion of the pointer is constant throughout the

entire allocation.

• Version: A 4-bit value that is changed every time the same memory region is assigned to a

new object for mitigating temporal safety violations.

• Encrypted address: A 24-bit encrypted range that includes the original upper pointer bits

and the “Version" field.

• Fixed address & Offset: A 34-bit plaintext range that is left for the application to update

without cryptographic operations.

While C3 is agnostic to the memory allocator used by the applications (i.e., it does not change

how objects are laid out in memory), it uses a best-fit algorithm to assign each allocation suitable

“Radix" and “Fixed address" values and generates a random “Version" field. Then, C3 encrypts the

pointer using a tweakable block cipher, called the K-cipher [97], as shown on top side of Figure 5.2.

The inputs to the encryption module are the plaintext pointer, a per-process encryption key, a

per-object tweak, and the version. Only the middle portion of the pointer is encrypted, namely

bits[34:57]. Those bits are first concatenated with a 4-bit “version" value, which can be assigned

randomly or in sequence for a given memory slot for temporal memory safety. The tweak is

77



0
63 58 57 34 33 Radix Radix-1 0

Upper address Fixed address Offset

Radix VersionEncrypted address Fixed address Offset

K-cipher
Encryption

Secret key
Tweak

Temporal version

memory 
allocation

Secret key

Plaintext data

Encrypted data

Plaintext  
address

K-cipher
Decryption

L1 Data Cache

Keystream
Generator

XOR
memory 
access

Figure 5.2: A high level overview of how C3 [44] creates formatted pointers upon malloc and
uses them during memory access operations.

generated by concatenating the 6-bit “Radix" field with a 34-bit padded “Fixed address" that is

obtained from the plaintext pointer. The reason why the fixed address bits are included in the

tweak is to ensure the application cannot reliably tamper with them.

The 34-bit lower portion of the pointer is left as plaintext to allow regular program instructions

(such as pointer arithmetic operations) to update them without any further changes. Thus, the

maximum allocation size that can be protected with the current C3 format is 16GB. Finally, the

pointer formatting operation can either be done purely in software or using a new allocate

<rb>, <rc> instruction, where rb holds the input/output pointer and rc holds the per-object

“Radix" and “Version" bits.

(2) Object Access. When a pointer is used to access a memory object as part of a regular load or

store instruction, C3 first detects whether the pointer is formatted (i.e., has the encrypted portion) or

not by examining the “Radix" bits. Those upper 6-bits are set to all zeroes for unformatted pointers

and to non-zero values for C3 formatted pointers. In the case of having a formatted pointer, it is first

used along with a per-process key to seed a keystream generator. The output of this generator will
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then be used as an XOR mask to encrypt the data before being stored in the L1 data cache, as shown

in the bottom side of Figure 5.2. Additionally, the formatted pointer will be decrypted by using the

K-Cipher to generate the plaintext memory address before accessing the cache. The original C3

paper discusses microarchitecture optimizations to hide the latency of pointer decryption during

memory access [44].

(3) Object De-allocation When the object is deleted by calling free or delete on its base

pointer, C3 decrypts the pointer before passing it to the memory allocator de-allocation function. C3

mitigates the threat of dangling pointers by assigning a different “Version" field to new objects that

are assigned the same virtual memory region of the deleted object in the future.

5.2.2 C3’s Design Choices

C3 made a set of design choices in order to provide an efficient stateless memory safety so-

lution [44]. First, a pre-computed keystream is used to encrypt the allocation data in order to

minimize the cryptographic load and store latency and hence reduce the overall performance over-

heads of C3. Second, C3 opts to encrypt parts of the pointers for spatial memory safety instead

of using bounds checking with additional metadata. Third, C3’s new pointer format only assigns

4 bits for temporal memory safety protection. Fourth, C3 prioritizes legacy application protec-

tion over complete memory safety by only protecting the heap-allocated objects and leaving the

stack, global, and intra-allocation heap objects unprotected. In Section 5.3, we show how the above

design decisions lead to C-4: compromising the security guarantees of C3.

5.2.3 Threat Model

We consider a threat model that is consistent with state-of-the-art memory safety defenses,

including C3 [44]. Specifically, we assume that the attacker is aware of the applied defenses and

has access to the binary image or source code of the target application. Additionally, the target

application is written in a memory unsafe language, such as C/C++, and suffers from one or more

memory safety vulnerabilities that allow the attacker to read from and write to arbitrary memory
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addresses. The attacker’s goal is to (ab)use the memory safety bugs to leak or overwrite memory

contents and/or achieve privilege escalation. Finally, we assume that all code sections are non-

writable (i.e., immutable code). Thus, attacks that might modify program code at runtime, such as

rowhammer [77] and CLKSCREW [98], are out of scope.

5.3 C-4: Assessing the Security Guarantees of Cryptographic Capability Computing

In this section, we describe multiple software-only attack vectors against the C3 architecture.

5.3.1 Attack #1: Exploiting the XOR-based Data Encryption

In order to uniquely encrypt each object in memory, C3 XORs the contents of the object with

a pre-computed keystream before writing them to memory and after reading them from memory.

The keystream itself is generated using the formatted pointer (and a per-process key) as inputs.

This way, the keystream generation is triggered as soon as the address generation unit prepares

the formatted address for the load/store instruction, and thus data encryption introduces no delays

to the critical load path. We show that the aforementioned design decision trades off security

for performance as the object-level encryption can be bypassed with a simple out-of-bounds heap

vulnerability.

Attack Description. Our key insight is that most memory objects are initialized with known

values. These values can be leaked to an attacker by simply inspecting the source code or the

binary image of the victim application. For example, consider an attacker who wants to use an out-

of-bounds read vulnerability in allocation 𝑋 to read the contents of an adjacent heap allocation 𝑌 .

As per the C3 construction, the two allocations will have two distinct keystreams, 𝐾𝑋 and 𝐾𝑌 ,

respectively. Hence, the over-read data (using a pointer from 𝑋) will be garbled as following:

𝑌𝑔𝑎𝑟𝑏𝑙𝑒𝑑 = 𝑌𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 ⊕ 𝐾𝑋

= {𝑌 ⊕ 𝐾𝑌 } ⊕ 𝐾𝑋
(5.1)

The attacker can learn the plaintext of Y by triggering the vulnerability twice. First, for a known
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value, 𝑌1, the attacker reads the garbled data:

𝑌𝑔𝑎𝑟𝑏𝑙𝑒𝑑_1 = {𝑌1 ⊕ 𝐾𝑌 } ⊕ 𝐾𝑋 (5.2)

As both 𝑌1 and 𝑌𝑔𝑎𝑟𝑏𝑙𝑒𝑑_1 are known, the attacker computes 𝐴 = 𝐾𝑌 ⊕ 𝐾𝑋 . Second, the attacker

uses 𝐴 to encrypt/decrypt any later usage of 𝑌 . For example, after 𝑌 is updated by the victim, the

attacker triggers the read vulnerability again to get:

𝑌𝑔𝑎𝑟𝑏𝑙𝑒𝑑_2 = {𝑌2 ⊕ 𝐾𝑌 } ⊕ 𝐾𝑋

= 𝑌2 ⊕ 𝐴

(5.3)

As both 𝐴 and 𝑌𝑔𝑎𝑟𝑏𝑙𝑒𝑑_2 are known, the attacker recovers the unknown secret, 𝑌2.

Similarly, an attacker with an out-of-bounds write capability can write arbitrary values 𝑉 to

the allocation 𝑌 using the computed term 𝐴 because 𝑌𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 = 𝑉 ⊕ 𝐴 will be written to memory

as 𝑉 ⊕ 𝐴 ⊕ 𝐾𝑋 = 𝑉 ⊕ 𝐾𝑌 , which matches the format of legitimately encrypted data at allocation 𝑌 .

Potential Mitigation. Mitigating the above attacks requires encrypting the data itself instead

of XORing it with a pre-generated keystream. This solution, however, will introduce significant

performance overheads for C3 as data encryption cannot be performed in parallel to regular data

access any more. While using the same keystream for XOR-based encryption is an issue that

has been discussed before in different contexts (e.g., bypassing instruction set randomization [99,

100]), it is important to point it out to avoid making the same mistakes again while mitigating

memory safety.

Takeaway. Using XOR-based encryption to protect an object’s contents in memory breaks data

confidentiality if the object contents are set to known values during program execution (e.g.,

during initialization).
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5.3.2 Attack #2: Targeting Spatial Memory Safety

One main design choice in C3 is to use pointer encryption instead of authentication for miti-

gating pointer corruption and forgery. This way, C3 avoids using dedicated pointer bits for storing

authentication codes as in ARM’s PAC [10] or allocation colors as in ARM’s MTE [5]. The

original C3 work stated that “Pointers do not require special protections or tags beyond the cryp-

tographic encoding itself." [44]. However, C3 only encrypts the middle 24 bits of the pointer

and leaves the rest unencrypted to be compatible with traditional pointer arithmetic instructions.

This design choice allows an attacker to violate spatial memory safety without having to break the

encryption scheme.

The attacker modified the "Fixed Address" and "Encrypted address" of ptr1 to
match ptr2's without breaking the encryption or leaking plaintext pointer values! 

$$$

ptr1

ptr2

...

Radix Encr. addr. 1 Fixed addr. 1 Offset25 ptr1 = ptr2 

Radix Encr. addr. 1 Fixed addr. 1 Offset24 ptr1[index] + index =  

3 index = ptr2 - ptr1 An attacker adjusts the value of index to the
arithmetic difference between ptr2 and ptr1 

Radix Encr. addr. 2 Fixed addr. 2 Offsetptr2 = malloc(32)2

Radix VersionEncr. addr. 1 Fixed addr. 1 Offsetptr1 = malloc(32)1

Figure 5.3: Targeting C3’s spatial memory safety.

Attack Description. To better understand how our attack works, let us consider the code snippet

from Figure 5.3, in which the program creates pointers to two different objects, ptr1 and ptr2,

and uses an index to access the contents of the first object that is pointed to by ptr1. As ptr1

and ptr2 point to similarly-sized objects, they will have the same “Radix" value but different

“Fixed address" fields. As the “Fixed address" is used as a tweak during pointer encryption, the

“Encrypted address" fields in ptr1 and ptr2 are different. Given a memory safety vulnerability,

an attacker can control the value, “index". The attacker’s goal is to overwrite the contents of the
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second object, which is pointed to by ptr2. As pointer arithmetic operations can be performed

on the formatted pointer without restrictions, an attacker can simply adjust the value of “index" to

match the arithmetic difference between ptr1 and ptr2 (i.e., index = ptr2 - ptr1). This

way, adding “index" to ptr1will create a forged pointer that matches ptr2’s “Fixed address" and

“Encrypted address" fields without having to break the encryption scheme or revealing the plaintext

pointer value.

But how can an attacker gain access to the formatted values of ptr1 and ptr2 in order to

compute their difference? There are several options for doing so. The first option is to leak the

pointers while they are stored in global variables [101, 102, 103], as C3 is currently applied for

heap objects only (to avoid software recompilation). The second option is to use our XOR-based

attack to leak the contents of arbitrary objects, including any pointers that are stored within those

leaked objects. The third option is to use an arbitrary-read memory safety vulnerability to leak the

formatted pointer values (e.g., using a format string attack [104, 105, 106, 107, 108, 109]).

Potential Mitigation. The root cause of our spatial memory safety attack is the lack of bounds

checking. Unlike other memory safety solutions, C3 has no metadata that can be used to validate

the pointer (e.g., the per-instruction trusted base address in No-FAT [7] or the per-pointer base and

bounds in CHERI [29]). If a pointer’s bounds information exists, manipulating the pointer bits can

be easily detected when the pointer is used to access memory as part of a load/store instruction (as

the manipulated pointer will not match the legitimate base and bounds).

One way to fix this problem in C3 is to instrument pointer arithmetic operations to ensure

that they do not overflow to the “Encrypted address" field. This solution, however, has its own

challenges as it (1) requires program recompilation to identify pointer arithmetic operations and

replace them with special instructions or (2) adds per-word tags in memory to distinguish pointers

from regular data in order to allow traditional arithmetic instructions to operate differently on

both. In either case an extra latency will be added to the simple pointer addition operation, which

will increase performance overheads. Alternatively, this attack can be mitigated if the formatted

pointers are never leaked to the attacker. Such perfect pointer confidentiality requires (1) enforcing
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memory safety on the stack and global segments and (2) encrypting the application data itself in

memory.

Takeaway. Applying bounds checking using a per-instruction, per pointer, or per-object meta-

data is necessary to achieve spatial memory safety.

5.3.3 Attack #3: Undermining Temporal Memory Safety

The original C3 paper claims that its temporal memory safety guarantees are 1M times stronger

than ARM’s MTE due to its having a 24-bit encrypted slice in the pointer as opposed to a 4-bit tag

in ARM’s MTE. Next, we show that the aforementioned claim does not always hold.

malloc

ObjectX Free'd

Radix Fixed address OffsetptrX

Radix Fixed address Offset

1 2 free malloc3

ptrY

ptrX ptrY

4-bit version

24-bit encrypted 

time

ObjectY

Figure 5.4: Undermining C3’s temporal memory safety.

Attack Description. In typical use-after-free vulnerabilities, the attacker triggers the bug to free a

victim’s object while leaving a dangling pointer that is still pointing to the deleted memory location.

Next, the attacker uses heap spraying to force the allocation of an attacker-controlled object on top

of the same memory location that is pointed to by the dangling pointer. Any future usage of the

dangling pointer will access the attacker-controlled contents, resulting in security exploitation. We

have seen instances of such vulnerabilities being exploited in major real-world applications [110,
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111, 112, 113]. As the 48-bit virtual address of the memory region is reused in UAF, the “Offset"

and “Fixed address" parts of the new pointer (e.g., ptrX) and the dangling pointer (e.g., ptrY)

will be identical, as shown in Figure 5.4. However, the “Version" and “Radix" fields might be

different based on the underlying memory allocator.

For binning memory allocators, objects of similar sizes are allocated near each other in memory

regions (also known as bins or arenas [40, 39, 42]). In this case, the “Radix" field of ptrX and

ptrY will be identical. Thus, the only source of diversity inside the “Encrypted address" field in

ptrX and ptrY is the 4-bit “Version" field. In other words, given a memory region that is being

frequently deleted and allocated, the 24-bit encrypted address field will change 24 = 16 times on

average. Hence, the attacker needs to trigger the vulnerability at most 16 times in order to get

a 24-bit encrypted slice in the attacker-controlled object that matches the 24-bit slice that is part

of the dangling pointer. The situation will be even worse on future processors with 57-bit virtual

address spaces, in which the number of unused upper pointer bits will become seven bits instead of

16. As C3 requires six bits for radixes, only one bit will be available for temporal memory safety.

For non-binning (aka coalescing) memory allocators, the 6-bit “Radix" field of ptrX and

ptrY might be different. As noted in the original C3 paper [44], intentionally using a different

“Radix" for the recently freed memory locations increases the temporal safety entropy to 4+6 = 10

bits. While 10 bits only requires 1024 trials, which are fairly easy to exhaust by an active at-

tacker, C3’s encryption further facilities the attack as follows. Unlike ARM’s MTE, which gen-

erates an exception upon tag mismatch, C3 uses the mismatched tag to generate a keystream that

will be used for accessing the memory object, resulting in a silent data corruption. First, the lack

of synchronous exceptions allows the attacker to keep triggering the vulnerability without notify-

ing the operating system. Second, if the victim object contains elements of limited outcomes (e.g.,

boolean fields), the attacker does not need to completely exhaust the 10-bit (or even 24-bit) entropy

for successfully controlling the old memory region contents. Instead, the attacker needs to keep

trying until they get an encrypted slice that results in a keystream, which causes the victim field
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values to flip (from one to zero or zero to one) upon decryption.

Potential Mitigation. Addressing the above attack in C3 requires either (1) increasing the size of

the “Version" field, which might not be feasible due to the compact C3 pointer formatting, or (2)

redesigning how C3 works in order to keep track of each object and pointer temporal tag such that

an exception could be immediately generated upon a use-after-free violation.

Takeaway. The entropy of a temporal safety scheme is determined by the smallest source of

variance in the scheme, i.e., the version field. Moreover, the lack of explicit temporal safety

checks increases the attack success chances.

5.3.4 Attack #4: Understanding the Security Coverage

Attack Description. The security of a system is determined by the security of its weakest com-

ponents. The same concept applies to programs as well. The original C3 paper chose to protect

heap allocations only and did not include stack and global segments in order to avoid program

recompilation. While this design choice enables the benefits of protecting legacy binaries, leaving

two major memory components unprotected can simply undermine the security guarantees of the

whole system, including the heap allocated objects. For example, pointers to heap allocations can

be stored on the stack and global segments, and thus they can be leaked to attackers, facilitating

other attacks such as the spatial memory safety attack described in Section 5.3.2. In other words,

not protecting the stack and global memory can cause harm beyond the stack and global objects

themselves.

Moreover, C3’s heap protection only prevents inter-allocation violations (i.e., overflows from

one allocation to another). C3 does not prevent intra-allocation spatial memory safety violations

(i.e., overflows from one field to another within the same allocation). The lack of intra-allocation

protection is due to the fact that the “Radix" field (and hence the pointer and memory encryption) is

determined based on the base pointer, which is returned by malloc, and not the derived pointers

that might point to any sub-allocation. Using intra-allocation overflows, an attacker can read or

write arbitrary pointers within the same allocation and use the leaked/corrupted pointers to trigger
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further attacks. Sub-allocation vulnerabilities do exist [114] and can achieve high levels of reliable

exploitation [115].

Potential Mitigation. Extending C3 to protect the stack and global segments is possible with the

help of compiler support. Protecting the stack buffers might introduce non-zero performance cost

as the memory slot picking routine and the pointer formatting instructions will need to be executed

for every stack buffer allocation compared to simply adjusting the stack pointer under baseline

(i.e., unprotected) execution. Preventing the intra-allocation overflows could be achieved by using

bounds-narrowing, as in Intel’s MPX [38], or by using Buf2Ptr, as in No-FAT [7].

Takeaway. In order to provide complete memory safety, all memory segments of a program

should be properly protected.

5.4 End-to-End Case Study

This section presents an end-to-end attack against C3 using a real-world vulnerability in a

JavaScript engine. We first describe the vulnerability and summarize an exploitation methodology

against a baseline (insecure) system. Then, we explain how C3 makes it challenging to abuse this

vulnerability and how our proposed C-4 attacks overcome these challenges. Finally, we discuss

other real-world vulnerabilities that could be used as starting points for our end-to-end attack.

5.4.1 Vulnerability Description

Our attack uses the CVE-2018-4192 vulnerability [116] from JavaScriptCore (JSC), the engine

inside WebKit [117] and the Safari web browser. The vulnerability occurs due to a race condi-

tion between the JSC garbage collector and the array.reverse() method. The JSC garbage

collector adopts a mark-and-sweep algorithm. It first uses standalone threads to scan the heap

memory and mark live objects as used, as shown in Figure 5.5-·. Afterwards, all unmarked ob-

jects are deleted during the sweeping phase. If the array.reverse() function is called on

any JavaScript array during the marking phase (Figure 5.5-¸), some elements of the array (i.e.,

Array[3-5]) could skip being marked (Figure 5.5-¹) and hence will be deleted later during
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Figure 5.5: A high-level overview of CVE-2018-4192. A JavaScript array is being marked as live
during an in-progress garbage collection marking phase. The shaded elements (Array[0-2])
are successfully marked. Due to a simultaneous call to array.reverse(), parts of the array
(i.e., Array[3-5]) are not marked and hence will be deleted later during the sweeping phase,
resulting in a UAF.

the sweeping phase. The incorrectly deleted memory regions will be available for new allocation

requests, causing a UAF scenario, in which an attacker abuses the dangling pointers to the deleted

elements for controlling the contents of the new allocations. A detailed root cause analysis of

CVE-2018-4192 is available online [118] in addition to the implemented fix [119].

5.4.2 Baseline Exploitation Methodology

At Pwn2Own 2018, Burnett et al. exploited the CVE-2018-4192 vulnerability to achieve re-

mote code execution in the context of the Safari Web Browser [120]. For completeness, we first

summarize the original exploitation methodology before explaining our C-4 modifications.

(1) Triggering the vulnerability to cause a UAF. In this step, the attacker first creates multiple

JavaScript arrays, free_targets where each entry of the array is basically an object. As JSC

stores the object’s properties and data elements in a separate memory location called the butter-

fly1 (and maintains a pointer to that location in the object itself), the butterflies will be allocated

similarly to Figure 5.5-¶. Next, the attacker initializes the arrays with float values and repeat-

1The name refers to the JSC object’s layout, in which the butterfly pointer points to the middle of the storage region
whereas object’s properties and data elements are stored to the left and right, similar to the wings of a butterfly.
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1 // Get the address of a given JavaScript object
2 function addrof(object) {
3 array_target[0] = object;
4 return Int64.fromDouble(oob_capability[idx]);
5 }
6

7 // Return a JavaScript object at a given address
8 function fakeobj(addr) {
9 oob_capability[idx] = addr.asDouble();

10 return array_target[0];
11 }

Listing 5.1: The implementation of the addrof and fakeobj primitives for leaking the address
of and creating fake JavaScript objects, respectively.

edly invokes array.reverse() on them. As the attacker uses multiple arrays, the chances

of triggering the race condition between the array.reverse() function and the JSC garbage

collection threads is high. This race condition causes the incorrect deletion of one or more of

the free_target’s butterflies, leaving a set of dangling pointers. From a security standpoint,

manipulating the contents of a butterfly is dangerous as it maintains a 32-bit “length" field that con-

trols the size of the main object’s elements. Corrupting this field causes an out-of-bounds access

beyond the JavaScript object’s legitimate size.

(2) Creating a relative read/write primitive using type confusion. Here the attacker creates one

JavaScript array, vuln, and dynamically changes its sizes while triggering the race condition. The

goal is to force the allocation of the vuln’s butterfly in one or more of the deleted memory regions.

This way a type confusion occurs between the data elements of vuln, which are written by the

attacker, and the contents of the free_target’s butterflies that include the “length" field. The

type confusion allows the attacker to write arbitrary values to the 32-bit “length" field, leading to

a relative out-of-bounds read/write violation. Checking the success of this step is done by reading

the free_target.length for all free_target objects. If any abnormal values are found,

that means the butterfly of this array entry has been deleted and is now a dangling pointer into a

memory region, which is owned by the vuln’s butterfly.

(3) Building an arbitrary read/write primitive. The two aforementioned steps provide the at-

tacker with a relative read/write capability as the “length" field is a 32-bit signed integer. To achieve
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Figure 5.6: A visualization of how the addrof primitive works. Legally storing an object into an
array and then maliciously reading it back as a float leaks the object’s address.

an arbitrary read/write capability for accessing any location in memory, we need more generic

primitives. Two well-known examples of these primitives are called addrof and fakeobj [121].

These primitives can be used for leaking the address of and creating fake JavaScript objects.

The key insight of the addrof primitive is that JSC uses a special 64-bit encoding to store

integers, floats, and pointers as JavaScript values. Thus, storing an object into an array and mali-

ciously reading it back as a float leaks the object’s address (i.e., pointer). Hence, addrof works

by first creating a JavaScript array, array_target, whose butterfly is located near (i.e., within

a 232-byte offset) a free_target’s butterfly that has an abnormal “length" value. Then, the at-

tacker uses normal JavaScript code to place any object into the first index of array_target, as

shown in Listing 5.1 (Line 3) and the left-hand-side of Figure 5.6. Finally, the attacker abuses the

relative read/write capability in the free_target’s butterfly (aka oob_capability[idx])

to read the address of the stored object (as a float) out of array_target, as shown in Listing 5.1

(Line 4) and the right-hand-side of Figure 5.6.

On the other hand, fakeobj works by first abusing the relative read/write capability to write

a given address into the array_target’s butterfly as a float and then reading the same array

index normally from JavaScript to return a JavaScript object for the stored pointer. Finally, the

attacker uses the addrof and fakeobj primitives for crafting a fake JavaScript object to control
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its metadata. For example, controlling the backing store pointer of JavaScript TypedArrays

allows reading and writing arbitrary memory locations.

(4) Achieving arbitrary code execution. Given an arbitrary memory access capability, there

are several ways to achieve code execution. One approach is to locate a stack address and then

overwrite a return address to hijack the program control flow using return oriented programming.

Alternatively, the attacker may use the read/write capability to (a) leak a pointer into the Just-In-

Time (JIT) compiled code for a JavaScript function, (b) write a shellcode to this location as JIT

memory pages are writable and executable, and (c) call the function, resulting in the shellcode

being executed. Getting a JIT compiled code only requires creating a JavaScript function object

and calling it multiple times to trigger JIT compilation.

5.4.3 C3 Exploitation Challenges & C-4 Countermeasures

We analyze the potential challenges that C3’s pointer formatting and data encryption create

against exploiting the above vulnerability and how the C-4 attacks overcome them.

Step (1). Since the CVE-2018-4192 vulnerability occurs due to how the JSC garbage collector

and array.reverse() interact, an attacker can trigger the bug on a C3-protected system, gen-

erating dangling pointers to one or more of the free_target’s butterflies.

Step (2). As C3 assigns random 4-bit “Version" (and potentially 6-bit “Radix") values to reused

memory regions, the probability of getting the same formatted address for the attacker-controlled

vuln’s butterfly and the free_target’s butterfly is one in 210. However, C3 does not keep track

of the per-pointer and per-object “Version" and “Radix" fields, and thus no exception is generated

upon mismatch. As a result, an exact address match is not required for achieving a type confusion

because an unmatched formatted address can still produce a random number in the “length" field of

the free_target’s butterfly upon decrypting the garbled data, as explained in Attack #3 (Sec-

tion 5.3.3). Hence, our C-4 countermeasure is to repeat the step multiple times and use JavaScript

to check for any abnormal (i.e., large enough) outcome in free_target.length. This way we

can achieve a relative out-of-bounds read/write capability even if the exact value of the abnormal
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length is not deterministically controlled by the attacker.

Step (3). The addrof and fakeobj exploitation primitives access out-of-bounds memory,

oob_capability[idx], relative to the base address of the free_target’s butterfly, as

shown in Listing 5.1 Lines 4 and 9, respectively. Thus, garbled data will be written/read to/from

the attacker-owned array_target[0], preventing the exploit. To overcome this challenge,

we use the C-4 Attack #1. Let us assume that the base address of the free_target’s butter-

fly is 𝑋 , the nearby object, array_target, is 𝑌 , and the out-of-bounds access from 𝑋 to 𝑌 is

oob_capability[idx]. As explained in Section 5.3.1, we first compute 𝐴 = 𝐾𝑌 ⊕ 𝐾𝑋 given

our prior knowledge of any plaintext initial value at the desired offset within 𝑌 . This requirement

is straightforward to satisfy as array_target is owned by the attacker, who can initialize its

elements to zero and its butterfly pointers to null. Once 𝐴 is computed, the C3’s XOR-based data

encryption is bypassed and we can reliably read/write data from/to oob_capability[idx]).

While the accessed out-of-bounds items are essentially object addresses, they will be formatted as

per the C3 pointer format (See Figure 5.1). This is not an issue as we are not trying to reveal the

plaintext addresses of the objects. Instead, we use the formatted address as is to interact with the

process (e.g., we read the formatted address of an arbitrary object using addrof and create our

fake object at this formatted address using fakeobj).

After crafting the fake object, we cannot write arbitrary memory addresses to its backing store

pointer as all addresses need to be properly formatted as per C3 in order to access memory contents.

To overcome this challenge, we use our read/write primitives to read formatted addresses (e.g.,

pointers) from within known objects and use the leaked addresses to reach more live objects and

disclose their contents if needed, inspired by how traditional JIT ROP attacks disclose randomized

code pages on the fly.

Step (4). While C3 restricts the arbitrary read/write primitive to traverse live objects, achieving

remote code execution is still feasible. First, we retrieve the formatted address of any JIT-compiled

function using our modified addrof primitive. Then, we use our C-4 Attack #1 to compute 𝐴 =

𝐾𝑌 ⊕ 𝐾𝑋 given our prior knowledge of the plaintext instructions of the JIT-compiled function as
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the original JIT function and the JSC JIT compiler are both known. Finally, we use Attack #1

again to overwrite the JIT-compiled function memory with the shellcode XORed with 𝐴, resulting

in 𝑠ℎ𝑒𝑙𝑙𝑐𝑜𝑑𝑒 ⊕ 𝐴 ⊕ 𝐾𝑋 = 𝑠ℎ𝑒𝑙𝑙𝑐𝑜𝑑𝑒 ⊕ 𝐾𝑌 to be written to memory. This way calling the function

will retrieve and execute 𝑠ℎ𝑒𝑙𝑙𝑐𝑜𝑑𝑒 ⊕ 𝐾𝑌 ⊕ 𝐾𝑌 = 𝑠ℎ𝑒𝑙𝑙𝑐𝑜𝑑𝑒 under the C3 execution model.

5.4.4 Additional Real-World Exploits

Our C-4 can enhance other real-world exploits, which were discovered in recent years, allowing

them to bypass C3-protected systems. UAF-based examples include the CVE-2017-2491 vulnera-

bility that was exploited in Pwn2Own 2017 [122] and the CVE-2017-2491 vulnerability that was

used in the first stage of the Pegasus exploit [123]. Both exploits start with a UAF vulnerability and

escalate to remote code execution. On the other hand, integer-overflow related exploits (e.g., the

CVE-2019-8601 exploit [124]), exploits due to unexpected callbacks (e.g., the CVE-2016-4622 ex-

ploit [121]), and JIT compiler incorrect optimization bugs (e.g., the CVE-2018-4233 exploit [125])

similarly lead to remote code execution using a spatial memory violation as a starting point.

A common theme among the aforementioned exploits is that they abuse the initial temporal

or spatial memory safety bug in the JavaScript engine to gain relative read/write primitives that

are then escalated to arbitrary read/write capabilities with addrof and fakeobj, leading to

remote code execution. As described in Section 5.4.3, our proposed C-4 attacks upgrade those

exploitation steps to bypass C3 defenses. For example, Attack #1 allows addrof and fakeobj

to leak the C3 formatted addresses of and create fake JavaScript objects whereas Attack #3 facilities

the exploitation of UAF vulnerabilities. Finally, while Attack #2 and Attack #4 are not directly

adopted in the above end-to-end case study, they can be used in other exploitation scenarios, as

discussed in Section 5.3.

5.5 C-5: A Counter C-4 Architecture

We present C-5, which counters the attacks in C-4, and hence we call it the Counter C-4 Ar-

chitecture (or C-5). C-5 provides strong memory safety guarantees without suffering from the
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shortcomings of C3. The two main principles that we will use to counter C-4 are (1) using strong

access-control rules to prevent memory safety violation while data is processed in the L1 data

cache and (2) applying a strong cipher to protect the application data confidentiality in L2 cache

and beyond. While enforcing strong access control rules might increase the overall performance

overheads, our No-FAT work has demonstrated that memory safety rules can be checked in hard-

ware with low overheads. In this section, we illustrate multiple optimizations that reduce the

performance cost of No-FAT and boost its security guarantees. Finally, we describe the C-5 imple-

mentation.

5.5.1 Security Enhancements

C-5 enhances the security guarantees of No-FAT by (1) supplementing it with data encryption

to ensure application data confidentiality and (2) implementing a temporal memory safety exten-

sion to increase the per-object temporal entropy against UAF attacks from 16 bits to 64 bits. Here,

we describe the two enhancements.

Applying Memory Encryption. C-5 uses the QARMA block cipher [126], which was introduced

for ARM’s Pointer Authentication technology (ARM’s PAC) [10]. Unlike ARM’s PAC, which uses

QARMA to authenticate pointers and store the authentication code in the pointer upper bits, C-5

uses QARMA for encrypting cache lines as they transfer from the L1 data cache to L2 cache and

beyond. As shown in Figure 5.7, keeping the application data encrypted beyond the L1 data cache

protects the data from physical attackers, while avoiding the high cost of encryption/decryption at

the core to L1 data cache interface.

While the data is unencrypted in the L1 data cache (to allow for fast access), the L1 data is still

protected by the memory safety checks. This hybrid protection ensures strong security guarantees

at low performance cost for C-5. On the other hand, C3 cannot keep data unencrypted in the

L1 data cache as C3 relies on encryption for providing memory safety. Additionally, moving the

encryption to the L1-L2 interface allows C-5 to use strong encryption schemes (as opposed to the

vulnerable XOR-based encryption used in C3) without affecting the overall system performance,
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Figure 5.7: A high level overview of how C-5 works. We use memory safety checks to protect
the application data from intra-process attackers while being stored in the L1 data cache. We use
a per-cache line encryption to protect data confidentiality from side-channel leakage attacks while
being stored in L2, L3, and main memory.

because the encryption latency will be masked by the L2 access latency.

Boosting Temporal Memory Safety. C-5 uses an explicit lock and key mechanism for enhancing

the temporal memory safety guarantees of No-FAT. Each pointer holds a key, whereas each object

has a lock. If an object is deleted, its lock will be changed to a new value, implicitly nullifying

all dangling pointers that used to point to this object. Unlike prior work (e.g., CETS [127]) that

maintains the lock and keys in disjoint metadata tables in program memory, C-5 embeds the lock

and keys within the allocation itself, as shown in Figure 5.8. Thus, C-5 achieves better utilization

of the application memory as the allocation padding bytes are typically unused under the binning

allocator model—if the allocation size is less than the bin size.

Figure 5.8 shows how the lock and keys are stored using an example of a parent struct with two

children. When a new allocation is created with malloc or new, additional space is added to the

end of the allocation to store the following metadata:

• META: A 16-bit field that stores the size of the per-allocation metadata at the end of the

object.

• LOCK: A 64-bit value that is randomly generated upon object allocation, is stored towards

the end of the object, and is propagated alongside the pointer in an extended 128-bit register

in hardware.
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  int main(){ 
    ... 
    A_t *parent = malloc(sizeof(A_t)); 
    parent->childA = (char*) malloc(N); 
    parent->childB = (int*)  malloc(M); 
    ... 
  }

  typedef struct { 
    char c;       
    char* childA;    
    int* childB; 
    double d[30]; 
  } A_t;

parent  
allocation

childB 
allocation

char c

double d[30]

*childA
*childB

*childA 64bit KEY
*childB 64bit KEY
parent 64bit LOCK
parent 16bit META

...

Extra
padding in
the parent

childB 64bit LOCK
childB 16bit META

childA 64bit LOCK
childA 16bit META

childA 
allocation

...

...

Figure 5.8: C-5’s temporal memory safety extension. Each allocation is expanded by the following
padding bytes, which are only accessible by the hardware. META stores the number of padding
bytes per object. LOCK stores a random 64-bit temporal tag that is propagated in extended 128-bit
registers in hardware. When a pointer is spilled to memory (e.g., storing *childA in parent),
the upper 64 bits of the extended register are stored to the corresponding KEY field. Each allocation
can have one LOCK and as many KEYs as the number of its internal pointers.

• KEY: When a pointer is spilled to memory (e.g., storing *childA within parent in Fig-

ure 5.8), the upper 64 bits of the extended register are stored to the corresponding KEY field.

Each allocation can have as many KEY fields as the total number of its internal pointers.

A natural question to ask is: how can C-5 efficiently retrieve the per-allocation metadata and en-

sure its integrity? First, as C-5 leverages binning memory allocators, the C-5 hardware can quickly

find the META location (i.e., Memory[base address + size - 2]). Second, given the

META value, the hardware can ensure that no intra-allocation overflow can corrupt the other meta-

data fields stored in the padding bytes, making the per-allocation metadata architecturally inac-

cessible. This feature not only allows C-5 to protect its metadata, but also permits precise spatial
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memory safety checks compared to the original No-FAT work. In No-FAT, off-by-one overflows

might go undetected, as they will be part of the binning allocator padding.

When a pointer is loaded from memory (e.g., loading parent->childA), C-5 loads the

pointer temporal tag from the corresponding KEY field in the parent allocation to the upper 64 bits

of the 128-bit hardware register. Then, our modified hardware computes the allocation base address

(i.e., childA’s base), fetches the pointer LOCK from Memory[childA’s base + size -

10] with its META from Memory[childA’s base + size - 2], and passes both to the

trusted base register, ptrtrusted, in the new load and store instruction. When the pointer is used

as part of a memory access instruction, its spatial memory safety is checked using: ptr - base

<= size - META. The temporal safety is checked by comparing the tag of ptrtrusted, which

is originally obtained from the LOCK field, against the pointer’s tag, which is obtained from the

KEY field. All information is available to hardware at the time of memory access as base, META

and LOCK are all part of the 128-bit trusted base register, whereas the KEY is part of the 128-bit

extended hardware register that holds the 64-bit regular pointer as well.

5.5.2 Performance Optimizations

The original No-FAT work reports that No-FAT incurs an average of 8% performance over-

heads on the SPEC CPU2017 benchmark suite [7]. C-5 implements two optimizations to eliminate

this performance cost by using a generic binning memory allocator and a small in-hardware base

address cache.

Relaxing the Memory Allocator Constraints. The original No-FAT work uses a simple binning

allocator, dubbed Binning-Malloc [41], which divides the virtual memory into 64 regions, each of

size 32GB. Each region is used to satisfy heap-allocation requests of a unique size whereas stack

and global memory allocations are satisfied using special carved out sections of the same 32GB

regions. While Binning-Malloc simplifies the hardware design, as the bin sizes are all stored in

a single 64-entry MAST table, it might cause memory fragmentation due to the limited number

of available allocation sizes and the large size of each allocation bin (or arena). On average,
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half of the No-FAT overheads (i.e., 4%) are caused by Binning-Malloc [7]. C-5 addresses the

aforementioned concerns by showing how other binning memory allocators can be adopted for

hardware-assisted memory safety.

The idea is simple. Instead of enforcing the memory allocator’s use of a fixed number of bins,

the memory allocator can arbitrarily define the number of bins it uses and the allocation size that is

used within each bin. The only requirement is that the bin size is no less than the size of a page (i.e.,

4KB or 2MB for systems with huge pages support). C-5 maintains 16B of metadata per memory

page to store the allocation size (and inverse) of this page. We use this metadata to compute the

allocation base address within a page using the steps from Figure 4.1, where S equals page size.

If a memory page is used to satisfy an allocation that is larger than page size, we simply store the

allocation base address in the per-page metadata so that it is easily retrieved when a pointer to this

large allocation is loaded from memory. Finally, this new metadata only consumes less than 0.4%

storage overheads and can be maintained as an extension to leaf page table entries, offering great

flexibility to the binning memory allocator.

Reducing Base Address Computation Overheads. We observe that the second main source

of performance overheads in the original No-FAT work (4% on average for SPEC CPU 2017

benchmarks) is the base address computation when a pointer is loaded from memory [7]. As shown

in Figure 4.1, the last step of the Base Computing Module involves two successive multiplications.

C-5 reduces this performance cost by introducing a simple base address cache that is used to store a

derived (i.e., non-base) pointer against its correct base address. As programs tend to store the same

derived pointer in memory after operating on it, this pointer will result in a base address cache hit

when it is loaded from memory. A high hit rate can reduce the dominant cost of computing a base

address from two multiplications (6-8 cycles) to a single cache look-up (1-2 cycles).

Our base address cache is simple in design. It requires no communication with other memory

levels since missed accesses can simply be recomputed using the base computing module. Thus,

it can be simply flushed during content switching to guarantee non-interference between different

processes.
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5.5.3 C-5 Implementation

Figure 5.9 provides an overview of our C-5 framework. Next, we discuss the different compo-

nents.

C/C++ 
Code

LLVM 
IR

C/C++ 
Code

Instrumentation
Pass

Src-to-src
Transformation

Object
Files

Runtime Library

Hardened 
Binary 

LLVM LinkerClang

+
C-5 

Hardware 

Figure 5.9: C-5’s implementation overview.

ISA. C-5 uses the same instruction set architecture (ISA) extensions as in No-FAT [7]. The only

difference is the define_size instruction, which is used to let the memory allocator control

the allocation size per each virtual memory page. The complete ISA extensions are summarized

in Table 5.1.

Table 5.1: C-5’s ISA extensions. rd/rs denote dst/src registers that hold data; rb holds the
trusted base pointers.

Instruction Format Operation

Secure Load secure_load rd, rs, rb rd = Mem[EffAddr]
Secure Store secure_store rd, rs, rb Mem[EffAddr] = rs

Verify Bounds verify_bounds rs, rb rs - rb < size(rs)

Compute Base compute_base rb, rs rb = Base(rs)

Define Size define_size r1, r2 EntrySize(r1) = r2

Hardware. C-5 uses the main hardware blocks of No-FAT, namely the Bounds Checking unit,

the Base Computing module, and the trusted base address register file. Additionally, C-5 extends

all registers to 128 bits in order to store the extended 64-bit temporal tags of pointers, if needed.

Finally, an N-entry fully-associative cache is used to accelerate the Base Computing module oper-

ations.

Compiler. C-5 uses compiler support to leverage the ISA extensions. As shown in Figure 5.9, C-5
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first uses a source-to-source transformation to (1) promote intra-allocation buffers into standalone

allocations (also known as Buf2Ptr [7]) and (2) expand allocations with extra space for storing

the temporal safety metadata. Second, we implement an instrumentation pass at the LLVM IR

level to replace program loads and stores with the secure_load and secure_store instruc-

tions. The compiler pass uses simple intra-procedural analysis to insert verify_bounds and

compute_base instructions in addition to spill/fill the temporal tag to/from its corresponding

location in the parent object before a pointer is stored to memory and after the pointer is loaded

from memory, respectively. For providing complete security coverage, we also protect stack and

global allocations by assigning them to special bins, similarly to prior work [76, 7]. Finally, we link

our instrumented object files with a C-5 aware runtime library that intercepts calls to memory man-

agement operations such as malloc and free. To maintain compatibility with uninstrumented

third-party libraries, the temporal tags are ignored by the hardware when pointers are passed to

uninstrumented code (e.g., the operating system or third-party libraries).

5.6 Security Analysis

In this section, we discuss the security guarantees of C-5 and explain its current limitations.

5.6.1 Addressing Traditional Memory Safety Violations

Buffer Under-/Over-flows. C-5 relies on No-FAT for enforcing strict access control rules in the

L1 cache. Thus, C-5 detects spatial memory safety violations by detecting out-of-bounds pointers.

This protection is applied to all program segments—heap, stack, and global. Similarly to No-

FAT, C-5 achieves intra-object spatial memory safety by deploying the Buf2Ptr transformation.

Use-after-frees. As described in Section 5.5.1, C-5 enhances the temporal memory safety guaran-

tees of No-FAT by using 64-bit temporal tags. These tags are marshaled with program pointers in

hardware and are stored in the object padding bytes in memory. If a use-after-free violation occurs,

the new memory allocation will be detected with a high probability (1 − (1/264) ≈ 100%) as the
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deleted and new allocations will likely have different 64-bit tags.

Control- & Data-Flow Hijacking Attacks. As C-5 provides fine-grained memory safety, it miti-

gates the different forms of control-flow hijacking attacks (e.g., ROP [53] and its variants [79, 56])

by protecting return addresses and code pointers. Similarly, data-flow manipulations attacks (e.g.,

DOP [57, 59, 80]) are detected by preventing illegal accesses to data pointers.

Data-Only Attacks. Given a memory safety vulnerability, attackers can corrupt non-pointer data

items, such as program flags and configuration files [60]. C-5 mitigates those attacks by ensuring

that all loads/stores happen between their legitimate bounds and within the valid object lifetime.

Spectre-V1 Attacks C-5 enforces spatial memory safety for committed and transient instructions

because the legitimate allocation bounds re part of the memory instruction itself. Thus, our so-

lutions holds the promise of preventing Spectre-V1 (bounds checking bypass) [43]. If a transient

instruction accesses an out-of-bounds memory, we mark the instruction as unsafe and raise the

exception only when the violating instruction is committed. The reason why we delay raising the

exception is to avoid causing false alarms (i.e., if the out-of-bounds memory access occurs due to

a benign branch misprediction). C-5 does not protect against other Spectre variants and holistic

defenses are likely to be required to completely mitigate such vulnerabilities.

5.6.2 Mitigating Physical Attacks

Physical attacks can compromise the program data while being stored in main memory. Exam-

ples include ColdBoot [95] and RowHammer [77]. While memory encryption technologies (e.g.,

AMD’s Secure Memory Encryption) protects data in DRAM by using a page-level encryption,

they are vulnerable to other attacks (e.g., NetCAT [128] and CrossTalk [129]), which leak the un-

encrypted data from the structures that are shared among different cores (e.g., LLC). To mitigate

these attacks, C-5 opts to encrypt data in the L2 cache and beyond (not just in DRAM) while

leaving the per-core private data in the L1 data cache under the protection of the memory safety

rules.
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5.6.3 Mitigating The C-4 Attacks

Unlike C3, which relies on cryptographic isolation for enforcing spatial memory safety [44], C-

5 uses strict access control rules. Thus, C-5 does not permit accessing out-of-bounds memory in

Attack #1. Similarly, using a pointer arithmetic operation to substitute one pointer with another in

Attack #2 will fail against C-5 when the pointer is used to access memory (as the trusted pointer

base, ptrtrusted, and bounds will not match the manipulated pointer bounds).

While C3 provides 4 bits of temporal entropy, which can be increased to 10 bits if a different

“Radix" is used for the recently freed memory locations, C-5 provides 64-bit temporal safety en-

tropy, highly mitigating Attack #3. Finally, C-5 enforces memory safety for all program memory

regions: heap, stack, and global. Thus, compromising data items on the stack/global memory in

Attack #4 cannot be used to undermine our security guarantees. While this design choice requires

program recompilation, we note that recompiling the source code is not an obstacle in modern

systems, as evidenced by commercial security techniques [10, 38, 9].

5.6.4 Preventing the end-to-end exploit

The probability of successfully creating a type confusion against C-5 is one in 264 due to the

extended temporal tag. Unlike C3, which permits the attacker to keep trying multiple times and

checking for abnormal free_target.length values, C-5 generates an exception as soon as

a tag mismatch occurs between the dangling pointer tag (i.e., the free_target’s butterfly tag)

and the ptrtrusted tag (i.e., the vuln’s butterfly tag), which is retrieved from the newly allocated

object.

Even if we assumed that the attacker will be lucky enough to correctly guess the 64-bit tag in the

first trial (or the attack starts with a non temporal safety violation), the following step (i.e., build-

ing an arbitrary read/write primitive) is immediately blocked by C-5 as we generate a hardware

exception upon accessing out-of-bounds memory regardless of the software checks that depend on

the corrupted free_target.length value. This way C-5 prevents the attacker from achieving

arbitrary code execution or even building a read/write capability.
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5.6.5 Limitations

Type Information Availability. C-5 inherits its intra-allocation spatial memory safety capabilities

from No-FAT [7]. Thus, C-5 similarly requires the availability of the per-allocation type informa-

tion. Some C applications violate this requirement by using void* allocations. Those ambiguous

cases could be addressed by intra-procedural backward analysis (to find the correct allocation type

based on previous casting) or with programmer-guided annotations.

Replay Attacks. Similarly to C3 [44], C-5’s data encryption only provides confidentiality guar-

antees (against inter-process data leakage attacks) with no data integrity guarantees. Thus, both

techniques are vulnerable to physical replay attacks. In replay attacks, an adversary monitors the

memory contents to record the contents of objects at time, t1, and blindly replies those contents at

later time, t2, where t2 is greater than t1. Mitigating physical replay attacks requires freshness

to guarantee that the memory always contains the latest written application contents. We note that

recent commercial implementations such as AMD SEV and Intel TDX do not include mitigation

for replay attacks. Such mitigation could be achieved with orthogonal techniques such as Merkle

Trees [130, 131, 132, 133].

5.7 Evaluation

In this section, we evaluate the performance cost and security guarantees of our hardware-

assisted mechanism, C-5. We first describe our evaluation methodology and experimental setup.

Second, we provide the SPEC CPU2017 results for each of our proposed optimizations. Third,

we extend our performance analysis to include two real-world applications. Finally, we perform a

quantitative security evaluation of C-5.

5.7.1 Evaluation Methodology

Similarly to prior work [47, 6, 7], we use a real machine to emulate the runtime overheads of

our proposed solution instead of microarchitectural simulators. We implement an LLVM pass [89]
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to instrument the given applications and insert a chain of dependent instructions to emulate the

overheads of the new ISA extensions. For example, we use one load, two mul instructions,

and a store to emulate the compute_base instruction operation. We insert dummy store

instructions in place of verify_bounds instructions.2 Regular program loads and stores

are not replaced as the bounds checking operation is performed in parallel to the L1 data cache

access. Finally, we link the final executable against a runtime library that implements the required

binning memory allocator.

Experimental Setup. Since our C-5 architecture has close parallels with No-FAT [7], we opt to

use the same evaluation setup. We instrument and compile the evaluated applications using Clang

4.0.0 and run the binaries on a bare-metal Intel Skylake-based Xeon Gold 6126 processor run-

ning at 2.6GHz with RHEL Linux 7.5 (kernel 3.10). To minimize variability, each application is

executed 5 times and the average of the execution times is reported after normalization to baseline

(i.e., unprotected) execution.

5.7.2 SPEC CPU2017 Performance Evaluation

Here, we use the SPEC CPU2017 benchmarks with ref inputs and run all benchmarks to

completion. We evaluate the performance of the following configurations:

• No-FAT. This configuration represents the regular No-FAT [7]. It uses a simple binning

allocator (Binning-Malloc [41]) that divides the virtual memory into 64 regions, each of

size 32GB. No-FAT provides inter- and intra-allocation spatial memory safety with 16-bit

temporal memory safety guarantees.

• No-FAT+. In this configuration, we add the temporal memory safety extension (as described

in Section 5.5.1) on top of No-FAT. Our evaluation includes the cost of adding the per-object

metadata (e.g., LOCK and KEYs) and accessing them when pointers are loaded/stored from/to

memory. This configuration provides the strongest access-control security guarantees with-

out having any performance optimizations.
2We use a store to make sure the inserted instructions are not omitted by compiler optimizations.
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• C-5. This configuration integrates No-FAT+ with mimalloc, a compact general purpose

binning memory allocator [42]. We adopt mimalloc to show that C-5 can gain performance

benefits by using a modern binning memory allocator, as explained in Section 5.5.2.

• C-5 with base$. In this settings, we assume that C-5 is equipped with an ideal base address

cache (base$) that can serve the requests of the compute_base instructions without incur-

ring the performance overheads of executing two consecutive multiplications for computing

the allocation base address.
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Figure 5.10: Performance overheads of the SPEC CPU2017 benchmarks for different No-FAT
and C-5 variants normalized to an unprotected baseline.

Results. Figure 5.10 summarizes the performance overheads of SPEC CPU2017 benchmarks for

the different configurations normalized to a baseline execution. The geometric mean of each con-

figuration is as follows: No-FAT (1.08x), No-FAT+ (1.11x), C-5 (1.06x), and C-5 with base $

(0.98x). The results suggest that extending the temporal memory safety entropy to 64 bits intro-

duces low performance overheads (i.e., 3% on top of the original No-FAT work). On the other

hand, using mimalloc as the underlying binning memory allocator reduces the overall overheads

of our proposed system, as it outperforms the baseline non-binning allocator from glibc. Finally,

an ideal base address cache can completely eliminate the performance overheads of C-5. Next, we

provide further results to support this claim.

Base Address Cache Analysis. We discussed how our base address cache works in Section 5.5.2.

As we cannot emulate the performance gains of a hardware-based cache on a real machine, we

opt to analyze the base address cache behavior using a pure software implementation. We write
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Table 5.2: C-5’s base address cache sensitivity analysis. “# Accesses" represents the total number
of compute_base instructions. “Hit Rate" is the % of compute_base instructions that hit in
an N-entry base address cache.

Benchmarks # Accesses Hit Rate
N = 32 N = 64 N = 128

500.perlbench_r 2.44×108 68.21% 99.49% 99.60%
502.gcc_r 5.46×1010 69.58% 74.10% 78.78%
505.mcf_r 6.05×1010 54.78% 58.09% 61.55%
508.namd_r 1.64×1010 96.13% 96.14% 96.14%
510.parest_r 10.58×1010 89.53% 96.08% 96.82%
511.povray_r 18.15×1010 77.71% 79.35% 83.26%
519.lbm_r 60.56×102 99.97% 99.97% 99.97%
520.omnetpp_r 9.32×1010 75.74% 86.60% 88.14%
523.xalancbmk_r 7.80×1010 33.61% 36.55% 40.12%
525.x264_r 1.65×1010 71.27% 79.75% 84.48%
526.blender_r 6.24×1010 50.73% 59.21% 80.42%
531.deepsjeng_r 9.12×108 99.99% 99.99% 99.99%
538.imagick_r 7.21×1010 89.01% 89.01% 89.02%
541.leela_r 1.93×1010 74.19% 75.51% 77.85%
544.nab_r 5.00×1010 95.60% 95.60% 95.60%
557.xz_r 67.17×108 99.81% 99.81% 99.81%

Average 5.11 × 1010 77.87% 82.83% 85.72%

an N-entry C++ fully associative cache that uses the least recently used (LRU) replacement pol-

icy. At runtime, each entry is used to store an arbitrary input pointer and its corresponding

base address. We modify our LLVM compiler pass to access the software cache on each emu-

lated compute_base instruction and measure the hit rate.

Table 5.2 shows the results of our analysis on the SPEC CPU2017 benchmarks. The “# Ac-

cesses" column shows the total number of executed compute_base instructions (i.e., the to-

tal number of base address cache accesses). The “Hit Rate" columns show the percentage of

compute_base instructions that causes a base address cache hit for a number of cache entries,

N = {32, 64, 128}. In case of a cache miss, we compute the correct base address and use the LRU

policy to replace one entry from the cache with the new entry. The results confirm that a small

base address cache (e.g., with 64 entries) is sufficient to eliminate the overheads of 82.83% of the

total compute_base instructions (i.e., billions of cycles).
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Table 5.3: Simulation parameters for C-5 data encryption evaluation.

Parameter Value

Core SimpleTimingCPU (In-Order) at 3.4GHz
L1 inst. cache 32KB, 8-way, 1-cycle latency
L1 data cache 32KB, 8-way, 3-cycle latency

L2 cache 256KB, 8-way, 6-cycle latency
L3 cache 8MB, 16-way, 18-cycle latency

DRAM 8GB, DDR4-2400
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Figure 5.11: Slowdowns with additional 6-cycles access latency for the L2 cache for C-5.

Application Data Encryption. In our performance evaluation results so far, we do not include

the cost of encrypting the application data because we cannot emulate this cost on a real machine.

While the encryption cost is going to be masked by the L2 cache access latency, we evaluate it

separately for completeness. We run the SPEC CPU2017 workloads with ref inputs on the Gem5

simulator [134]. To reduce the simulation times without affecting the results accuracy, we opt to

run the first 400 Million instructions of each workload.

Table 5.3 shows the simulation parameters for the baseline system in Gem5. We add an addi-

tional 6 cycles to the L2 access time to model the overheads of the QARMA encryption/decryption

on the L1-L2 interface. As shown in Figure 5.11, C-5’s data encryption adds 0.8% overheads on

average. This minor performance cost is expected as C-5 keeps the common case fast by leav-

ing the application data in plaintext in L1 under the protection of the strong spatial and temporal
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memory safety checks. These memory safety checks introduce no performance penalty as they are

overlapped with the regular L1 access path.

5.7.3 Real-world Case Studies

In addition to the standard SPEC benchmarks, we evaluate C-5 (without the data encryption

component) on two real-world applications: the Nginx web server [45] and the Duktape Javascript

interpreter [135].
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Figure 5.12: Nginx performance evaluation with C-5.

Nginx. In this experiment, we use Nginx [45] (version 1.21.6), In order to simulate typical work-

load configurations, we used Nginx to serve different-sized files using the page weight (i.e., the

amount of data served) of modern websites according to the 2019 HTTP Archive Web Almanac

report [136]. To generate the client load, we used the multi-threaded Siege [137] benchmark-

ing tool. We issued 500 requests with 50 concurrent connections for each page weight using the

loopback interface to avoid network congestion issues. Figure 5.12 shows the transfer rates (TX)

and throughput (TP) of C-5 and baseline execution. C-5 introduces negligible overheads for all

the tested file sizes. While we do not evaluate Nginx data encryption in Gem5, it is expected to

introduce no further overheads, especially for such I/O bounded workloads.

Duktape. We evaluate the Duktape [135] (version 2.5.0) Javascript interpreter with a default
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Figure 5.13: Duktape performance evaluation with C-5.

build configuration running the Octane 2 benchmark suite [138]3. Figure 5.13 summarizes the

benchmark scores as reported by the Octane 2 suite after being normalized to the baseline. C-5’s

spatial and temporal memory safety protections introduce 5% performance slowdowns on average

without using the base address cache optimization.

5.7.4 Security Evaluation

C-5 provides deterministic inter- and intra-allocation spatial memory safety and strong prob-

abilistic temporal memory safety (with 64-bit tags). C-5’s access-control rules in addition to its

memory encryption mitigate all attacks that we proposed against C3 [44]. In order to quantify

the security benefits of C-5, we implement a software-only version of C-5 that explicitly checks

pointer bounds and temporal tags in software with no hardware support. We use this version

solely for performing the security analysis and not performance evaluation. We compare the secu-

rity guarantees of this software version against two state-of-the-art techniques: AddressSanitizer

(ASan) [3] and Intel’s MPX [38], as representatives of pre- and post-deployment memory safety

solutions, respectively.4

RIPE. First, we use RIPE [139], an open source intrusion prevention benchmark suite. We ported

RIPE to 64-bit systems and compiled it with our software-only version of C-5. The total number of

3Duktape does not currently support all benchmarks.
4We use Clang 7.0 for building ASan and GCC 7.3.1 for building Intel’s MPX.

109



attacks that survive with a baseline (i.e., unprotected) GCC and Clang is 50 attacks. Table 5.4 sum-

marizes the results for the three tools. ASan failed to prevent two attacks that use intra-allocation

overflows. C-5 and Intel’s MPX stopped all the attacks, including the intra-allocation attacks, due

to their Buf2Ptr and bounds-narrowing features, respectively. However, C-5 avoids the prohibitive

runtime costs of Intel’s MPX.

Table 5.4: RIPE Results Summary

ASan Intel’s MPX C-5

Working Attacks 2/50 0/50 0/50

Microbenchmarks. While RIPE provides various tests that hijack the application control-flow

given a memory safety vulnerability, it lacks important attack categories, such as type-confusion

and information leakage. Thus, we implement a small set of security microbenchmarks to examine

those missing attacks. Table 5.5 summarizes our results for the same three tools. C-5 provides

complete coverage over the spectrum of these vulnerabilities.

Table 5.5: Security Microbenchmarks Summary.

ASan Intel’s MPX C-5

Intra-Overflow 7 3 3

Inter-Overflow 3 3 3

Use-after-free 3 7 3

Type Confusion 3 3 3

Buffer Over-read 3 3 3

5.8 Summary

The arms race between memory safety attackers and defenders is not going to end any time

soon given the sheer volume of C and C++ code in current systems. In this chapter, we made

another move in the continuing arms race game by analyzing the security guarantees of a recent

hardware-based security architecture, C3. We show that C3’s claims of achieving strong spatial
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and temporal memory safety while introducing negligible overheads can be broken with carefully

designed attack vectors. We described four different attacks to counter C3, called C-4, analyzed

their root causes, used them to mount an end-to-end attack against the WebKit’s JavaScript engine,

and discussed potential solutions to fix them. As applying the potential fixes will completely re-

design C3, we presented an alternate solution that can achieve the same security goals but using

simpler techniques. We built our solution, C-5, to counter C-4 by integrating strong data encryption

with access control rules. C-5 comes with a set of security enchantments and performance opti-

mizations that makes it a viable hardware-assisted solution for modern systems. Our quantitative

performance and security evaluation results confirm that C-5 can provide strong security guaran-

tees at no runtime cost, making it resilient against a wide variety of memory corruption attacks,

including the ones we proposed in this chapter.
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Chapter 6: Zero-Overhead Resilient Operation

Under Pointer Integrity Attacks

Most end users want security but do not want the inconvenience of having it: they do not want

their batteries drained, or apps slowed, or to be bothered with updates and crashes. This is the

unfortunate reality that sends novel security techniques with even minor performance overheads to

the crypt of great security ideas. Techniques that have been mass deployed in hardware (e.g., W^X

and SMEP/SMAP) are the ones that have close to zero overheads. Even techniques like ARM’s

PAC—which does have significant overhead when applied fully—is applied partially to only pro-

tect code pointers, and only to the kernel to keep the overheads small. Thus, low performance

overhead and convenience are key to widespread adoption of security techniques.

In this chapter I present ZeRØ, a hardware primitive that preserves pointer integrity at no ad-

ditional performance cost. In traditional processors, memory instructions can freely access any

memory location. There are no restrictions on the type of operands used by a memory instruction.

This behavior is fundamental for attackers to craft their exploits. As a result, ZeRØ introduces

unique sets of memory instructions for the different categories of pointers that make up a program

(i.e., code and data). Having specific memory instructions for code pointers, data pointers, and

regular data allows ZeRØ to enforce access control rules that maintain pointer integrity when un-

der attack. Unlike prior work, which tags every word in memory to identify different program

assets (e.g., code and data pointers) [140, 141], ZeRØ uses a novel metadata encoding scheme

that allows it to precisely store all the required metadata to identify different program assets with

just a single bit per every cache line in L2 and main memory (less than 0.2% memory overheads).

The remainder of this chapter is organized as follows. Section 6.1 motivates ZeRØ. Section 6.2

provides an overview of how ZeRØ works. Section 6.3 enumerates the ZeRØ instruction set ex-
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tensions. Section 6.4 details the microarchitectural design of ZeRØ whereas Section 6.5 specifies

its software design. Section 6.6 analyzes the security guarantees provided by ZeRØ and its current

limitations. Section 6.7 evaluates the hardware and software costs of ZeRØ. Section 6.8 summa-

rizes the chapter.

6.1 Motivation

Pointers give programmers the raw ability to work with particular memory locations. The

power and flexibility of pointers makes programs written in C and C++ very efficient as long as pro-

grammers are careful with their usage. Unfortunately, errors in pointer usage (e.g., out-of-bounds

access) can lead to memory corruption vulnerabilities [1]. These memory corruption vulnerabili-

ties have provided attackers with significant opportunities for exploitation. For example, attackers

abuse memory safety vulnerabilities to overwrite code pointers and hijack the control flow of the

program [53, 54, 55, 56]. Similarly, attackers target data pointers to build up sequences of oper-

ations (also known as data-oriented gadgets) without modifying the program’s control flow [57].

The prevalence of pointer manipulation attacks against modern software has prompted processor

manufacturers to implement hardware mitigation primitives, such as Intel’s CET [9] and ARM’s

PAC [10]. For example, PAC uses cryptographic message authentication codes (MACs) to protect

the integrity of pointers—namely return addresses, code pointers, and data pointers. Unfortunately,

PAC’s usage of cryptographic primitives presents a non-zero performance and energy penalty. In

addition, PAC remains vulnerable to speculative execution attacks where arbitrary pointers can be

speculatively authenticated [142].

6.2 System Overview

In this section, we describe how ZeRØ enforces pointer integrity for different program assets:

return addresses, code pointers, and data pointers.
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(a) ZeRØ enforces access control rules that maintain pointer integrity for return addresses, function pointers,
and data pointers.
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(b) ZeRØ mitigates code-reuse attacks through its use of access control preventing regular STOREs from
corrupting pointers.

Figure 6.1: A high level overview of how ZeRØ’s pointer integrity mechanism works.

6.2.1 How Does ZeRØ Work?

To better understand ZeRØ’s security guarantees, let us consider the example in Figure 6.1.

Under normal program execution, ZeRØ enforces three different classes of data integrity as shown

in Figure 6.1a, namely return address integrity, code pointer integrity, and data pointer integrity.

Return address integrity aims at preventing the attackers from overwriting return addresses on the

stack (i.e., return oriented programming, or ROP [53, 54]). Return address integrity is provided

by extending the functionality of regular CALL and RET instructions to mark return addresses in

memory and prevent other memory instructions from accessing them. As shown in Figure 6.1b ¶,

an attacker can attempt to overwrite (i.e., STORE) the return address and hijack the control flow of

the program. As return addresses are marked such that they can only be accessed by CALL/RET

pairs, ZeRØ prevents an attacker from hijacking control-flow.

ZeRØ provides code and data pointer integrity by introducing new pairs of memory instruc-

tions that are only allowed to access code and data pointers, respectively. For example, we use

CPtrST/CPtrLD instructions for exclusively accessing code pointers as shown in Figure 6.1a ·.
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If an attacker attempts to overwrite a code pointer using a regular memory instruction, such as

STORE, as shown in Figure 6.1b ·, ZeRØ prevents the memory access from occurring. ZeRØ

maintains data pointer integrity in the same way as code pointers via specific DPtrST/DPtrLD

instruction variants as shown in Figure 6.1a ¸.

6.2.2 Main Components

Return Address Integrity. In order to prevent return-oriented programming attacks, ZeRØ pro-

tects return addresses on the stack by extending the functionality of regular CALL and RET instruc-

tions to mark return addresses in memory and prevent program loads and stores from accessing

them. When a CALL instruction is executed, the return address is pushed to the stack alongside the

function arguments. ZeRØ sets 2 bits of metadata in the L1 data cache to 01 to mark the 8B return

address as protected. When a RET instruction is executed, the return address is moved from the

stack to the program counter if and only if it has the metadata bits set to 01. Once the metadata bits

are verified, program execution moves to the new address and ZeRØ sets the metadata bits in the

L1 data cache to 00 to mark the memory location as a regular location (i.e., non-protected). If any

other LOAD or STORE instruction tries to access a memory location while its metadata bits are set

to 01, the hardware generates an advisory exception, effectively preventing return addresses from

being leaked or overwritten. The advisory exception is used to notify the system administrator of

the access violation without crashing the running process.

Function Pointer Integrity. ZeRØ uses metadata in the L1 data cache to mark function point-

ers. In order to accurately identify memory instructions that are supposed to access function

pointers, ZeRØ uses compiler support and proposes two special instructions, Code Pointer Load

(CPtrLD) and Code Pointer Store (CPtrST), to access function pointers. CPtrST marks the

function pointer location as protected on the first use and assigns a unique state, 10, to it to dis-

tinguish function pointers from return addresses. Only CPtrLD instructions are allowed to load

function pointers from those protected locations. ZeRØ generates an advisory exception if any
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regular memory instruction is used to access a memory location that has its metadata bits set to 10.

Data Pointer Integrity. Data pointers work analogously to function pointers. Similarly, ZeRØ

proposes two special instructions, Data Pointer Load (DPtrLD) and Data Pointer Store (DPtrST),

to access data pointers. The functionality of these two instructions mirrors the usage of the code

pointer variant as described above. While stored in memory, data pointers are assigned a unique

L1 metadata state, 11, to avoid confusing them with other protected items (i.e., return addresses

and function pointers). We elaborate more on the layout of our ZeRØ metadata and how it is

propagated to main memory in Section 6.4.

Pointer-Flow Integrity. In addition to distinguishing between different program assets (i.e., code

pointers, data pointers, and regular data), ZeRØ achieves finer protection granularity by distin-

guishing between elements of the same program asset. To do so, ZeRØ encodes the pointer type in

the spare bits (10 bits in our current prototype) of the pointer while executing DPtrST. We then

verify that the pointer type matches the expected type at a DPtrLD location. The pointer type is

assigned at compile time and does not require points-to analysis. Two pointers are compatible if

their type is the same. As the types are encoded at DPtrST/DPtrLD sites, an attacker cannot use

a vulnerable DPtrST instruction to corrupt data pointers of incompatible types, thus reducing the

attack surface. The same approach is also applied to code pointers to prevent the attackers from

confusing incompatible function pointers. In this case, the function type is used as a unique type

per CPtrST/CPtrLD site.

The next three sections describe the required instruction set extensions, hardware changes, and

compiler support, which are needed for ZeRØ.

6.3 Architecture Support

One key aspect in ZeRØ’s design is the ability to isolate code and data pointers in memory

such that they are not corrupted by attacker-controlled memory instructions. Thus, ZeRØ extends

the instruction set architecture to operate exclusively with code and data pointers.

• CPtrST/CPtrLD <R1>, <R2>: These instructions stand for Code Pointer Store and Code
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Pointer Load, respectively. Similar to traditional stores and loads, CPtrST/CPtrLD use two

register operands. The values that are stored in registers R1 and R2 point to the store/load address

and source/destination register as usual. These instructions are emitted by the compiler only to

store/load code pointers. The compiler encodes the code pointer type in the upper bits of R2.

Upon executing this instruction, the hardware sets/checks the corresponding metadata bits in the

L1 data cache and matches the pointer type against the one stored in the upper bits of the memory

location (i.e., the store/load address).

• DPtrST/DPtrLD <R1>, <R2>: These instructions stand for Data Pointer Store and Data

Pointer Load, respectively. Similar to CPtrST/CPtrLD, they are emitted by the compiler to

store/load data pointers. Upon executing this instruction, the hardware sets/checks the correspond-

ing metadata bits in the L1 data cache and verifies the pointer type, as described above.

• ClearMeta <R1>, <R2>: Code and data pointers corresponding metadata bits should be

cleared when memory is freed. To support this functionality, we add a Clear Pointer Metadata

(ClearMeta) instruction that takes two register operands. The value in register R1 points to

the starting address of a 64B cache line. The value in register R2 is a mask to the corresponding

64B cache line, where 1 allows and 0 disallows changing the state of the corresponding byte. The

mask is used to perform partial updates of metadata within a cache line. This instruction is treated

similarly to a STORE instruction in the processor pipeline since it modifies the architectural state

of data bytes in a cache line. Upon executing a ClearMeta instruction, the metadata of the target

cache line in the L1 data cache is cleared.

Additionally, ZeRØ extends the implementation of regular CALL and RET instructions to set

and check the validity of return address metadata state in the L1 data cache. This functionality is

necessary to guarantee the integrity of return addresses. Unlike the other cases discussed prior, this

feature does not require a special instruction or additional compiler support. There is no need to

explicitly clear the return address metadata as they are cleared upon executing the RET instruction.

Table 6.1 summarizes the actions taken on various instructions based on the memory location state.
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Table 6.1: Actions taken on various instructions based on the memory location state with ZeRØ. 00
represents regular data, 01 represents return address, 10 represents code pointer (i.e., specifically
function pointers), and 11 represents a data pointer. X represents “Don’t Care”.

Instruction
Metadata

Action
State

CALL 00 Set the metadata to 01.
01 Invalid. Cannot overwrite a return address.

RET 00 Invalid. Cannot return from a non-taken address.
01 Set the metadata to 00.
10 Invalid. Cannot return from a function pointer.
11 Invalid. Cannot return from a data pointer.

CPtrST 00 Set the metadata to 10.
01 Invalid. Cannot overwrite a return address.
11 Invalid. Cannot overwrite a data pointer.

CPtrLD 10 Load code pointer.
00 Invalid. Cannot load a non-code pointer.
X1 Invalid. Cannot load a non-code pointer.

DPtrST 00 Set the metadata to 11.
01 Invalid. Cannot overwrite a return address.
10 Invalid. Cannot overwrite a code pointer.

DPtrLD 11 Load data pointer.
10 Invalid. Cannot load a non-data pointer.
0X Invalid. Cannot load a non-data pointer.

LOAD/STORE 00 Load/Store a non-pointer data item.
01 Invalid. Cannot access a return address.
10 Invalid. Cannot access a code pointer.
11 Invalid. Cannot access a data pointer.

ClearMeta 01 Invalid. Cannot free stack memory.
11 Set the metadata to 00.
10 Set the metadata to 00.

6.4 Microarchitecture Design

This section describes the microarchitectural changes that are required for implementing ZeRØ.

6.4.1 L1 Data Cache Modifications

Figure 6.2 shows the L1 data cache metadata encoding. ZeRØ uses a 16-bit vector to identify

the locations of return addresses, function pointers, and data pointers in a cache line. For example,

each two bits of the metadata bit vector represent the state corresponding to each aligned 8B of the

cache line. An 8B chunk can either be a return address (01), function pointer (10), data pointer (11),
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L1 Cache Line Data 
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Each 2-bits of metadata

represents one 8B chunk.

Figure 6.2: ZeRØ’s metadata encoding in the L1 data cache. ZeRØ uses a 16-bit vector to indicate
whether a chunk of eight bytes is a return address, function pointer, data pointer, or regular (non-
pointer) data.
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Figure 6.3: Pipeline diagram for the L1 cache hit operation. The shaded blocks correspond to
ZeRØ components.

or regular data (00). Our bit vector introduces a 2B storage overhead per 64B cache line (a 3.125%

storage for the L1 data cache). As shown in Figure 6.3, if a load/store accesses a protected byte

(which is determined by reading the corresponding bit vector), an advisory exception is recorded

to be processed when the load/store is ready to be committed.
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Figure 6.4: ZeRØ’s metadata encoding in L2/L3 data cache and main memory. Ptr1/Ptr2 encodes
the offset of the pointer in the cache line, whereas K1/K2 encodes its type (return address, code
pointer, or data pointer). ZeRØ uses a single bit of metadata to identify protected cache lines.

6.4.2 Exception Handling Circuitry

For certain program functions or libraries, it might be desirable to suppress exceptions (e.g.,

when the program intentionally accesses pointers with regular LOAD/STORE instructions). ZeRØ

provides hardware support for suppressing the advisory exceptions by using a permit-list. When

a binary is loaded the OS writes the starting address and size of the permitted functions/libraries

to the permit-list in the exception handling circuitry. Then, when a ZeRØ exception occurs, the

hardware checks if the PC of the current memory access instruction is covered by the permit-list or

not. If the PC is permitted, the advisory exception is suppressed. Otherwise, the advisory exception

is raised and the faulting PC and memory address are passed to the OS exception handler so that

they can be used for reporting or investigation purposes. In our design, we use an 8-entry permit-

list, where the entry size is 12 bytes (eight bytes for the function starting address and four bytes for

the size).
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6.4.3 L2/L3 Cache Modifications

Figure 6.4 shows a schematic view of our L2/L3 data cache and main memory metadata en-

coding. ZeRØ uses a compressed format that requires 1 bit of metadata per 64B cache line (0.2%

storage overheads) in L2/L3 caches and main memory. The key idea is that if a cache line has a

protected memory location (i.e., return address, code pointer, or data pointer), it will have at least

two unused bytes (i.e., the upper 16-bits of the pointer). We use 6 bits from the pointer’s upper bits

to encode its metadata. For example, if one pointer appears in the cache line, we use 3 bits to store

its offset within the line and 2 bits to define its type (return address, code pointer or data pointer).

We set the first bit to zero to easily identify this case. The original contents of the first 6 bits of the

cache line are moved to the upper 6 bits of the pointer. Finding the location of this pointer requires

scanning the bit vector for the occurrence of its state (e.g., 11 for data pointers). This operation is

implemented with a priority encoder. We repeat the same approach if two assets of any type exist

in a particular cache line.

A natural question to ask is: How do we handle the case in which multiple types of pointers

exist in a cache line? For example, a cache line might have three or more code/data pointers. In

this case, we have more unused upper pointer bits than needed. Thus, we use 2 bits for recognizing

the case and 16 bits for storing the traditional ZeRØ L1 metadata for the entire line. To distinguish

formatted lines from regular ones, we use our single metadata bit (i.e., the Pointer bit) per cache

line as an indicator. If the Pointer bit is set to one, that means we have pointers in the cache

line. Otherwise, the cache line is normal (i.e., requires no processing).1

For DRAM, we store the additional bit per cache line into spare ECC bits, similarly to prior

work [4, 34, 6]. We note that the DDR5 standard DIMMs use 80-bit channels, which provides

ample space for additional metadata. For non-ECC DRAMs, ZeRØ’s eight bytes per 4KB page

can be stored in a disjoint location in memory at no additional cost.

1We note that ZeRØ’s metadata bits can be completely hidden on systems that use caches with error-correction-
codes (ECC) support. The techniques from Gumpertz [143] can be used to store ZeRØ’s metadata bits for free without
compromising the typical ECC functionality. We leave this extension to future work.
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1: Read the bit vectors of the evicted line and OR them
2: if result is 0 then
3: Evict the line as is and set its Pointer bit to zero
4: else
5: Set the Pointer bit to one
6: Get the location of the first 3 protected addresses
7: Store the first 6, 12, or 18 bits in the locations obtained in 6
8: Fill the first 6, 12, or 18 bits based on Figure 5
9: end

Algorithm 3: ZeRØ’s L1-to-L2 cache line transformation.

6.4.4 L1 to/from L2 Transformation Module

ZeRØ uses two different formats for the L1 data cache and the L2/L3 data caches. As a result, a

transformation module is needed to switch between the two formats while cache lines are moving

between L1 and L2 in both directions. While the L1-to-L2 transformation module is not on the

critical path (only invoked when cache lines are evicted from L1 to L2), the L2-to-L1 transforma-

tion module is on the critical path of the processor load operation. Thus, the transformation needs

to be carefully designed in order to avoid adding latency to the L2 data cache access.

Algorithm 3 shows the high-level process of the L1-to-L2 transformation module. Figure 6.5

shows the block diagram of the same module. The process starts by ORing all bits from the input

L1 bit vector to detect whether a protected address (return address, code pointer, or data pointer)

exists in the cache line or not. If the result equals zero (i.e., no protected addresses are detected), we

simply set the Pointer bit (L2 ZeRØ metadata in Figure 6.5 ) to zero. If any protected address is

detected, we fill in the cache line header according to Figure 6.4. Priority encoders are used to find

the index of the first three protected addresses, if they exist. We use the aforementioned locations

to store the original contents of the first 6, 12, or 18 bits of the cache line (Line 7 in Algorithm 3)

using a cross bar and combinational logic.

Algorithm 4 and Figure 6.6 show the high-level process and block diagram of our L2-to-L1

transformation module. If the cache line has its Pointer bit set to one, we check the least signif-

icant 2 bits of the first byte to identify the encoding case and reconstruct the original contents of

the first 6, 12, or 12 bits of the cache line accordingly. We evaluate the latency and area overheads

of our transformation modules in Section 6.7.1.
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Figure 6.5: Block diagram of the ZeRØ’s L1-to-L2 transformation module that is used during
the spill operation. The left hand side shows the input L1 cache line data and the corresponding
L1 ZeRØ bit vector.
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Figure 6.6: Block diagram of the ZeRØ’s L2-to-L1 transformation module that is used during the
fill operation. The left hand side shows the input L2 cache line data and the corresponding single
Pointer bit of ZeRØ.

6.4.5 Load/Store Queue Modifications

Since the CALL/RET instructions generate a store/load micro-op as part of their regular func-

tionality on CISC systems, there is a chance of a load to store forwarding between the stored return

address from the CALL instruction to a subsequent in-flight load instruction, violating our return

address integrity. To avoid this scenario, ZeRØ extends load/store queue entries with 12 bits that
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1: Read the Pointer bit for the inserted line
2: if result is 0 then
3: Set the entire bit vector to [0]
4: else
5: Check the least significant 2 bits of byte 0
6: if result is 11 then
7: Copy bit[2-18] to the L1 bit vector
8: Get the location of the first 3 protected addresses
9: Set the data of bit[2-18] to the upper 6 bits of location obtained in 8
10: else
11: Set the metadata of addresses[Ptr[1-2]] to K[1-2]
12: Set the data of the first 12 bits to the most

significant 6 bits of byte[Ptr[1-2]]]
13: end
14: end

Algorithm 4: ZeRØ’s L2-to-L1 cache line transformation.

specify whether the entry is associated with a return address, function pointer, data pointer, or regu-

lar data (2 bits) in addition to its pointer type (10 bits). This way entries marked as return addresses

(or code/data pointers) are written as part of a CALL (or CPtrST/DPtrST) instruction and can

only be forwarded to loads that are part of a RET (or CPtrLD/DPtrLD) instruction, respectively.

To provide tamper-resistance against side-channel attacks, ZeRØ forwards the value zero from

those entries to any matching in-flight load instructions and marks them as potential violators. An

advisory exception is thrown only when the potential violating instructions are committed to avoid

any false positives due to misspeculation. The checking operation is performed in parallel to the

regular address matching process with no performance impact.

6.5 Software Design

In this section we describe the memory management, compiler, and operating system support

necessary to enable ZeRØ.

6.5.1 Memory Management

ZeRØ is agnostic to the memory allocator. ZeRØ intercepts any program calls to free() or

delete[] and emits ClearMeta instructions to clear code- and data-pointers metadata from

the free’d regions if it exists. Additionally, ZeRØ emits ClearMeta instructions on function

returns to cleanup the stack frame.
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6.5.2 Compiler Support

Pointer Integrity. To provide pointer integrity, we need to accurately identify LOAD and STORE

instructions that access pointer values. To do so, our current prototype uses the Clang/LLVM

compiler infrastructure to replace program code- and data-pointer loads and stores with our new

instructions, CPtrLD/CPtrST and DPtrLD/DPtrST.

In order to protect code pointers that are initialized prior to runtime (e.g., entries in C++ vir-

tual tables), we add a handleGlobals function that emits CPtrST instructions for all global

pointers and invoke it at the start of the main function as part of program initialization. This way

we protect all code pointers that have no explicit STORE instructions executed at runtime.

Pointer-Flow Integrity. To prevent pointer confusion between data pointers, we encode the type

of the pointer in its most significant 10 bits prior to executing DPtrLD/DPtrST. We use the

pointer’s LLVM ElementType, which depends on the type of the pointed-to data structure. The

ElementType of each pointer is readily available and does not require points-to analysis. Similarly,

we encode code pointer types in the most significant 10 bits of a code pointer prior to executing

CPtrLD/CPtrST to prevent the attackers from confusing incompatible function pointers. In this

case, we use the function type as a unique code pointer type.

Return Address Integrity. No compiler support is needed for return address integrity as ZeRØ

extends the functionality of traditional CALL/RET instructions.

Finally, a recent work [31] shows that it is feasible to track data pointers in hardware with no

compiler support. This pointer tracking feature should enable ZeRØ to relax its compiler support

requirement for data pointer integrity.

6.5.3 Operating System Support

Advisory Exceptions. When ZeRØ’s hardware detects an access violation, it throws an exception

once the instruction becomes non-speculative. Our exceptions are advisory in nature. In other

words, they do not halt program execution. Instead, they just notify the operating system of the
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invalid behavior and continue program execution (after rejecting the violating memory access).2

ZeRØ provides hardware support for suppressing the advisory exceptions by using a permit-list, as

described in Section 6.4. For example, it might be desirable to add functions that copy plain bytes

(e.g., memcpy and memmove) to the permit-list as they may generate exceptions upon access-

ing protected addresses (e.g., pointers). Wherever possible, our compiler pass emits type-aware

copying functions that do not need any special exception handling. Of the 16 SPEC CPU2017

C/C++ benchmarks, only two (502.gcc_r and 526.blender_r) have cases where a permit-

list is needed. For the rest of the benchmarks, our compiler pass successfully identifies the copied

operands types and emits our special instructions for copying the protected fields and regular mem-

ory access instructions for the non-pointer fields.

Page Swaps. ZeRØ requires 1 bit of metadata per 64B cache lines. When a page is swapped out

from main memory, the page fault handler needs to store the metadata for the entire page into a

reserved address space managed by the OS; the metadata is reclaimed upon swap in. The kernel

has enough address space in practice (the kernel’s virtual address space is 128TB for 64-bit Linux

with 48-bit virtual address space) to store the metadata for all the processes on the system since

the size of the metadata is minimal (8B for a 4KB page or 0.2%).

Stack Unwinding. The C standard uses setjmp and longjmp in order to add exception-like

functionality to C. setjmp saves the current environment including the return address and stack

pointer to a memory buffer (jmp_buf) while longjmp restores the previously saved environ-

ment from jmp_buf. To guarantee return address (and stack pointer) integrity while saved in

jmp_buf, ZeRØ instruments setjmp/longjmp to insert CPtrST/CPtrLD instructions for

those protected addresses. This way an attacker cannot use regular memory instructions to over-

write the return address and stack pointers in jmp_buf. The same approach can be applied to the

C++ exception handling mechanism by instrumenting the appropriate APIs.

Context Switching. The permit-list contents (96 bytes) are maintained across context switches—

2Only faulty store instructions are rejected to guarantee pointer integrity. We do not skip faulty loads as they do
not change the control/data flow of the program.
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as part of the process control block—if the process uses a permit-list. This step is likely to add

minimal overhead (a few LOAD and STORE instructions takes ≤ 0.1𝜇S) to the OS context switch

(typically 3− 5𝜇S). Other OS-related tasks remain intact, such as inter-process data sharing, copy-

on-write, and memory-mapped files.

Finally, as ZeRØ’s metadata is inlined within the pointers themselves, they require no extra

work for supporting multi-threaded applications.

6.6 Security Analysis

In this section, we first define the threat model. Next, we analyze the security guarantees

provided by ZeRØ and its current limitations.

6.6.1 Threat Model

Adversarial Capabilities. We assume that the adversary is aware of the applied defenses and

has access to the source code, or binary image, of the target program. Furthermore, the target

program suffers from memory safety-related vulnerabilities that allow the adversary to read from,

and write to, arbitrary memory addresses. The attacker’s objective is to (ab)use memory corruption

and disclosure bugs, mount a code-reuse attack, and achieve privilege escalation. Furthermore, we

include DOP [57] attacks in our threat model. We exclude pure data corruption attacks from our

threat model as they target non-pointer data. This limitation applies to prior work as well [46,

144, 47, 141]. Due to their prominence, we include speculative execution attacks in our threat

model [43].

Hardening Assumptions. We assume that the underlying operating system (OS) is trusted. If the

OS is compromised and the attacker has kernel privileges, the attacker can execute malicious code

without making CRAs; a simple mapping of the data page as executable will suffice. However, our

technique can be applied to the operating system code itself for protecting code and data pointers.

We assume that ASLR and W^X protection are enabled—i.e., no code injection is allowed (non-

executable data), and all code sections are non-writable (immutable code). Thus, attacks that
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modify program code at runtime, such as rowhammer [77] and CLKSCREW [98], are out of

scope.

Secrets. Unlike prior work, ZeRØ requires no secret parameters or configuration keys. The secu-

rity is purely derived from runtime enforcement.

6.6.2 Security Discussion

Return Oriented Programming Attacks. Corrupting code pointers has been the most common

and preferred attack vector over the last two decades. For instance, ROP attacks [53] and their

just-in-time variant [145] typically start by corrupting the return address of a function to hijack

the control flow of a program. ZeRØ’s return address integrity effectively mitigates those attacks

as it stops the adversary from leaking/overwriting return addresses using 1 bit of metadata per

cache line in L2/L3 and main memory. For example, when an attacker tries to overflow a buffer to

write to an adjacent return address, ZeRØ rejects the action and raises an advisory exception as the

access violates the rules in Table 6.1.

Jump- and Call-Oriented Programming Attacks. Protecting return addresses alone is not suf-

ficient for more advanced attack variants. A variation of the ROP attack uses indirect branch in-

structions (JMP) to transfer control between gadgets. This attack technique is called jump-oriented

programming (JOP) [56]. Another similar attack variant is call-oriented programming (COP) [55],

which uses gadgets ending with an indirect CALL instruction. What makes JOP and COP similar is

their use of code pointers for the indirect JMP/CALL instructions. As ZeRØ’s code pointer integrity

protects code pointers from being manipulated in memory, an attacker cannot use the pointers to

launch a JOP/COP attack.

Counterfeit Object-Oriented Programming Attacks. Unlike ROP/JOP/COP attacks, which

(re)use short instruction sequences, in COOP attacks, whole C++ functions are invoked through

code pointers in read-only memory, such as vtables [146]. Each C++ object keeps a pointer

(vptr) to its vtable (a table containing pointers to virtual methods). A method invocation,

therefore, requires (a) dereferencing the vtable pointer, (b) computing the respective table in-
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dex, and (c) executing an indirect CALL instruction with the table entry of the previous step as an

operand. COOP attacks typically hijack program control-flow by overwriting vptrs of existent

C++ objects and/or crafting counterfeit C++ objects with arbitrary vptrs. ZeRØ prevents COOP

attacks by protecting code pointers inside the vtables and by using data pointer integrity to

harden the vptr inside the C++ objects. For instance, using a regular STORE instruction to create

a vptr will cause an advisory exception when the counterfeit vptr is accessed with a DPtrLD

instruction.

Data-Oriented Programming Attacks. Unlike control-flow hijacking attacks, data-oriented pro-

gramming (DOP) attacks do not alter the control flow of the program [57, 58, 59]. Instead, DOP

attacks abuse data pointers to simulate the attacker’s arbitrary computations using the original con-

trol flow of the victim program. Mitigating DOP has been a real challenge for prior defenses due

the attack’s use of data pointers. As data pointers are much more common than code pointers, the

overheads of protecting them can be significant. ZeRØ’s inlined metadata allows us to provide data

pointer integrity with no performance cost. ZeRØ prevents those attacks by ensuring that regular

LOAD/STOREs cannot corrupt data pointers.

Pointer Confusion Attacks. An attacker who has access to a DPtrST instruction may potentially

overwrite any data pointer as all data pointers use the same encoding state (i.e., 11). To mitigate

this issue, ZeRØ assigns a unique 10-bit identifier for every data pointer type and verifies it at

DPtrST/DPtrLD call sites. This identifier prevents an attacker from using a vulnerable DPtrST

instruction to corrupt arbitrary data pointers in memory. Instead, attackers will be restricted to

accessing data pointers of the same (or compatible) type, thus reducing the attack surface. To

comply with the C standard [147], ZeRØ permits accessing any data pointer using void* and

char* without flagging a violation. All other data pointer types are considered incompatible.

Similarly, ZeRØ mitigates code pointer confusion attacks by using the function type as a unique

identifier at CPtrST/CPtrLD call sites. We report the total number of unique data- and code-

pointer types for SPEC CPU2017 benchmarks in Section 6.7.

Speculative Execution Attacks. Speculative execution attacks represent a major challenge for all
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modern security solutions [43]. They allow the attacker to leak program memory by first spec-

ulatively executing instructions that are not supposed to execute under normal conditions. The

traces left behind in the microarchitecture by the speculatively executed instructions are then used

to leak information covertly. While ZeRØ does not prevent speculative execution attacks, ZeRØ

takes multiple steps to ensure speculative execution attacks cannot be used to bypass it. For exam-

ple, a recent work (SpecROP [148]) shows that an attacker can speculatively chain multiple ROP

gadgets. SpecROP uses speculative execution to prime the targets of indirect jump instructions

and uses them to construct a gadget chain that leaks secrets. As all gadgets are speculatively exe-

cuted, current defenses do not raise exceptions upon executing them. On the other hand, ZeRØ is

resilient against SpecROP as we do not forward regular data (i.e., has a 00 state) to protected ad-

dresses (e.g., code pointers with a 10 state) in the processor pipeline. Instead, we mark those cases

as potential violations and only raise our advisory exception when they become non-speculative.

Thus, SpecROP gadgets will not be able to receive the attacker’s primed targets.

In addition, it has been shown that speculative execution attacks can bypass ARM’s PAC by

speculatively executing pointer signing instructions as gadgets to sign arbitrary pointers [142].

Once the pointers are signed, an attacker can leak the signature via a covert channel and use it to

create a forged pointer. This forged pointer is then used to bypass ARM’s PAC authentication. This

raises the question of whether an attacker can use a speculative execution attack to bypass ZeRØ.

The short answer is No. Speculatively executing CPtrLD/DPtrLD instructions can only leak the

pointer value. Leaking code and data pointers cannot alter the control/data flow of the program.

On the other hand, overwriting the pointer requires a STORE instruction, which cannot be specula-

tively executed. Finally, ClearMeta instructions cannot be speculatively used to clear the pointer

metadata bits as they are treated similarly to STORE instructions.

6.6.3 Limitations

Non-pointer Data Corruption. The main focus of this work is preventing the corruption of dif-

ferent pointer classes. It is to say, ZeRØ does not prevent regular (non-pointer) data from being
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corrupted through program LOAD/STOREs. Non-pointer (or non-control) data attacks that tam-

per with or leak security-sensitive memory are possible [60]. Defeating non-pointer data attacks

requires full memory safety, which typically comes with significant memory and performance

overheads. Similar to recent hardware-based solutions (e.g., Intel’s CET [9], ARM’s PAC [10],

and Morpheus [141]), we opt to exclude pure data attacks to simplify our design and performance

requirements.

Third-party Code. Similar to prior work [47], ZeRØ provides pointer integrity for instrumented

code only. Third-party libraries cannot take advantage of ZeRØ without recompilation. To facil-

itate communication with unprotected third-party code, ZeRØ provides a couple of options. The

first option is to add the starting address and size of the third-party code to the permit-list. This

way LOAD/STORE instructions from the third-party code operate normally without generating

advisory exceptions. The second option is to clear the code- and data-pointer metadata in mem-

ory regions that are shared with third-party code before invoking external libraries. This is done

by recognizing external library calls at the compiler level and inserting ClearMeta instructions

accordingly. This way regular LOAD/STORE instructions in uninstrumented libraries can access

the passed pointers without raising exceptions. ZeRØ, however, never clears the return address

metadata bits if they are set, as return address integrity requires no program recompilation and thus

can be provided for third party libraries and legacy binaries.

Memory Aliasing. Two memory access instructions can access the same memory location using

different types. For example, a C union with a pointer and an integer member can be accessed using

both regular STORE and DPtrST instructions. To avoid raising false alarms, ZeRØ statically de-

tects such occurrences at compile time and emits regular STORE instructions for all union accesses.

Similarly, we emit regular STOREs for pointers that are “cast" to integers before being stored to

memory. While emitting regular STOREs for potential pointers reduces the security coverage, we

opt for this solution to eliminate any false positives even if such C idioms are uncommon.
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6.7 Evaluation

In this section, we first measure the hardware overheads of implementing ZeRØ. Then, we

compare ZeRØ’s performance against prior solutions using the SPEC CPU2017 benchmark suite.

6.7.1 Hardware Measurements

ZeRØ adds additional operations to the L1 data cache and the interface between the L1 and L2

caches. Qualitatively, the area overhead of ZeRØ’s L1 metadata is 3.125% as it adds 2B per 64B.

As the metadata lookup happens in parallel to the L1 data and tag accesses, ZeRØ should have

no impact on the L1 access latency. We verify this hypothesis by implementing ZeRØ on top of

a 32KB direct mapped L1 data cache. We synthesize the baseline L1 data cache and the ZeRØ

modified cache with the Synopsys Design Compiler and the 45nm NangateOpenCell library. We

use OpenRAM [88] to generate SRAMs for both the data/tag arrays in L1 data cache and the bit

vector arrays for ZeRØ. We report our VLSI measurements results in Table 6.2.

Table 6.2: Area, delay and power overheads of ZeRØ (GE represents gate equivalent).

ZeRØ Area (GE) Delay (𝑛𝑠) Power (𝑚𝑊)

L1 Overheads [+5.41%] 531,175 [+0.05%] 1.99 [+3.37%] 30.7

L2-to-L1 Transformation 299 1.45 0.04
L1-to-L2 Transformation 326 1.72 0.04

As expected, the overheads associated with the ZeRØ pointer integrity are minor in terms of de-

lay (0.05%) and power consumption (3.37%). The latency of the L2-to-L1 transformation module

is less than the L1 data cache latency. This small latency implies that our transformation module

can be folded completely within the pipeline stages and will not impact the performance-critical

cache line fill operation. On the other hand, the latency of the L1-to-L2 transformation module is

slightly higher (1.72ns). This is acceptable as the spill operation is not on the processor critical

path. Thus, adding one more cycle to cache line evictions will not impact program execution time.

Finally, the area and power overheads of our transformation modules are negligible compared to

the L1 data cache.
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Table 6.3: Number of unique LLVM function pointer types (FPtrType) and data pointer types
(DPtrType) for the SPEC CPU2017 benchmark suite.

Benchmark Number of Number of Benchmark Number of Number of
Name CPtrTypes DPtrTypes Name CPtrTypes DPtrTypes

perlbench 17 72 xalancbmk 837 703
gcc 78 451 x264 50 23
mcf 0 6 blender 566 705
namd 5 10 deepsjeng 0 2
parest 48 611 imagick 21 54
povray 31 148 leela 1 16
lbm 0 2 nab 0 19
omnetpp 298 133 xz 14 18

6.7.2 Software Performance

We use the VLSI measurements as a guideline for our software evaluation. Our VLSI mea-

surements show that ZeRØ’s hardware changes have no impact on L1/L2 access latency. Thus,

no extra clock cycles are needed to perform our integrity operations. In terms of program instruc-

tions, ZeRØ’s return address integrity does not add any special instructions. Instead, it extends the

functionality of regular CALL/RET instructions. On the other hand, ZeRØ uses special instruc-

tions to access code and data pointers. We note that the CPtrLD/CPtrST and DPtrST/DPtrST

instructions simply replace traditional loads and stores for code and data pointers, respectively.

They do not require any extra registers. We insert MOV instructions to encode the pointer types

into the upper 10 bits of the CPtrLD/DPtrLD destination register and CPtrST/DPtrST source

register (all are 48-bit wide pointers). We report the total number of unique data/code pointer types

in Table 6.3. Finally, ZeRØ inserts ClearMeta instructions upon heap/stack memory dealloca-

tion to remove the tags from the code- and data pointers, if they exist. We emulate the overheads

of the ClearMeta instructions by inserting dummy STORE instructions in the corresponding

(deallocation) code segments.
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6.7.3 Comparison with Prior Work.

To demonstrate the need for implementing ZeRØ, we compare it against the state-of-the-art

pointer integrity technique, ARM’s PAC using the SPEC CPU2017 workloads. Prior work [47]

showed that ARM’s PAC can be used to enforce code- and data-pointer integrity. As ARM’s

PAC is only available in certain Apple SoCs with no support for third party code at the time of

writing, we use the same emulation methodology as used by Liljestrand et al. [47] to estimate the

performance overheads. We write a LLVM/Clang compiler [89] pass to insert four exclusive-or

(xor) operations to account for the 4 cycle latency introduced by the PAC instructions. In addition

to ZeRØ, we run three different instrumentation configurations:

• PAC-FPtr. In this configuration, ARM’s pointer authentication is applied to function pointer

usages (i.e., forward-edge protection). Our compiler pass inserts the dummy instructions

whenever a function pointer is loaded from memory (to emulate code pointer authentication)

or stored to memory (to emulate code pointer signing).

• PAC-RET. In this configuration, ARM’s pointer authentication is applied to return addresses

(i.e., backward-edge protection). Our compiler pass inserts the dummy instructions when

a CALL instruction is executed (to sign the return address before pushing it to the stack

memory) and when a RET instruction is executed (to authenticate the return address after

loading it from memory).

• PAC-Full. In this configuration, ARM’s pointer authentication is applied to return addresses,

code pointers, and data pointers. In addition to the first two configurations, we instrument

all data pointer LOAD and STORE instructions to insert the dummy PAC instructions.

Evaluation Setup. We run our experiments on a bare-metal Intel Skylake-based Xeon Gold 6126

processor running at 2.6GHz with RHEL Linux 7.5 (kernel 3.10). We use the SPEC CPU2017

benchmarks with ref inputs and run to completion. To minimize variability, each benchmark is
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executed 5 times and the average of the execution times is reported. We notice negligible variance

between the different runs for each benchmark configuration.
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Figure 6.7: Performance overheads of ZeRØ and three different ARM’s PAC configurations for the
SPEC CPU2017 benchmark suite.

Performance Results. Figure 6.7 shows the runtime overhead of the different design approaches

(all normalized to baseline execution with no defenses). As the name suggests, ZeRØ intro-

duces 0% performance overheads on average with a maximum of 0.6%. The overhead of PAC-FPtr

is 3% on average with a maximum of 53%. The overhead of PAC-RET is 6% on average with a

maximum of 59%.

Protecting all code and data pointers with PAC-Full results in 14% performance overheads on

average with a maximum of 75%, which in many situations is considered too costly for ARM’s

PAC to be practically deployed for data pointer protection. AOS [32] reduces the performance

cost of data pointer integrity by using bounds tables and on-chip caches instead of signing &

authenticating every data pointer. AOS reports an average performance overhead of 8.4% on SPEC

CPU2006 workloads (by running the first 3 billion instructions on the gem5 simulator [134]). ZeRØ

reduces the pointer integrity costs to zero by using minimal L1 metadata and only a 0.2% memory

overhead.

6.8 Summary

In this chapter we proposed ZeRØ, a hardware primitive for resilient operation under memory

corruption attacks with zero overhead. ZeRØ enforces code and data pointer integrity with minimal
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metadata. Specifically, using 1 bit per 64 bytes in L2 and beyond, and 3.125% area overhead in

the L1, ZeRØ is able to protect the integrity of both code and data pointers. As a result, ZeRØ

incurs 0% performance degradation compared to 14% for the state-of-the-art ARM’s PAC when

applied to its full extent. ZeRØ matches or offers better security guarantees than ARM’s PAC and

Intel’s CET. Moreover, our VLSI results showed that ZeRØ can be implemented with minimal

latency, area, and power overheads.

The techniques described in the chapter offer exploit mitigation at no cost. While extant mem-

ory safety techniques are more suitable for testing before apps are distributed to customers where

higher overheads can be tolerated, exploit mitigation techniques such as ZeRØ which offer no

overheads and resilient operation are more suitable for end user deployment.
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Chapter 7: Efficient Pointer Integrity For Securing Embedded Systems

With the rise of the Internet of Things and cyber-physical systems, the usage of embedded

devices has witnessed a rapid increase. Unfortunately, memory-safety based attacks remain a major

concern for embedded systems as they are typically programmed in memory unsafe languages,

such as C. The limited processing and storage resources of embedded devices hinders the efforts

of securing them using server-grade defenses.

Thus, this chapter presents Efficient Pointer Integrity (EPI), a hardware-based technique that

mitigates memory safety-based attacks by ensuring the integrity of valuable application assets (i.e.,

pointers). The key observation that enables our EPI encoding is that leveraging common software

properties allows for harvesting extra bits from pointers on 32-bit architectures. For example,

compilers typically align stack frames to 16-byte boundaries. That means the maximum number

of 32-bit return addresses per 64-byte cache lines is four instead of 16, reducing the metadata that

is needed for enforcing return address integrity. Additionally, fixed-width instructions on RISC

architectures, such as the RISC-V four-byte instructions, mean that any instruction address (e.g.,

return address or function pointer) will be four-byte aligned and will have its two least significant

bits set to zero. EPI harvests those bits (and inserts extra padding bits if necessary) to efficiently

store the pointer integrity metadata on 32-bit architectures.

EPI takes multiple steps to address the power and reliability challenges of embedded sys-

tems [149]. First, as many embedded systems nowadays are battery operated, they typically have

low power consumption budget. EPI mitigates the power overheads by avoiding frequent crypto

operations [46, 10, 47] and continuous randomization [141] approaches. Second, as embedded

devices are often used in safety-critical environments, they typically have strong reliability re-

quirements. EPI maintains the reliability of the protected system by avoiding terminating the vic-

tim process upon detecting an attack. Instead, EPI continues program execution after skipping
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the violating instruction. As a result, EPI is resilient against denial-of-service attacks, which are

commonly used against embedded devices. Third, EPI does not require any secret parameters or

configuration keys that need to be explicitly protected.

The remainder of this chapter is organized as follows. Section 7.1 further motivates the need

for EPI. Section 7.2 provides an overview of how EPI works. Section 7.3 describes the hardware

changes that are required to implement EPI whereas Section 7.4 specifies the software design. Sec-

tion 7.5 analyzes the security guarantees provided by EPI and its limitations. Section 7.6 evaluates

the EPI performance overheads. Section 7.7 summarizes the chapter.

7.1 Motivation

Memory corruption attacks represent a major threat for embedded systems software. For ex-

ample, overwriting code pointers such as return addresses and function pointers allows an attacker

to hijack the control-flow of an application and achieve arbitrary code execution [53]. Moreover,

overwriting data pointers can alter an application’s benign behavior without changing its control-

flow [57]. Both control- and data-flow manipulation attacks cause significant damage to the victim

system. In 2019, researchers showed how to exploit a series of buffer overflow vulnerabilities,

named QualPwn [150], in the Qualcomm WLAN and modem firmware that ships in millions of

Android devices. The vulnerabilities allow for code execution on the victim device by sending

specially-crafted packets to an Android’s device modem. In 2020, another series of zero-day vul-

nerabilities, dubbed Ripple20 [151], targeted a TCP/IP library found at the base of many embedded

devices. The impacted devices include smart home devices, power grid equipment, routers, satel-

lite communications equipment, and many others.

One strategy to harden embedded systems against memory safety-based attacks is to deploy ex-

ploit mitigation techniques, such as address space layout randomization (ASLR) [152] and ARM’s

pointer authentication (PAC) [10]. These techniques raise the bar for the attacker by making it

harder to exploit memory safety vulnerabilities while keeping the performance and memory costs

lower than the full memory safety solutions [33]. Unfortunately, state-of-the-art exploit mitigation
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Figure 7.1: Embedded systems market trend from 2013 to 2019 [48].

techniques are mainly designed for 64-bit processors. For example, randomization-based solu-

tions, such as ASLR [152], take advantage of the massive 64-bit virtual address space to hide the

valuable assets. Other solutions, such as ARM’s PAC [10], leverage the currently unused upper

bits in 64-bit pointers to store metadata. As a result, such solutions perform poorly when deployed

on non 64-bit processors, which are the common choice for embedded systems. Figure 7.1 shows

that the embedded world is dominated by 32-bit processors [48, 49]. As a result, there is a need for

solutions to the problem of securing embedded 32-bit systems with minimal performance, power,

and area overheads.

7.2 System Overview

In this section, we show how EPI protects the main application assets: function pointers, data

pointers, and return addresses on 32-bit architectures. Then, we describe how EPI manages its

metadata.

7.2.1 Function Pointer Integrity

As function pointers are stored in application memory (i.e., stack, heap, and globals), they can

be overwritten due to memory safety-based vulnerabilities. Changing a function pointer alters the
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Program Code

void foo(int x);
void bar(int x);
 
int main(int argc, 
         char *argv[]{
  int array[32];
  void (*fptr)(int);
  fptr = &foo;   // CPtrST
 
  // Arbitrary write vuln.
  array[argv[1]] = 
        argv[2]; // STORE 
  (*fptr)(2);    // CPtrLD
                 // CALL 
  return 0;
}

1
2

3

4
5
6

7
8

9

10

array

&foo

Memory

array

&foo &foo

CORRUPTED

Memory

array

array

The function pointer is
overwritten!

The vulnerable STORE
is rejected!

Baseline
Execution

Protected
Execution

After Line #6 After Line #8

Figure 7.2: A sample C application highlighting how EPI protects function pointers in memory.
The left hand side shows a code snippet with a memory safety-based vulnerability in Line 8. Under
baseline execution conditions (top-right corner), the vulnerability can be exploited to corrupt the
function pointer, fptr. With EPI (shown in the bottom-right corner), fptr can only be accessed
by the code pointer store and load instructions (Lines 6 and 9). Thus its integrity is protected by
rejecting the violating STORE instruction from Line 8. The same technique is used to protect data
pointers and return addresses.

application control flow. Therefore, function pointers are common targets for attackers. In order

to guarantee the integrity of function pointer (and any instruction-based address that is stored in

memory, such as indirect jump targets), EPI uses two special instructions, Code Pointer Load

(CPtrLD) and Code Pointer Store (CPtrST), to access function pointers. If any other memory

access instruction is used to target a function pointer, EPI will reject the violating instruction,

effectively preventing function pointers from being overwritten.

To better understand how our function pointer integrity works, let us consider the example

in Figure 7.2. The code snippet (shown on the left hand side) shows a simple C application with a

memory safety-based vulnerability that gives the attacker arbitrary write capabilities (Line 8). As a

result, the attacker can write arbitrary values to arbitrary locations in memory. The attacker’s goal

is to hijack the control flow of the application by overwriting the function pointer, fptr, to point

to a different function other than foo. The attack succeeds under baseline execution (shown on

the top right corner) as the violating STORE instruction is able to access any memory location with

no restrictions. EPI provides pointer integrity by only granting the CPtrST/CPtrLD instructions

exclusive access to function pointers. As shown in the bottom-right corner of Figure 7.2, CPtrST
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marks the function pointer location with a unique tag (e.g., 10) on the first use. Only CPtrLD

instructions are allowed to load function pointers from those specially-tagged locations. Thus, the

attacker fails to overwrite fptrwith the vulnerable STORE instruction. Our unique tags are stored

in bit vectors in the L1 data cache and are encoded within the application data when transferred to

the L2 cache and/or main memory, as will be described in Section 7.3.

7.2.2 Data Pointer Integrity

EPI enforces the integrity of data pointers in a similar fashion to function pointers. Two new

instructions, Data Pointer Load (DPtrLD) and Data Pointer Store (DPtrST) are used to access

data pointers. We use a special tag (e.g., 11) to mark data pointers in the L1 data cache. The tag

is assigned upon executing the DPtrST instruction and is verified upon executing the DPtrLD

instruction. Accessing data pointers with regular LOAD/STORE instructions is rejected to prevent

attackers from manipulating data pointers.

In order to avoid confusing data pointers (i.e., replacing one data pointer with another pointer of

an incompatible type), DPtrST/DPtrLD uses an additional register operand, RegX. The compiler

writes the data pointer type to RegX at each data pointer load and store location. This step is done

at the compiler intermediate level by using the readily available pointer’s ElementType as defined

by the compiler without requiring any points-to analysis. The hardware verifies that the value in

RegX matches the type metadata, which is stored adjacent to the data pointer in memory. This way

an attacker cannot exchange two different data pointers with each other to hijack the application

data flow. The same approach can also be applied to function pointers to avoid type confusion.

In this case, we (1) use the function type as a unique function pointer type and (2) write it to the

RegX operand of function pointer load and store locations at compile time.

7.2.3 Return Address Integrity

In order to mitigate return-oriented programming (ROP) attacks, EPI enforces the integrity of

return addresses by extending the functionality of regular CALL and RET instructions without any
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compiler support. Upon executing a CALL instruction, our hardware pushes the return address

to memory and marks it with a unique tag (e.g., 01) in the L1 data cache. Any memory access

instructions, including the traditional LOAD and STORE instructions and our special code- and

data-pointer variants, cannot access a memory location as long as it is tagged as a return address.

When a RET instruction is executed, our hardware pops the return address from memory and

simultaneously clears its corresponding metadata if and only if it is originally marked with the

return address tag (i.e., 01). This way EPI prevents the attackers from using arbitrary data in

memory as potential return addresses. By limiting the return address accesses to CALL and RET

instructions, EPI mitigates ROP without using shadow stacks or recompiling the application.

7.2.4 Metadata Management

Ensuring the integrity of the metadata is a key requirement for EPI to (1) prevent the attackers

from manipulating the metadata and (2) avoid causing false positives during normal application

execution. While return address tags are exclusively written and cleared by the CALL and RET in-

structions, the function- and data-pointer metadata needs special treatment as pointers can be writ-

ten and read multiple times. EPI introduces one more instruction, ClearMeta <R1>, <R2>,

to explicitly clear the function- and data-pointer metadata when a heap object is freed or a stack

frame is deallocated. The ClearMeta instruction takes two register operands, R1 and R2. R1

holds the starting address of a 64B cache line whereas R2 holds a binary mask to the corresponding

64B cache line, where one allows and zero disallows changing the state of the corresponding byte.

We use the mask to perform partial updates of metadata within a cache line. At compile time,

we insert ClearMeta instructions to clear the metadata of the stack frames that hold function

and/or data pointers upon function return. We also create a runtime wrapper around the memory

deallocation functions, free and delete, to clear the function- and data-pointers metadata from

the deallocated regions if it exists.
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Figure 7.3: Finite state machine of the different EPI metadata (represented by states) and instruc-
tions (shown as transitions). The main idea is restricting access to memory locations, which are
marked with similar metadata state, to a subset of memory instructions. Incompatible memory
accesses (i.e., accesses that use the wrong instruction type) are rejected, as represented by the ex-
ception state.

7.2.5 Putting It All Together

Figure 7.3 shows a finite state machine that summarizes how our different EPI instructions

interact with the EPI memory tags. The first four states (shown in yellow) represent the different

application assets: regular data, return addresses, function pointers, and data pointers. Any valid

memory access instruction moves the target memory location tag from one state to another. How-

ever, all invalid memory accesses cause a violation, as represented by the exception state in Fig-

ure 7.3. For example, a CPtrST instruction that targets a memory location with a tag equals 00

will change the tag state to 10. However, the same CPtrST will be rejected if it targets a memory

location that has a 01 tag. In order to provide the operating system (or the system administrator)

with more information about the violating instruction, EPI uses advisory exceptions. Unlike tradi-

tional exceptions, EPI’s advisory exceptions do not crash the running process. Instead, they simply

notify the operating system and provide the address and operands of the violating instruction, if

more forensics is needed.
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7.3 Microarchitecture Design

This section describes the hardware changes that are required to implement EPI.

7.3.1 Processor Modifications

In order to add EPI to an embedded device processor, the following extensions are needed.

First, we extend the instruction decoder to support the CPtrST/CPtrLD, DPtrST/DPtrLD, and

ClearMeta instructions. Second, we modify the logic for the CALL and RET instructions to

update and validate the return address metadata. Third, we add an exception handling module

that is responsible for (a) notifying the operating system when an access violation occurs and (b)

checking the address of the violating instruction against the permit-list contents, if it is not empty,

to trigger or suppress the exception accordingly. Fourth, a set of registers can be (optionally)

introduced to avoid causing any register pressure on the main register file due to the extra operand

of EPI’s memory access instructions.

7.3.2 Memory Hierarchy Modifications

A subset of embedded processors, especially the ones that run lightweight operating systems,

use data caches for enhancing performance. Depending on how many levels of caches are avail-

able, EPI requires the following extensions. The key design goal is to speed-up metadata lookup

in the upper-level caches that are closer to the processor (i.e., L1) by using bit-vector metadata and

reduce the memory overheads in the lower-level caches that are closer to the main memory (i.e.,

L2) by using compressed metadata.

L1 Data Cache. In our design, we use a 32-bit vector of metadata, L1Vec, per each 64B cache

line in the L1 data cache (i.e., a 6.25% extra storage). Each 2 bits indicate whether a 4B chunk

is a regular data, function pointer, data pointer, or a return address, as shown in Figure 7.4. The

per-pointer identifier needs no dedicated storage as it is readily available in the padding bytes, as

described in Section 7.4. The metadata is checked—in parallel to regular data access—when a
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memory instruction reaches the L1 data cache. If an access violation is detected, a signal is sent to

the exception handling module.

L1 Cache Line Data 

[0] [1] [2] [3] [4] [5] ... [62] [63]

4B
64B

EPI Metadata

[0]

2bits

0

[1] ... [31]

4B

0

0 1

1 0

1 1

Return Address

Function Pointer

Data Pointer

Regular Data

Memory Type
Each 2-bits of metadata

represents one 4B chunk.

Figure 7.4: EPI’s metadata encoding in the L1 data cache on 32-bit architectures. We use a 2 bits
to indicate whether any 4B is a regular data, function pointer, data pointer, or return address.

Systems with ECC-enabled caches for better reliability can completely avoid the storage over-

heads of our L1Vec. The key idea is to tweak the original ECC encoding and decoding algorithms

to compute the ECC using the 32-bit data and 2-bit metadata altogether. When a memory access oc-

curs, the 2-bit metadata is implicitly known (e.g., a CPtrLD instruction expects a metadata of 11)

and can be added to the 32-bit data before computing the ECC. If the computed ECC matches

the stored ECC value, then the data is correct and the access is valid. If a mismatch occurs, ei-

ther a data corruption or an EPI access violation occurs. Both cases requires exception handling.

Prior work shows how implicitly encoding metadata bits in ECC works without compromising

reliability [143].

L2 Cache and Main Memory. For the lower-level components of the memory hierarchy (i.e., the

L2 cache and main memory), we use a compressed metadata layout with only 2 bits, EPI[1:0], per

each 64B cache line. If a cache line has no function pointers, data pointers, or return addresses,

we do not modify its contents and set its corresponding metadata bits to 00. If a cache line has

any pointers, we encode the pointer offset within the cache line and its type in the first three bytes

of the cache line as a header, as shown in Figure 7.5. The original contents of the header are
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copied to the spare bits of the pointers, which we harvest with software optimizations, as described

in Section 7.4. As our compressed metadata adds minimal storage overheads (i.e., 0.39%), it can

be efficiently stored into spare ECC bits or in a disjoint memory region for non-ECC memories.

L2 Cache Line Data 

[3] [4] [5] ... [62] [63]

3B
64B

EPI Metadata

[0] [1] [2]

0

[2]

-

1   Pointer

2   Pointers

3+ Pointers

Offset1
4bit

11

-

Code/Data Ptr Bit-vector

T1
1b

16bit2bit

2bit

1b

1bit

1
Function/Data Ptr?

1bit

1
Return address?

[1] [2]

10 Offset1
4bit

T1
1b

Offset2
4bit

T2
1b

-

RET Bit-vector1+ Return address [0] [1] -
4bit

[0] [1] [2]

Figure 7.5: EPI’s metadata encoding in the L2 cache and main memory. We use 2 bits per cache
line to indicate whether the cache line has function/data pointers and/or return addresses. We use
the first three bytes of the cache line as a header where Offset1/Offset2 encodes the offset of the
pointer in the cache line and T1/T2 encodes its type (i.e., function pointer or data pointer). A 4-bit
vector is used to encode the metadata of return addresses (i.e., whether a 16B chunk has a return
address or not).

Metadata Encoding & Decoding Modules. In order to switch between the EPI’s bit vector meta-

data and its compressed layout, we introduce metadata encoding and decoding modules between

the L1 data cache and the L2 cache (or main memory). Algorithm 5 shows the steps of the meta-

data encoding process, whereas Algorithm 6 shows the steps of the metadata decoding process.

Both modules can be implemented with simple combinational logic. The performance overheads

of the two modules are evaluated in Section 7.6.
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Input : A 64-byte L1 cache line and a 32-bit vector, L1Vec.
Output: A 64-byte L2 cache line and a 2-bit EPI metadata, where EPI[0] is the return

address bit and EPI[1] is the pointer bit.
Read all bits from L1Vec and OR them
if result is 0 then

Evict the line as is and set its EPI[1:0] to 00
else

Count the number of pointers in L1Vec
if pointer count is 0 then

Set EPI[1] to 0
else if pointer count is 1 then

Set EPI[1] to 1
Write the location of the pointer and its type in the lower 6-bits of byte[0]
Copy the lower 6-bits of byte[0] to the 6-spare bits of the pointer

else if pointer count is 2 then
Set EPI[1] to 1
Write the location of the 2 pointers and their type in the lower 12-bits of byte[0:1]
Copy the lower 12-bits of byte[0:1] to the 12-spare bits of the 2 pointers

else // pointer count is 3 or more
Set EPI[1] to 1
Write the pointers’ type as a 16-bit vector in byte[0:2]
Copy the lower 18-bits of byte[0:2] to the spare bits of the first 3 pointers

end
Count the number of return addresses in L1Vec
if return addresses count is 0 then

Set EPI[0] to 0
else

Set EPI[0] to 1
Write the return addresses locations as a 4-bit vector in the upper bits of byte[2]
Copy the upper bits of byte[2] to the 4-spare bits of the first return address

end
end

Algorithm 5: EPI metadata encoding steps (L1-to-L2).
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Input : A 64-byte L2 cache line and a 2-bit EPI metadata, where EPI[0] is the return
address bit and EPI[1] is the pointer bit.

Output: A 64-byte L1 cache line and a 32-bit vector, L1Vec.
Read the EPI[1:0] bits of the inserted line
if result is 00 then

Set the entire L1Vec to [0]
else

if has return address then // EPI[0] is 1
Get the return addresses locations from the upper 4-bits of byte[2]
Set the corresponding places in L1Vec to 01
Copy the 4-spare bits of the first return address to the upper bits of byte[2]

end
if has pointer then // EPI[1] is 1

Check the least significant 2 bits of byte[0]
Get the locations of the pointers and their type from byte[0:2] as shown in Figure 5
Set the corresponding places in the L1Vec to 10 or 11 based on the pointers’ type
Copy the 18-spare bits of the first 3 pointers to the lower 18-bits of byte[0:2]

end
Set the rest of bits in the L1Vec to zeros.

end
Algorithm 6: EPI metadata decoding steps (L2-to-L1).

7.4 Software Design

In this section we explain the main software properties that are used to enable EPI. Then, we

describe our compiler and operating system support.

7.4.1 Software Properties

One constraint that prevents the immediate porting of the state-of-the-art exploitation mitiga-

tions (e.g., ARM’s PAC [10] and ZeRØ [11]) to 32-bit architectures is the lack of unused in-pointer

bits to store the metadata. While the upper bits of 64-bit pointers are currently unused by software,

there are no unused bits in 32-bit pointers. To address this problem, EPI leverages common soft-

ware properties to harvest more bits to use on 32-bit architectures without affecting the application

correctness or introducing significant memory overheads.

Aligning Stack Frames. Each program function has its own stack frame, in which local variables

and return address are stored. Current compilers typically align stack frames to 𝑁-bytes boundaries
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as a performance optimization. The number of alignment bytes, 𝑁 , defines the maximum number

of return addresses that can appear in a single cache line. For example, a 64B cache line can only

store a maximum of 64/𝑁 different return addresses. We leverage this compiler optimization to

reduce the size of the metadata bit vector that is associated with return addresses. By using the

default stack frame alignment (i.e., 𝑁 = 16B), a 4-bit vector is sufficient to track the locations of

potential 32-bit return addresses in any 64B cache line. We show how EPI’s compressed encoding

takes advantage of this feature in Section 7.3.

Aligning Program Functions. Compilers, such as LLVM, provide compile-time options (e.g.,

-falign-functions) and function attributes (e.g., __attribute__((aligned(S))))

for specifying the minimum alignment for the first instruction of a function. As function pointers

typically point to function starting addresses, the number of alignment bytes, 𝑆, affects the least

significant bits of each function pointer. For example, using a function alignment, 𝑆 = 16B, means

that the 𝑙𝑜𝑔2(16) = 4 least significant bits of any function pointer are always set to zero. EPI

harvests those bits to store the tags when function pointers are spilled from the L1 data cache to

the L2 cache and main memory.

Compacting Code Space. On 32-bit architectures, the maximum size of the code address space

in virtual memory is 4GB. However, the majority of embedded applications do not use the entire

code space. Even for statically linked applications, code size is typically in orders of MBs. We

propose compacting the size of the code address space to 1GB in order to leverage the two most

significant bits of code pointers, including return addresses and function pointers. We note that

this optimization does not apply to data pointers. Thus, data items on heap and stack can still use

the entire 4GB of virtual memory on 32-bit architectures as before.

Furthermore, as instructions on RISC architectures have fixed width, some of the least signif-

icant bits of code pointers can be used for metadata encoding. For example, RISC-V instructions

are all of 32-bit width, meaning that the two least significant bits of return addresses and function

pointers are always set to zero. EPI harvests those bits as well to facilitate the metadata encoding.

Inserting Padding Bytes. While the above optimizations work for code pointers (i.e., instruction-
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based addresses), they cannot be applied for harvesting bits in 32-bit data pointers. On one hand,

the most significant bits of data pointers are not always set to zero. Compressing the data address

space might cause problems for embedded applications that operate on large chunks of data. On

the other hand, the least significant bits of data pointers are only set to zero in case of a allocation

base address (i.e., pointers returned by malloc or new). However, applications may arbitrarily

create derived pointers that point to any byte-aligned location within the allocation and store it to

memory. Thus, derived pointers will not have their least significant bits set to zero, preventing

us from harvesting them for metadata storage. As a result, we opt to explicitly insert two padding

bytes adjacent to data pointers to save the data-pointer metadata tag (i.e., 11) and type. We quantify

the performance overheads of the inserted padding bytes in Section 7.6.

Finally, Figure 7.6 shows the layout of different application assets on 32-bit architectures after

applying the above optimizations. The number of harvested bits in return addresses and function

pointers equals four and six, respectively. Furthermore, EPI-protected function and data pointers

can utilize an additional two padding bytes.

4 Bytes

Regular Data ... [31][0] [1]

Return Address ... [31][0] [1]

PaddingFunction Pointer Padding ...[0] [1]

PaddingData Pointer Padding ...

2 bits 2 bits
[30]

[2] [3]
4 bits

[31][30]
2 bits8 bits8 bits

8 bits8 bits

26 bits

32 bits

28 bits

Compacting code space harvests
the 2 MSBs of code pointers

Fixed-width instructions
harvest the 2 LSBs of
return addresses

Aligning program functions
harvests the 4 LSBs of
function pointers

Inserting padding bytes provides space
for storing a per-pointer identifier

Figure 7.6: Different pointers layout on 32-bit architectures after applying EPI’s optimizations.
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7.4.2 Compiler Support

While EPI guarantees return address integrity for legacy binaries without recompilation, we

use compiler support for enforcing function- and data-pointer integrity, as described below.

Code Instrumentation. We use the Clang/LLVM compiler infrastructure [89] to instrument the

application code. First, we modify the compiler front-end to insert two padding bytes per func-

tion and data pointers, if desired, to mitigate pointer confusion attacks. This is an optional fea-

ture that could be turned off if the application does not heavily use data and/or function pointers.

Second, we write a compiler pass that works at the intermediate (IR) level. Our compiler IR

pass identifies pointer access instructions and replaces them with our new CPtrLD/CPtrST and

DPtrLD/DPtrST instructions. Then, we use the pointer’s LLVM ElementType, which depends

on the type of the pointed-to data structure, as a unique identifier per each data pointer load and

store instruction. The size of the identifier depends on the number of different data-pointer types

in the application. Based on our experiments, we set the size of the identifier to ten bits. Function

types are similarly used as unique identifiers in function-pointer load and store locations. Finally,

our compiler pass identifies functions that store function and/or data pointers as local variables and

emits ClearMeta instructions on function returns to cleanup the stack frame.

Runtime Wrappers. While the majority of embedded applications use statically allocated mem-

ory for maximizing efficiency, some applications might use dynamic memory allocations. In this

case, EPI creates a wrapper around memory deallocation functions (e.g., free and delete). In-

side the wrapper, EPI invokes the standard malloc_usable_size function to get the size of

the free’d memory object and iterates over all cache lines of the free’d object clearing its function-

and data-pointers metadata with our ClearMeta instruction.

7.4.3 Operating System Support

Microcontrollers and embedded devices typically run bare-metal applications with no operat-

ing system support. In this case, EPI can be directly deployed to protect the bare-metal application
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with no further changes. However, some microcontrollers have an operating system that sched-

ules and runs multiple applications on the device. To support such devices, EPI requires minimal

modifications to the operating system code similar to prior work [11].

Exception Handling. EPI provides the option to trigger an advisory exception when a memory

access violation occurs. Instead of crashing the running applications, our advisory exceptions

send the violating instruction information (i.e., instruction address and operands) to the operating

system. The operating system then takes the decision of either terminating the application or not.

Furthermore, EPI provides an optional per-application permit-list that can store the address ranges

of code sections for which the advisory exceptions should be suppressed. This feature can be used

to avoid false alarms in case of functions that treat pointer and non-pointer data similarly, such as

memcpy and memmove. The permit-list is created during the application loading and is mapped

to the hardware exception circuitry to allow the hardware to decide on when advisory exceptions

are triggered. The operating system is responsible for maintaining the contents of the permit-list

(eight 8-bytes entries) during context switches. For example, it can be stored as part of the process

control block or saved in an attacker-inaccessible memory region.

Page Swapping. If multiple processes run on the same embedded device, the operating system

swaps certain memory pages to disk in order to create enough space in main memory for supporting

the currently running processes. If a swapped-out page belongs to EPI-protected applications, the

operating system needs to store the metadata of this page in a separate memory region until the

page is swapped in again. This step adds minimal memory overheads as EPI uses 2-bits of metadata

per 64B cache lines (or 16B for a 4KB page).

7.5 Security Analysis

In this section, we first define the threat model. Next, we reason about how EPI mitigates

state-of-the-art pointer manipulation attacks. Then, we discuss the EPI limitations.
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7.5.1 Threat Model

We consider a threat model that is consistent with the state-of-the-art defenses against pointer

manipulation attacks [47, 141, 11]. Specifically, we assume that the victim application is written

in a memory unsafe languages, such as C/C++, and suffers from one or more memory safety vul-

nerabilities, such as buffer overflow or use-after-free. The above vulnerabilities grant the attacker

arbitrary read/write capabilities to the application memory.

Additionally, we assume that the source code of the victim application and/or its binary image

are known to the attacker. However, the attacker cannot manipulate the victim application source

code or binary instructions (i.e., code sections are verified at boot time and are non-writable at

runtime). The attacker’s goal is to leverage the memory safety-based vulnerabilities to mount

an attack and hijack the control and/or data flow of the victim application. This includes using

control-flow hijacking attacks, such as ROP [53, 54], COP [55], JOP [56], and COOP [146] and

data-oriented programming attacks such as DOP [57] and BOP [58], which are all included in our

threat model. Similar to prior exploit mitigations, pure data corruption attacks, such as flipping

regular non-pointer data [60], are out-of-scope. Mitigating non-pointer data manipulation attacks

requires full memory safety solutions, which come with high performance overheads.

Finally, we assume that all hardware components including the ones proposed in this chapter

are trusted and tamper-resistant. Attacks that exploit hardware vulnerabilities, such as rowham-

mer [77] and CLKSCREW [98] are out of scope.

7.5.2 Security Discussion

Control-Flow Hijacking Attacks. Attacks, such as ROP [53], JIT-ROP [145], COP [55], and

JOP [56], compromise the victim system by corrupting code pointers, such as return addresses and

function pointers. As EPI enforces all pointers’ integrity while stored in the application memory,

it effectively mitigates these attacks.

A different type of code-reuse attacks is counterfeit object-oriented programming (COOP),

in which the attacker reuses whole C++ functions by either (1) manipulating the contents of the
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virtual function tables, (2) overwriting the virtual pointers (vptr) of existent C++ objects, or (3)

tricking the victim application to use counterfeited objects that include attacker-controlled data

and vptr. EPI provides natural protection against all COOP approaches. First, our function pointer

integrity protects all virtual function table entries. Second, our data pointer integrity prevents the

attacker from both: overwriting the vptr of existent C++ objects and creating fake objects as vptrs

can only be created via a DPtrST instruction.

Moreover, EPI works against a powerful attacker who controls a CPtrST instruction as our

identifier, which is encoded as a register operand in the vulnerable instruction, limits the attacker’s

ability to overwrite arbitrary function pointers. Instead, each CPtrST instruction can only access

function pointers which share the same function type, highly reducing the attack surface.

Data-Flow Hijacking Attacks. The common theme of all known data-flow hijacking attacks,

such as DOP [57] and BOP [58], is their ability to manipulate data pointers to achieve arbitrary

computations without modifying the application control-flow. While such attacks have not been

demonstrated yet in embedded environments, EPI’s data pointer integrity provides an efficient way

to mitigate their threat. Furthermore, the additional data pointer identifier that is used by EPI

ensures that a vulnerable DPtrST instruction has limited attack surface (i.e., only memory loca-

tions with compatible data pointer types are reachable). Prior work showed that a ten-bit unique

identifier is sufficient to cover different data pointer types in the SPEC CPU2017 benchmarks [11].

Spectre Attacks. While speculative execution is not common in resource constrained devices (due

to energy limitations), EPI’s security guarantees remain valid under speculative execution. This is

simply because altering the application control or data flow requires overwriting a code or data

pointer using a violating STORE instruction, which cannot be speculatively executed. To mitigate

the risk of speculatively leaking code and data pointers (or speculatively chaining multiple code-

gadgets [148]), EPI does not allow violating instructions to speculatively forward their results if

they violate the rules of Figure 7.3. For example, attackers cannot use speculative RET instructions

to load memory from a regular memory location (i.e., has a 00 state) that is controlled by the

attacker.
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7.5.3 Limitations

Addressing Pure Data Corruption Attacks. Similar to prior exploit mitigation techniques [10,

141, 11], EPI does not prevent non-pointer data attacks [60]. While addressing this attack vector

for all variables comes with the high cost of enforcing full memory safety, EPI provides an option

to guard a subset of the application non-pointer data under certain conditions. For example, if the

application contains security-critical non-pointer data (e.g., an is_admin global variable) that

needs to be protected, EPI may treat those variables similarly to data pointers. In other words,

the security-critical fields are padded to 6 bytes (4B of a regular pointer and 2B for storing the

identifier). Then, all memory instructions that access the security-critical fields are replaced with

DPtrLD and DPtrST instructions. Finally, a unique identifier is assigned to each security-critical

field at compile time to prevent confusing them with any other pointers.

Handling External Libraries. If the protected application uses external libraries, EPI will enforce

return address integrity for such libraries. For enforcing function- and data-pointer integrity, we

provide three options for handling external libraries with different security-usability guarantees.

First, the user can choose to compile the libraries with EPI’s compiler passes to enjoy the same

security coverage as the main application. Alternatively, we can identify all calls to external li-

brary code at compile time and ensure that any data that is passed externally has no code or data

pointers. If such data exists, it is sufficient to clear the pointer metadata of the shared objects using

ClearMeta instructions. The third option is to simply add the instruction address ranges of the

external libraries to the permit-list in order to avoid generating false alarms if the external library

code accesses a protected code or data pointer.

7.6 Evaluation

In this section, we evaluate the performance overheads of EPI on a real machine using the

SPEC CPU2017 workloads. Then, we compare EPI against a 32-bit variant of the state-of-the-

art exploitation mitigation technique, ARM’s PAC. Finally, we estimate the hardware overheads
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of EPI using the CACTI modeling tool.

7.6.1 Experimental Setup

In order to run real workloads to completion in a reasonable time, we opt to use real machines to

emulate the performance overheads of our proposal instead of using microarchitectural simulators,

which typically suffer from long simulation times. Thus, we run our experiments on a machine

equipped with an Intel Skylake-based 2.6GHz Xeon Gold 6126 processor, running RHEL Linux

7.5. We use Clang-4.0 to compile the SPEC CPU2017 benchmarks using the following baseline

flags, “-m32 -fPIE -pie -fno-strict-aliasing -Wno-everything -O3”. For

all experiments, we run the ref inputs of the SPEC CPU2017 workloads to completion. Each

benchmark is executed five times and the average of the execution times is reported.

7.6.2 Performance Results

Methodology. EPI uses regular CALL and RET instructions to verify return addresses and in-

troduces new memory access instructions, CPtrLD/CPtrST and DPtrST/DPtrST, to handle

different pointers. As CALL and RET instructions already exist in the vanilla (i.e., unmodified)

program, they do not require any software modifications. Similarly, our code- and data-pointer

load and store instructions simply replace regular loads and stores in the vanilla program. As

the EPI metadata is accessed in parallel to the L1 data access, our special instructions does not

introduce any latency at the hardware level that requires special treatment during the performance

evaluation.

As EPI requires padding bytes to encode the type of data and function pointers as a mitiga-

tion against pointer confusion attacks, we modify the compiler front-end to insert two padding

bytes per pointer to emulate the performance overheads of the extra memory utilization. further-

more, we insert a MOV instruction before pointer loads and stores to encode the pointer types

in a dummy register to emulate the performance overheads of accessing the additional register
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operand, RegX 1. Additionally, we emulate the performance overheads of clearing the EPI meta-

data (i.e., the ClearMeta instruction) by inserting dummy MOV instructions that write a fixed

value to memory every time (1) a heap object is deallocated or (2) a stack frame, which contains

function/data pointer, is destroyed.
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Figure 7.7: Performance overheads of the SPEC CPU2017 workloads for EPI and ARM’s PAC
normalized to baseline execution.

Results. The first two bars in Figure 7.7 show the runtime overheads of EPI-Return and EPI-Full

normalized to baseline execution, respectively. EPI-Return provides return address integrity (i.e.,

backward-edge protection) without any per pointer padding bytes or additional operations while

adding 0.47% performance overheads on average (with a maximum of 7% in case of gcc_r).

On the other hand, EPI-Full represents our full pointer integrity protection, including return ad-

dresses, function pointers, and data pointers. Two padding bytes are inserted in this configuration

as explained before. The results show that EPI-Full introduces 0.88% performance overheads on

average with a maximum of 8%.

7.6.3 Comparison with ARM’s PAC

Methodology. In addition to our EPI configurations, we evaluate a 32-bit variant of ARM’s pointer

authentication technique. As ARM’s PAC is only available for 64-bit processors in certain Apple

devices, we use the same emulation methodology adopted by prior work [47, 11] to estimate the

performance overheads of ARM’s PAC on a real machine. Specifically, we modify the compiler to

emit four XOR instructions to account for the 4 cycle latency introduced by the PAC instructions.

1The extra register pressure, which may be introduced by RegX can be mitigated by proposing dedicated EPI
physical registers that the compiler can use only for encoding pointer types.
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Additionally, we insert two padding bytes per pointer to emulate the overheads of explicitly storing

a 16-bit message authentication code (MAC) per each 32-bit pointer.

Results. The last two bars in Figure 7.7 show the runtime overheads of PAC-RET and PAC-Full

normalized to baseline execution, respectively. PAC-RET emulates the overheads of signing and

authenticating return addresses on the stack whereas PAC-Full emulates the overheads of apply-

ing ARM’s PAC to its full-extent (i.e., protecting return addresses, function pointers, and data

pointers). Our experimental results show that PAC-RET and PAC-Full introduce an average of 4%

(with a maximum of 11% ) and 8.5% (with a maximum of 21%) runtime overheads compared to

baseline execution, respectively. The above results show that using cryptographic-based solutions

introduces non-negligible performance overheads (in addition to a high energy budget), making

them unsuitable for embedded environments.

7.6.4 Hardware Overheads

EPI requires minor changes to the processor and data caches. Qualitatively, the area overhead

of EPI’s L1 metadata is 6.25% as we add 2 bits per every four byte in the cache line. As the

metadata lookup happens in parallel to the L1 data and tag accesses, EPI should have no impact on

the L1 access latency. We use CACTI [153] to validate this hypothesis. By using 8-way associate

caches, we measure the access time difference between a 34KB cache (with a 68B cache line) and

a 32KB cache (with a 64B cache line). We compare with the access latency of the larger (34KB)

cache to provide a fair comparison for two caches that provide the same amount of data storage. For

these measurements we assume normal cache access mode without the late way select optimization

and thus this estimate is conservative in terms of access times. The access time difference at 22nm

is 0.00196ns (0.18% additional time). At the level of detail modeled by CACTI these differences

are well within the modeling error range, and as such conclude that both caches can be accessed

in the same amount of time. The dynamic read and write energies increase by 0.1% and 0.26%,

respectively.

For lower level caches (i.e., L2 and L3), EPI adds minimal area overhead (2-bits per 64B cache
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lines or 0.39%). The metadata encoding and decoding modules are used at the L1-L2 interface

to change the cache line layout during the typical cache line spill and fill operations. As the spill

operation is not on the processor critical path, adding extra logic—for encoding the metadata—to

cache lines evictions will not impact the execution time of the applications. On the other hand,

the metadata decoding module uses simple combinational logic and thus can be folded completely

within the pipeline stages without impacting the cache line fill operation.

7.7 Summary

In this chapter I illustrated, EPI, a hardware-based technique that can protect embedded systems

from a wide variety of code reuse and data-oriented programming attacks, at negligible runtime and

hardware costs. Specifically, EPI enforces pointer integrity using minor changes to the processor

logic, 6.25% area overheads in the L1 data cache, and two bits per 64-bytes cache lines in the

L2 caches and main memory. While state-of-the-art commercial solutions for 64-bit architectures

rely on cryptographic operations (e.g., ARM’s PAC) or disjoint storage (e.g., Intel’s CET shadow

stacks) for mitigating memory safety-based attacks, EPI achieves better security guarantees on

the more constrained 32-bit architectures without dedicating a performance or energy budget to

cryptographic co-processors or disjoint stacks. Our evaluation results show that EPI has 0.88%

runtime overheads on the SPEC CPU2017 benchmarks while having negligible latency and energy

overheads.
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Part V

Comparison With Prior Work On

Architectural Support For Memory Safety

161



Chapter 8: Related Work

This chapter describes how the techniques presented in this thesis are unique compared to prior

work in the area of memory safety error detection and exploit mitigation.

8.1 Memory Safety Error Detection

Hardware support for detecting memory safety errors can be broadly categorized into the fol-

lowing three classes: blocklisting, memory tagging, and permitlisting. Each of these classes re-

quires a different set of metadata that are either stored per allocation or per pointer. As shown

in Table 8.1, the metadata can be maintained in one of the following forms: disjoint, inlined,

co-joined, or implicit. In this section we briefly describe the categories of memory safety error

detectors and show how Califorms (Chapter 3) and No-FAT (Chapter 4) outperform the state-of-

the-art solutions. Table 8.2 compares Califorms and No-FAT with prior techniques on memory

safety error detection. The comparison points include the security guarantees, binary compatibil-

ity with unprotected code, multi-threading support, hardware complexity, memory requirements,

and performance overheads. Since prior work is not easy to reproduce (due to a plethora of soft-

ware and hardware platforms), we opt to include the main sources of memory and performance

overheads instead of including the reported overheads in each paper.

8.1.1 Memory Blocklisting

This class of memory safety defenses (also known as tripwires) aims to detect overflows by

marking the memory regions on either side of an allocation, and flagging accesses to them. For

example, SafeMem [24] implements tripwires by repurposing ECC bits in memory to mark mem-

ory regions invalid, thus trading off reliability for security. On processors supporting speculative
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Table 8.1: Categorization of prior work on spatial memory safety based on how they handle the
security metadata.

Permitlisting
Blocklisting

Per-Allocation Per-Pointer

Disjoint
Metadata

Baggy Bounds [75]

Hardbound [26]

ASan [3]

Softbound [154]

Watchdog [27]

Intel’s MPX [38]

AOS [32]

CHEx86 [31]

Inlined
Metadata

EffectiveSan [37] CHERI [29, 35] SafeMem [24]
In-Fat [155] Compact-Ptrs [28] REST [30]
C-5 [8] Intel’s C3 [44] Califorms [6]

Co-joined
Metadata

ARM’s MTE [5]

SPARC’s ADI [4]

Implicit
Metadata

Native-Ptrs [156, 76]

No-FAT [7]

execution, however, it might be possible to speculatively fetch blocklisted lines into the cache

without triggering a faulty memory exception. Unless these lines are flushed immediately after,

SafeMem’s blocklisting feature can be trivially bypassed. Alternatively, REST [30] achieves the

same by storing a predetermined large random number, in the form of a 8–64B token, in the mem-

ory to be blocklisted. Violations are detected by comparing cache lines with the token when they

are fetched. Compatibility with unprotected modules is easily achieved as well, since tokens are

part of the program’s address space and all access are implicitly checked. However, intra-object

spatial memory safety is not supported by REST owing to fragmentation overhead such heavy

usage of tokens would entail.

In order to provide temporal memory safety, blocklisting-based solutions use memory quar-

antining. Freed memory region is moved to a quarantine pool, such that this region will not be

allocated by malloc any time soon. Using memory quarantining typically increases performance

overheads as it prevents the program from reusing recently freed memory to satisfy new allocation

requests

163



Ta
bl

e
8.

2:
C

om
pa

ri
so

n
w

ith
pr

io
rw

or
k

on
m

em
or

y
sa

fe
ty

er
ro

rd
et

ec
tio

n.

Pr
op

os
al

Sp
at

ia
lP

ro
te

ct
io

n
*

Te
m

p.
B

in
ar

y
M

T
H

ar
dw

ar
e

M
et

ad
at

a
M

em
or

y
Pe

rf
or

m
an

ce
In

te
r

In
tr

a
Pr

ot
.§

C
om

p.
†

Su
pp

or
t¶

M
od

ifi
ca

tio
ns

O
ve

rh
ea

d
O

ve
rh

ea
d

O
ve

rh
ea

d

H
ar

db
ou

nd
[2

6]
‡

𝜇
op

in
je

ct
io

n,
L

1$
&

T
L

B
fo

rt
ag

s
0-

2
w

or
ds

pe
rp

tr
∝

#
of

pt
rs

∝
#

of
pt

rd
er

ef
s

&
4b

it
pe

rw
or

d

B
ag

gy
B

ou
nd

s
[7

5]
N

/A
N

/A
.

∝
pa

dd
in

g
ob

je
ct

s
∝

#
of

pt
ro

ps
to

th
e

ne
ar

es
ts

iz
e

C
om

pa
ct

-P
tr

s
[2

8]
O

ne
ex

tr
a

pi
pe

lin
e

st
ag

e
N

/A
∝

pa
dd

in
g

ob
je

ct
s

∝
#

of
pt

ro
ps

fo
rb

ou
nd

s
ch

ec
k

&
up

da
te

to
th

e
ne

ar
es

ts
iz

e

W
at

ch
do

g
[2

7]
‡

R
en

am
in

g
lo

gi
c,
𝜇

op
in

je
ct

io
n

lo
gi

c
4

w
or

ds
pe

rp
tr

∝
#

of
pt

rs
an

d
al

lo
cs

∝
#

of
pt

rd
er

ef
s

an
d

L
oc

k
lo

ca
tio

n$
W

at
ch

do
gL

ite
[1

57
]

‡
N

/A
4

w
or

ds
pe

rp
tr

∝
#

of
pt

rs
an

d
al

lo
cs

∝
#

of
pt

ro
ps

N
at

iv
e-

Pt
rs

[1
56

,7
6]

N
/A

N
/A

.
∝

pa
dd

in
g

ob
je

ct
s

∝
#

of
pt

ro
ps

to
th

e
ne

ar
es

ts
iz

e
In

te
l’s

M
PX

[3
8]

‡
U

nk
no

w
n

(c
lo

se
d

pl
at

fo
rm

)
2

w
or

ds
pe

rp
tr

∝
#

of
pt

rs
∝

#
of

pt
rd

er
ef

s
B

O
G

O
[1

58
]

‡
U

nk
no

w
n

(c
lo

se
d

pl
at

fo
rm

)
2

w
or

ds
pe

rp
tr

∝
#

of
pt

rs
∝

#
of

pt
rd

er
ef

s

C
H

E
R

I[
29

,3
5]

‡
C

ap
ab

ili
ty

co
pr

oc
es

so
r,

Ta
g$

Pt
rs

iz
e

is
2-

4X
∝

#
of

pt
rs

∝
#

of
pt

ro
ps

an
d

C
ap

ab
ili

ty
U

ni
t

C
H

E
R

Iv
ok

e
[1

59
]

C
ap

ab
ili

ty
co

pr
oc

es
so

r,
Ta

g$
Pt

rs
iz

e
is

2-
4X

∝
#

of
pt

rs
∝

#
of

pt
ro

ps
Ta

g
co

nt
ro

lle
r,

an
d

C
ap

ab
ili

ty
U

ni
t

PU
M

P
[1

60
]

E
xt

en
d

al
ld

at
a

un
its

by
ta

g
w

id
th

,
8B

pe
rc

ac
he

lin
e

∝
pr

og
.m

em
.f

oo
tp

ri
nt

∝
#

of
pt

ro
ps

ne
w

m
is

s
ha

nd
le

ra
nd

R
ul

e$
A

R
M

’s
M

T
E

[5
]

U
nk

no
w

n
(c

lo
se

d
pl

at
fo

rm
)

4b
it

pe
r1

6B
ob

je
ct

s
∝

pr
og

.m
em

.f
oo

tp
ri

nt
∝

#
of

ta
g

(u
n)

se
to

ps

R
E

ST
[3

0]
1-

8B
pe

rL
1D

lin
e,

1
co

m
pa

ra
to

r
8-

64
B

to
ke

n
∝

bl
ac

kl
is

te
d

m
em

or
y

∝
#

of
(d

is
)a

rm
in

sn
s.

A
O

S
[3

2]
A

R
M

’s
PA

C
in

st
ru

ct
io

ns
,m

em
or

y
ch

ec
k

qu
eu

e,
8B

bo
un

ds
pe

rp
tr

∝
#

of
pt

rs
∝

#
of

pt
rd

er
ef

s
bo

un
ds

$,
an

d
bo

un
ds

w
ay

bu
ff

er

C
H

E
x8

6
[3

1]
𝜇

op
in

je
ct

io
n

lo
gi

c,
25

6-
en

tr
y

A
lia

s$
2

w
or

ds
pe

rp
tr

∝
#

of
al

lo
cs

&
pt

rs
∝

#
of

pt
rd

er
ef

s
C

ap
ab

ili
ty

$,
an

d
Sp

ec
ul

at
iv

e
Po

in
te

rT
ra

ck
er

C
al

ifo
rm

s[
6]

8B
pe

rL
1D

lin
e,

1b
it

pe
rL

2/
L

3
lin

e
1-

7B
pe

rc
ri

tic
al

fie
ld

∝
bl

ac
kl

is
te

d
m

em
or

y
∝

#
of

B
L

O
C

in
sn

s.

N
o-

FA
T

[7
]

bo
un

ds
ch

ec
ki

ng
m

od
ul

e,
an

d
1K

B
pe

rp
ro

ce
ss

Ta
bl

e
∝

pa
dd

in
g

ob
je

ct
s

∝
#

of
pt

rd
er

ef
s

ba
se

ad
dr

es
s

re
gi

st
er

fil
e

to
th

e
ne

ar
es

ts
iz

e

C
-5

[8
]

bo
un

ds
ch

ec
ki

ng
m

od
ul

e,
Q

A
R

M
A

ci
ph

er
1K

B
pe

rp
ro

ce
ss

Ta
bl

e
∝

pa
dd

in
g

ob
je

ct
s

∝
#

of
pt

rd
er

ef
s

at
L

1/
L

2,
an

d
ex

te
nd

ed
re

gi
st

er
fil

e
an

d
1

w
or

d
pe

rp
tr

an
d

#
of

pt
rs

*
-C

om
pl

et
e

(L
in

ea
ra

nd
no

n-
lin

ea
ro

ve
rfl

ow
s)

;
-L

in
ea

ro
nl

y;
-N

o
pr

ot
ec

tio
n.

§
-C

om
pl

et
e;

-P
ar

tia
lp

ro
te

ct
io

n
(u

nt
il
r
e
a
l
l
o
c

);
-N

o
pr

ot
ec

tio
n.

†
-F

ul
ly

co
m

pa
tib

le
;

-E
xe

cu
tio

n
co

m
pa

tib
le

,b
ut

pr
ot

ec
tio

n
dr

op
pe

d
w

he
n

ex
te

rn
al

m
od

ul
es

m
od

if
y

po
in

te
r;

-N
o

su
pp

or
t.

¶
-S

up
po

rt
ed

(s
ta

te
le

ss
);

-S
up

po
rt

ed
(r

eq
ui

re
s

sy
nc

hr
on

iz
at

io
n

on
gl

ob
al

m
et

ad
at

a)
;

-N
o

su
pp

or
t.

‡
A

ch
ie

ve
d

w
ith

bo
un

ds
na

rr
ow

in
g.

164



As a blocklisting-based technique, the primary advantages of Califorms are: (1) being faster

than disjoint metadata based systems as our metadata resides with program data and does not

require explicit propagation, (2) having lower performance and energy overheads since it neither

requires multiple memory accesses, nor does it incur any significant checking costs, (3) providing

fine-grained protection at the byte granularity, which is necessary for intra-object memory safety,

and (4) being architecture width agnostic (i.e., not limited to 64-bit architectures) making it better

suited for deployment over a more diverse device environment.

8.1.2 Memory Tagging

This class of techniques associates a “color” with newly allocated memory, and stores the

same color in the upper bits of the data pointer that is used to access the allocated memory. At

runtime, the hardware enforces spatial memory safety by comparing the colors of the pointer and

accessed memory. For example, SPARC’s ADI [4] assigns 4-bit colors to every 64B of memory

(i.e., limiting the minimum allocation size to 64B), while ARM’s MTE [5] uses 4-bit colors per

every 16B of memory [34]. Since metadata bits are acquired along with the corresponding data,

no extra memory operations are needed.

Temporal safety is enforced by assigning a different color when memory regions are reused.

The number of tag bits in memory tagging defenses is limited as the tags are used for pointers and

memory locations. As a result, prior techniques offer less entropy for temporal protection. For

example, in SPARC’s ADI colors are repeated every 15 allocations, raising the attacker’s chances

of bypassing the defense.

8.1.3 Memory Permitlisting

This class of memory safety defenses (also known as base & bounds) enforces spatial memory

safety by verifying memory accesses against allocation bounds. The bounds information can be

explicitly stored or implicitly derived.

Explicit Base & Bounds. This class of memory safety defenses attaches bounds metadata to every
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pointer or allocation. The metadata can be stored in a shadow (i.e., disjoint) memory region (e.g.,

Hardbound [26], Intel’s MPX [38], CHEx86 [31], and AOS [32]) or be marshaled with the pointer

by extending its size (e.g., CHERI [29]). Temporal memory safety can be added to the above tech-

niques by either storing an additional “identifier” along with the pointer metadata and verifying that

no stale identifiers are ever retrieved (e.g., CETS [127], Watchdog [27], and WatchdogLite [157])

or invalidating all pointers to freed regions in the lookup tables (e.g., BOGO [158]).

While explicit base and bounds systems offer strong security guarantees, they introduce other

complexities. For example, disjointly storing the metadata in a shadow memory [26, 38, 32,

31] requires extra memory accesses to fetch and update the metadata and introduces atomicity

problems for multithreading applications. On the other hand, increasing the pointer width to in-

clude the metadata [29, 35] changes object layouts and breaks compatibility with the rest of the

system (e.g., unprotected libraries). On the contrary, No-FAT performs simple arithmetic com-

putations to derive the allocation bounds and uses a fixed area cost for MAST. Furthermore, the

metadata-less aspect of No-FAT allows it to support multi-threading applications with no false

positives/negatives, which occur in disjoint metadata schemes (e.g., Intel’s MPX [38]). Addition-

ally, the No-FAT’s Buf2Ptr transformation implicitly resolves the intra-allocation memory safety

problem, which is overlooked by recent memory safety techniques [31, 32].

Software-based Implicit Base & Bounds. This class of memory permitlisting solutions avoids the

cost of maintaining the base and bounds information per each allocation or pointer. Instead, they

derive allocation bounds from the pointer itself. For example, guarded pointers divided memory

into powers-of-two segments and encoded the segment size into the pointer’s upper bits [161].

Similarly, baggy bounds [75] restricts allocation sizes to powers-of-two and encodes the binary

logarithm of the allocation size in the pointer’s upper bits. Unlike No-FAT, this design choice

significantly increases the program’s memory footprint due to padding allocations to the nearest

powers-of-two size. Moreover, neither guarded pointers nor baggy bounds offers temporal memory

safety protection.

Compact-pointers [28] tried to avoid the powers-of-two restriction by using a floating-point
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representation to encode allocation bounds in the pointer itself. CHERI-concentrate [35] adopts

a similar approach to compress metadata to 128 bits (instead of 256 bits) by changing a pointer’s

layout and introducing instructions to manipulate them. Due to the pointer layout manipulation,

both techniques neither support temporal memory safety nor maintain binary compatibility.

Similar to No-FAT’s binning allocator, Native-Pointers [156, 41, 76] divides the program’s

virtual address space into several regions of equal size and uses each region to allocate objects

of similar non powers-of-two sizes. As a software-only solution, Native-Pointers suffers from

high performance overheads. Additionally, Native-Pointers does not naturally provide temporal

protection. A follow-up work (EffectiveSan [37]) adds temporal protection (and intra-allocation

memory safety) to Native-Pointers but with expensive per-allocation metadata. Concurrent to my

work, Xu et al. add hardware support for EffectiveSan, dubbed In-Fat [155]. The key idea is to

maintain a per-allocation metadata table and use the pointer’s upper bits to index into this table

for intra-allocation bounds retrieval. In-Fat uses different metadata schemes for different program

objects (e.g., stack, heap, and globals) to reduce the lookup overhead. Unlike No-FAT, In-Fat does

not provide temporal protection as it utilizes the pointer’s upper bits for indexing into the metadata

tables. A key advantage of No-FAT over EffectiveSan and In-Fat is that it does not require any per

pointer/allocation metadata. Thus, it runs with almost native performance, making it best suited to

be an always-on memory safety mitigation.

To summarize, as a memory permitlisting technique, the main advantages of No-FAT are: (1)

having simpler hardware design as it does not require any changes to the memory subsystem,

(2) being faster than prior base & bounds systems as it uses no metadata for spatial/temporal

memory safety, (3) supporting multi-threading applications due to its metadata-less nature, and (4)

being able to catch both adjacent and non-adjacent spatial memory violations. C-5 further reduced

the performance costs of No-FAT and expands its security benefits to include resiliency against

physical attacks.
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8.2 Memory Safety Exploit Mitigation

Instead of enforcing the full memory safety rules, exploitation prevention techniques aim at

enforcing relaxed security rules in order to prevent the attacker from compromising the system

while keeping the associated overheads low. We categorize exploit mitigations into two classes:

shadow stack-based systems and encryption-based solutions. Table 8.3 compares ZeRØ (Chap-

ter 6) and EPI (Chapter 7) versus prior techniques on memory safety exploit mitigation. Unlike

error detectors, which catch memory safety violations when they occur, exploit mitigation tech-

niques prevent the second attack phase, which is overwriting the program assets. Thus, the key

comparison points in Table 8.3 are the assets protected by each system, main operation, hardware

complexity, memory requirements, and performance/energy overheads.

8.2.1 Shadow Stack-Based Techniques

A straightforward solution to guarantee the integrity of return addresses is to adopt a shadow

call stack [165]. Every time a CALL instruction is executed, the return address is pushed to the

regular stack and an additional memory instruction stores a copy of the return address to the shadow

stack. When a function returns, the original return address is restored from the stack and compared

against the shadow return address. If an attacker manipulates the return address while stored on

the stack, a mismatch occurs as the shadow stack is not accessible by the attacker. For example,

Intel’s Control-flow Enforcement Technology (CET) [9] makes its shadow stack inaccessible to

program loads and stores, while CFI CaRE protects the shadow stack using ARM’s TrustZone-M

security extensions [162]. Similar to ZeRØ’s return address integrity, shadow stacks can be applied

to legacy binaries with no compiler modifications. However, shadow stacks add an extra memory

access operation for every function call and return, increasing energy and memory overheads.

Unlike return addresses, code pointers are not accessed in pairs of CALL/RET instructions. As

a result, shadow stack-based defenses require an additional component to protect code pointers

(also known as forward-edge transitions). For example, Intel’s CET adds a new ENDBRANCH
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instruction, which is placed at the entry of each basic block that can be invoked via an indirect

branch. When an indirect forward branch occurs, the following instruction is expected to be an

ENDBRANCH, otherwise an attack is assumed. On the other hand, CFI CaRE instruments bina-

ries in a manner which removes all function calls and indirect branches and replaces them with

dispatch instructions that trap control flow to a branch monitor. The branch monitor verifies the

control-flow transition by comparing it against a pre-determined (i.e., compile time) control flow

graph (CFG) of the program. Trapping into the branch monitor for every indirect call causes CFI

CaRE’s performance overheads to range between 13% and 513%. More importantly, techniques

that rely on static analysis to construct a CFG and enforce it at runtime are ultimately limited by

the precision of the analysis [144]. ZeRØ’s simple instruction set extensions implicitly protect

forward edge transitions by guaranteeing code pointer integrity with zero cost.

Code Pointer Integrity (CPI) [163] and its relaxed variant (Code Pointer Separation) use com-

piler analysis and instrumentation to isolate code pointers into a separate region of memory. The

idea is similar to the concept of shadow stacks, but extends it to include code pointers in globals

and heap objects. Unlike ZeRØ’s inlined metadata, CPI requires extra memory accesses per every

sensitive pointer access to fetch its corresponding metadata. Moreover, prior work showed that

CPI’s safe region can be leaked and then maliciously modified by using data pointer overwrites,

undermining the security guarantees of the solution [166].

8.2.2 Encryption-Based Techniques

To eliminate the memory costs associated with shadow stacks, prior work used encryption to

randomize the pointer layout before storing it to memory. As long as the attackers have no access

to the encryption key, they cannot reliably leak/overwrite the pointer. Early work used XOR-based

encryption to avoid adding performance costs to every pointer load/store operation [167, 168].

As XOR-based encryption is vulnerable to known plaintext attacks, modern work utilizes strong

encryption, such as AES in cryptographic control-flow integrity (CCFI) [46] and QARMA ciphers

in ARM’s PAC [10, 47] and Morpheus [141].As shown in Section 6.7, ZeRØ completely eliminates
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the runtime overheads associated with ARM’s PAC for code and data pointer protections.

Another example of an encryption-based defense is Morpheus [141], an architecture that (i)

displaces code and data pointers in the address space (ii) diversifies the representation of code and

pointers using strong encryption, and (iii) periodically repeats the above steps using a different

displacement and key. Similar to ZeRØ, Morpheus does not protect non-pointer data corruption

and provides low performance overheads. Unlike ZeRØ which is a secret-less solution, Morpheus

must keep two parameters secret until they are changed: displacements for the code and data

regions, and keys for encrypting/decrypting pointers. Additionally, a key limitation of encryption-

based techniques is the additional energy costs per pointer operation. One AES operation can cost

up to 48.02pJ/bit (or 3073.28pJ per 64-bit encryption) at 1 MHz while one QARMA operation

costs 7.78pJ/bit (or 497.92pJ per 64-bit encryption) [169], which is at least an order of magnitude

higher than ZeRØ’s 2-bit metadata read and check in the L1 data cache (energy consumption of L1

data access ranges between 64 and 105pJ/Byte, i.e., 16 and 26.25pJ per two bits [170]).

In short, as an exploit mitigation technique, the key advantages of ZeRØ are: (1) requiring

no extra memory accesses for verifying return address integrity (unlike the shadow stack-based

techniques shown in the first half of Table 8.3), (2) eliminating the energy and runtime overheads

associated with using encryption for protecting code/data pointers, and (3) having much lower per-

formance and memory overheads compared to full memory safety techniques. EPI, on the other

hand, enforces pointer integrity rules on 32-bit architectures by leveraging common software prop-

erties for harvesting different types of code- and data-pointer bits. Thus, EPI can be efficiently

applied to embedded systems, which are currently dominated by 32-bit processors [49, 48].
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Part VI

Conclusion
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Chapter 9: Conclusion

Despite the massive efforts undertaken by commercial vendors and academic researchers in the

past three decades, the memory unsafety problem in C and C++ remains unsolved. The first chapter

of this thesis explained why memory safety is still a major concern nowadays. Reasons include

(1) the immaturity of memory-safe languages compared to C/C++ in addition to the vast amount

of legacy code, (2) the limited capabilities of pre-deployment testing, and (3) the impracticality

of current hardware-assisted memory safety mechanisms. In order to overcome the limitations of

prior techniques (e.g., having complex metadata, lacking binary compatibility, offering incomplete

protection, and being vulnerable to side-channels), I took an entirely different approach. Instead of

adding more features to a program in order to make it memory safe, this thesis explored leveraging

common software trends and existent program features and turning them into security primitives

by rethinking computer microarchitectures. This way it is possible to efficiently circumvent the

problems of traditional memory safety solutions for C and C++ without introducing performance

or memory overheads.

This thesis advanced the state of the art in three different directions for mitigating memory

safety violations—namely memory blocklisting, memory permitlisting, and exploit mitigation.

9.0.1 Advancing Memory Blocklisting

I presented Califorms (Chapter 3), a novel approach that uses dead spaces in program memory

to store memory blocklisting metadata without increasing the program’s memory footprint. Cal-

iforms changes the cache line layout to allow for encoding the blocklisting metadata within the

program data itself at the byte granularity. The compressed layout of Califorms avoids the over-

heads associated with fetching the metadata from disjoint memory locations, significantly reduc-

ing the costs of enforcing fine-grained memory safety. The benefits of Califorms go well beyond
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memory safety. For example, the in-place metadata can be used for marking program secrets and

hence throttling speculative execution when a program secret is transiently accessed. This way,

it is feasible to prevent the attackers from leaking a program’s secrets without incurring the large

overheads of traditional Spectre mitigations.

9.0.2 Advancing Memory Permitlisting

I proposed No-FAT (Chapter 4), a novel technique that leverages current technological trends

in software development, namely the usage of binning memory allocators, to effectively enforce

memory safety. No-FAT made the novel contribution of making the memory allocation size (e.g.,

malloc size) an architectural feature so that the hardware can implicitly derive allocations bounds

information (i.e., the base address and size) from the memory address itself without relying on

expensive metadata. This way No-FAT achieves several benefits, such as (1) providing an effi-

cient always-on memory safety defense, (2) improving the fuzz testing bandwidth by up to 10x

compared to ASan, and (3) improving resilience to Spectre-V1 attacks. My C-5 work (Chapter 5)

further optimized No-FAT and enhanced its security guarantees by increasing its temporal safety

entropy and integrating data encryption, making C-5 an ideal security solution for thwarting soft-

ware and physical-based attacks. Furthermore, while this thesis has focused on the security benefits

of No-FAT, the concept of exposing the allocation sizes to the hardware can enable performance

benefits as well by enhancing the predictability of memory prefetchers and DRAM controllers.

9.0.3 Advancing Exploit Mitigation

I explained ZeRØ (Chapter 6), a novel hardware primitive that enforces pointer integrity with

no runtime costs. ZeRØ exposes the different data types that are available during program com-

pilation (e.g., regular data, code pointers, and data pointers) to the hardware to protect valuable

program assets from traditional memory safety vulnerabilities. Furthermore, ZeRØ leverages the

currently unused upper pointer bits on 64-bit architectures for encoding the necessary metadata.

While the concept of encoding the security metadata by changing the cache line format was also
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used in Califorms (Chapter 3), ZeRØ relied on a simpler encoding that reduces the complexity of

the L1-to-L2 transformation modules. Moreover, Califorms’ metadata was used to deny accesses

to dead bytes whereas ZeRØ’s metadata was used to enforce access control rules on neighbor-

ing data (i.e., the rest of bytes in the code/data pointer). As security is a full system property,

it is mandatory to protect all system components, including wimpy devices and micro-controllers.

Thus, to extend ZeRØ’s protection to non-64-bit systems, I proposed EPI (Chapter 7), which offers

the same level of exploit mitigation to resource constrained devices. EPI uses several optimizations

to harvest unused bits on 32-bit RISC processors so that they can be repurposed for security.

Finally, I envision that the way to put an end to the memory safety problem is to (1) always use

memory-safe languages for developing new software and (2) add the hardware extensions proposed

in this thesis to future processors in order to secure legacy C and C++ code.
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