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Topics 

•  Power/Energy Basics 

•  Reducing Standby Power 

•  Reducing Dynamic Power 

•  Low Power Design Methodology 

•  Power Delivery Architecture 
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Importance of Power and Energy 

•  Power 
•  Power is dissipated as heat; hot devices need cooling 

•  Air cooling is $5, vs. liquid nitrogen gamer cooling is $200 

•  At the data center level, cooling is ~ 30% op costs 

 

•  Energy 
•  Battery life and energy bills matter 

•  Ultimately energy/op determines what is computable 

•  Can you simulate the brain today? 
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Measuring What Matters 

•  Performance metric: Time delay to perform a task (s) 

•  Efficiency metric: Effort to perform a task (Joule) 

•  Power metric: Energy/Time (Watt) 

 

•  Power*Delay: Efficiency to perform a task (Joule) 
•  Often used to characterize efficiency at a technology node 

 

•  Energy*Delay: Power * Delay * Delay (Joule s) 
•  Combined performance and energy metric 

•  Figure of merit of design style 
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Where is Power Dissipated in CMOS? 

•  Dynamic (Active) Power 
•  Charging and discharging capacitors 

•  Temporary glitches (dynamic hazards) 

•  Short-circuit (pull-up and pull-down ON during transition) 

 

•  Static (Leakage) Power 
•  Transistors are imperfect switches 

•  Drain leakage 

•  Junction leakage (gate induced drain leakage) 

•  Gate leakage (tunneling currents through gate oxide) 
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Active Power and Heat (1) 

•  To charge a capacitance C by applying a voltage V, 
an amount of energy equal to CV2 is taken from the 
supply. 

•  Half of the energy is stored in the capacitor, and the 
other half is dissipated as heat in the resistance of 
charging the network. 

•  During discharge the stored energy is turned into 
heat as well. 
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Active Power and Heat (2) 

•  One half of the power from the supply is consumed in 
the pull-up network and one half is stored in Cload 

•  Charge in Cload  is dumped during the 1->0 transition 
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Active Power Formula 

•  Power  = Energy/transition * Transition Rate 
 

  Cload * (Vdd)2  *  f 0->1 

 

•  Power dissipation is data dependent – depends on 
the probability of switching from 0 -> 1 (activity 
factor): Hard to estimate, varies with gate  

•  2-input NAND/NOR = 3/16 

•  2-input XOR gate = 1/4 

•  Switched capacitance  
•  Cswitched = P0->1 *  Cload 

•  Also known as switching activity load 
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Glitching in Static CMOS 

•  Uneven arrival times of input signals due to 
unbalanced delay paths 

•  Intermediate charging and discharging of capacitors 

•  Fix: Build balanced paths 
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Short-circuit Currents 

•  For short periods of time Pull-up and Pull-down 
circuits are simultaneously on 
•  Transition from 0->1 has a slope in real life 

•  Causes current to flow from Vdd to GND 

•  Proportional to switching activity 
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Static (Leakage) Power 

•  Drain Leakage 
•  Main cause of concern 

•  Diffusion current in sub-threshold region 

•  Threshold voltage needs to be lowered with supply voltage is 
lowered 

•  Pleak  = Vdd * Ileak 

•  Junction Leakage 
•  Gate-Induced drain leakage 

 

•  Gate Leakage 
•  Tunneling currents through thin oxide 
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Summary: Power Dissipation Sources 

•  Switching activity * (load + short circuit) capacitance 
* voltage swing * voltage*frequency + (leakage 
current * voltage) 
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Topics 

•  Power/Energy Basics 

•  Reducing Standby Power 

•  Reducing Dynamic Power 

•  Low Power Design Methodology 

•  Modern Microprocessor Power Supply 
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Standby Power 

•  Power consumed with no computational activity 
•  Many apps are “bursty” e.g., cell phone usage 

•  Power dissipation in standby should be absolutely minimum 

•  Reducing dynamic power in standby: Clock gating 
•  Turn off clocks to idle modules 

 

•  Reducing static power in standby: Power gating 
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Clock Gating 

•  Motivation: Clocks consume a significant fraction of 
the total power (~ 30% for microprocessors) 
•  Even if the circuit is idle the flip-flops load the clock which 

consumes power 

•  Clock gating  
1.  Turn off clocks to idle modules   

2.  Ensure inputs to idle logic are stable 

•  Implementation: AND the clock signal with an Enable 

 

RECOMMENTATION: Include the enable signal, but do 
not manually AND the clock and enable signals. 
(Clocking becomes difficult). Let  the tools handle this. 
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Advanced Standby (sleep) Modes 

•  Gate the clock to idle module 
•  Some leaves in the clock tree are inactive 

•  Disable the clock distribution network 
•  All leaves and wires are inactive but the root (clk generator) is 

still active 

•  Turn off the clock driver and the phase locked loops 
that generate the clock signal 

 

•  Turn off the clock completely 
•  Only the wakeup circuit is active 
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Leakage Challenge 

•  With clock gating, leakage power becomes the 
dominant standby power source 
⇒ Leakage should be minimized 

•  Challenge: how to disable a unit most effectively 
given that the transistors are no ideal switches. 
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Power Gating & Supply Voltage Shutoff 

•  Power gating 
•  Disconnect modules from the supply rail(s) during standby 

•  How to do this when we do not have a perfect switch?  

•  Use a different Vt transistor for putting the circuits to sleep 
•  Called MT-CMOS (multi-threshold) 

•  Can impact circuit operation time (charging and discharging) 

•  Also need to preserve state: usually only logic is gated 

•  But, ideally want to turn off the voltage to zero 
•  Supply voltage should be ramped down to zero 

•  Need a controllable voltage regulator 

•  Challenge: integrating voltage regulators on die 

•  Con: Slow activation time after power-down 

•  Possibly huge gains 
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Topics 

•  Power/Energy Basics 

•  Reducing Standby Power 

•  Reducing Dynamic Power 

•  Low Power Design Methodology 

•  Power Delivery Architecture 
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Runtime Optimizations for Power 

•  Power dissipation is a strong function of activity 

•  Activity varies over time (e.g., web page browsing) 

•  Choosing one operational point is sub-optimal 

•  Changing the operational point:What can we change? 
•  Vdd: Supply voltage 

•  Vth: Threshold voltage (not considered in this class) 

•  f : Frequency 

Two techniques: 

•  Dynamic Frequency Scaling 

•  Dynamic Voltage and Frequency Scaling 
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Dynamic Frequency Scaling 

•  Dial down frequency for slow tasks 

•  Only reduces power – leaves energy/op unchanged 
⇒ Battery life does not change 
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Dynamic Voltage & Frequency Scaling 

•  Vary Vdd and F to based on throughput “ask” 

•  Minimizes energy and power 

•  Relationship between Vdd and F 
•  F = (v – vt)/(1 – vt)α * (1/v) 

•  For alpha = 2 and Vdd >> Vth; Frequency and Voltage are linear 

•  Cubic reductions when speed is reduced! 

•  Most Microprocessors switch between discrete 
preselected voltage/frequencies 
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Challenges 

•  Estimating workloads (architectural prediction) 

•  Multiple voltage domain generation and supply 
•  Voltage regulator efficiency, integration on-die 

•  Reliable distribution 

•  Interface circuits between voltage domains 

•  Switching between power modes 

•  How to convert a “request for perf” to Voltage/freq? 

•  Validation: Need to verify at every voltage point? 
•  Functionality, Timing, Integrity?  

•  Luckily does not matter for Static CMOS; think inverters 

•  No non-linearities 

•  RECOMMENDATION: Use Static CMOS 
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Topics 

•  Power/Energy Basics 

•  Reducing Standby Power 

•  Reducing Dynamic Power 

•  Low Power Design Methodology 

•  Power Delivery Architecture 
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Low Power Methodology 

•  Motivation minimize power, time and effort 

 

Design 

1.  Explore architecture and algorithms for pwr. Eff. 

2.  Map functions to s/w or h/w blocks for pwr. Eff. 

3.  Choose voltages and frequencies 

4.  Evaluate power consumption for different ops 

5.  Generate budgets for power/perf/area 

6.  Implement RTL 

7.  Validate power reported against power budget 

8.  Iterate until convergence  
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Topics 

•  Power/Energy Basics 

•  Reducing Standby Power 

•  Reducing Dynamic Power 

•  Low Power Design Methodology 

•  Power Delivery Architecture 
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Power Delivery Architecture 
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Decoupling Caps 
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Motherboard Cost Breakdown 
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Typical Power Mgmt. Controller 
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Outlook 

•  Scaling Trends 
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Possibilities: Analog and Digital Accelerators 


