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Abstract—Due to the end of supply voltage scaling and the
increasing percentage of dark silicon in modern integrated
circuits, researchers are looking for new scalable ways to
get useful computation from existing silicon technology. In
this paper we present a reconfigurable analog accelerator
for solving systems of linear equations. Commonly perceived
downsides of analog computing, such as low precision and
accuracy, limited problem sizes, and difficulty in programming
are all compensated for using methods we discuss. Based on
a prototyped analog accelerator chip we compare the perfor-
mance and energy consumption of the analog solver against an
efficient digital algorithm running on a CPU, and find that the
analog accelerator approach may be an order of magnitude
faster and provide one third energy savings, depending on the
accelerator design. Due to the speed and efficiency of linear
algebra algorithms running on digital computers, an analog
accelerator that matches digital performance needs a large
silicon footprint. Finally, we conclude that problem classes
outside of systems of linear equations may hold more promise
for analog acceleration.

Keywords-accelerator architectures; analog-digital integrated
circuits; analog computers; linear algebra.

I. INTRODUCTION

In anticipation of the post-Moore’s-law era of computing,
there has been a scramble to either discover devices which
can replace CMOS transistors, or to otherwise find ways
to harness performance and efficiency from existing silicon
technologies. Analog computing has been touted as one ap-
proach to address these challenges without the need for novel
device technologies. For those familiar with the principles
and history of analog computing, the expectations regarding
analog computing’s promise range from extremely positive
to extremely negative.

Analog computing has many alluring properties: broadly,
analog computing abandons digital representation of num-
bers, and also abandons step-by-step operation typical in
modern computing. Much of research throughout computer
architecture is in the line of breaking historical abstractions
which hold back performance and efficiency of comput-
ers. Among the remaining abstractions yet to be broken
are binary representation and discrete-time operation. In
this regard analog computing may unleash untapped uses
for existing CMOS technology. Arguments against analog
computing include hardware design difficulty, low precision,

limited scalability, programming difficulty, and even low
performance improvements.

Analog computing effectively solves nonlinear ordinary
differential equations, which frequently appear in cyber-
physical systems workloads, with higher performance and
efficiency compared to digital systems [1]–[4]. The analog,
continuous-time output of analog computing is especially
suited for embedded systems applications where actuators
can use such results directly.

This work explores using analog computing in commodity
mainstream computing systems. The main difference be-
tween the embedded application and this work is that, here
we strive to use analog computing for solving a class of
problems typically handled in digital computing (specifi-
cally, systems of linear equations as opposed to differential
equations). Furthermore, we consider how analog computing
can be leveraged if the outputs cannot be directly fed to
actuators and have to be processed further digitally.

Towards this goal we present an architecture that al-
lows analog computing results to be safely used with con-
ventional architectures. The architecture is envisioned as
an accelerator-style architecture with the digital processor
acting as a host and the analog accelerator acting as a
peripheral. Our architecture provides the digital host the
ability to configure, control, and capture data from an
analog accelerator, and to be able to react when problems
occur in the course of analog computation. The choice of
problem that we solve, system of linear equations, sets an
extremely high bar for analog computing to challenge as
the importance of this class of problems has led to highly
efficient techniques in modern digital computing.

This work is a study of analog computing in the context of
modern mainstream computer architecture. Using physical
timing, power, and area measurements given by Guo et.
al. [3], [4], we build a model that predicts the properties of
larger scale analog accelerators. The perceived downsides
of analog computing, such as low precision, and inability
to sample intermediate results at high frequency, can be
overcome. For instance, we find that precision of the results
obtained from analog computing can be increased arbitrarily
irrespective of the resolution of the analog-to-digital con-
verter, and that there is also a way to divide large workloads
into pieces that enables solution on limited analog hardware.



Data: time, steps, a, b, uinit

Result: evolution of u over time in steps
stepSize← time÷ steps;
u← uinit;
for step← 0; step < steps; step← step+ 1 do

δ ← a× u+ b;
u← u+ stepSize× δ;

end
Algorithm 1: Euler’s method for Equation 1

As such programmability challenges can be overcome with
proper support for exceptions and the ability to decompose
and map problems.

On performance and energy metrics, we find that with
high analog bandwidth, analog acceleration can potentially
have 10× faster solution time and 33% lower energy con-
sumption compared to a digital general-purpose processor.
However, our analysis finds that high bandwidth in analog
computers comes with high area cost, severely limiting the
problem sizes that can be solved on an analog accelerator at
a time. This ultimately limits the benefit of analog computing
to this class of problems.

While our findings do not make a strong case for us-
ing analog accelerators for this important workload, our
experience from using analog circuitry to accelerate digital
computation provides guidance for future analog workloads
and architectures.

The rest of the paper is organized as follows: Section II
gives background on analog computation and the challenges
that must be overcome in analog acceleration. Section III-A
and III-B presents the microarchitecture and architecture
for an analog accelerator. Section IV discusses problems
and algorithms in scientific computing and how they can
be solved using analog acceleration. Section V compares
analog and digital computing solving sparse, structured grid
problems. We analyze our empirical results and review
perceptions about analog computing in Section VI. Sec-
tion VII discusses related directions in analog computing.
Section VIII concludes.

II. ANALOG COMPUTING BACKGROUND

This section is a tutorial on analog computation. Analog
computing works by solving systems of ordinary differential
equations (ODEs). We can also solve other types of problems
by transforming them into ODEs. We discuss the main
challenges that need to be overcome to use an analog ac-
celerator in conjunction with a digital computer, on modern
workloads.

A. Solutions to ODEs: Digital and Analog

Analog computers solve ODEs, which state the time
derivatives of variables as functions of the variables. A
simple linear first-order ODE has the form:

du

dt
= au+ b (1)

du
dt

u

a

b

Figure 1. Mapping the ODE in Equation 1 to an analog accelerator. At the
core an analog computing circuit is an integrator (the block labeled ‘

∫
’),

which stores and gives as output a variable u, which is replicated to two
branches using a fanout block. On one branch u is read out by an ADC.
On the other branch u is multiplied with a coefficient a and added with a
constant value b generated by a DAC. The function is fed back to the input
of the integrator as du

dt
. The integrator charges to uinit and is released.

The time-varying waveform for the variable is the ODE solution.

u is the time-varying variable we are solving for, a is a
known coefficient, and b is a known constant bias. ODEs are
specified with known initial conditions such as u(0) = uinit.

One class of numerical algorithms for solving ODEs
are explicit methods, such as Euler’s method shown in
Algorithm 1. In explicit methods the time derivative du

dt
is calculated for the present time instance, multiplied by a
small time step, and added to u.

Analog computing does the same but in continuous time,
using an infinitesimally small time period. Analog computers
set up a datapath composed of units that perform multiplica-
tion, summation, and integration, as shown in Figure 1. The
chip starts computation by releasing the integrator, allowing
its output u to deviate from its initial value. The variable u
can be the analog result of computation, or can be converted
to digital by an analog-to-digital converter. Later, we will
show a circuit for a system of ODEs solving for multiple
variables at once.

B. Challenges in Analog Acceleration

While analog computing works well as an ODE solver for
embedded systems, it is less clear how analog acceleration
can be used in digital computing. Here we discuss the chal-
lenges in using analog acceleration in digital architectures.

Analog-to-digital conversion limits precision: In our
example the time-varying variable u represents useful com-
putation results that can directly control motors and actuators
in embedded systems. An analog accelerator must convert
the output to high precision digital numbers for use in the
digital host. However, there is a trade-off between ADC
sampling frequency and resolution, so in this work we use
only the steady-state result of analog computing, which is
easier to sample at high resolution. The highest precision
ADCs still fall short of the precision in floating point
numbers. To mitigate this, we discuss a technique to build
up the precision of results in Section IV-A.

High hardware cost limits scalability: A physical in-
tegrator block is needed for every variable in the ODE.
Furthermore, the analog datapath is fixed during computa-
tion and operates in continuous time, so there is no way



to dynamically load variables from and store variables to
main memory. Modern workloads routinely need thousands
of integrators, exceeding area constraints of realistic analog
accelerators. Large-scale problems must be decomposed into
subproblems that can be solved in the analog accelerator.
We discuss how sparse systems of linear equations can be
decomposed in Section IV-B.

Different problems need significant reprogramming:
Analog computing literature of the 1960s abounds with
application-specific techniques for simulation and engineer-
ing design. However, digital computing has advanced signifi-
cantly since the decline of analog computing, and now offers
more flexibility and reliability, even if analog computing
techniques offer high performance and efficiency. For analog
acceleration to succeed, it must be able to accelerate a
core kernel which is used extensively, without significant
reprogramming to support new problems.

In order to address these architectural challenges, in
this work we explore using analog computing to support
solving sparse linear equations, which commonly arise in
solving differential equations. We use the prototype analog
accelerator presented in [3], [4] to validate the approach,
and to serve as a basis for quantifying the performance,
area cost, and energy efficiency of analog accelerators. We
emphasize that this analog accelerator is designed primarily
as an ODE solver, and is therefore not representative of an
analog accelerator designed as a system of linear equations
solver.

III. A PROTOTYPE ANALOG ACCELERATOR

In this section we describe the microarchitecture of our
analog accelerator and its hardware/software interface.

A. Analog Accelerator: Microarchitecture

Our research group recently prototyped an analog chip
in 65nm CMOS technology [3], [4], shown in Figures 2
and 3. The accelerator consists of analog functional units
connected with a crossbar. Each chip is organized as four
macroblocks, each macroblock consisting of one analog
input from off-chip, two multipliers, one integrator, two
current-copying fanout blocks, and one analog output to off-
chip. Two macroblocks share use of an 8-bit ADC, an 8-
bit DAC, and a nonlinear function lookup table (256-deep,
8-bit continuous-time SRAM [5]). The chip also includes
an interface to receive commands from the main digital
processor. In the prototype these commands are received
over an interface implementing an SPI protocol.

In our analog accelerator, electrical currents represent
variables. Fanout current mirrors allow copying variables by
replicating values onto different branches. To sum variables,
currents are added together by joining branches. Eight mul-
tipliers allow variable-variable and constant-variable multi-
plication. The variables can also be subjected to arbitrary

Figure 2. Chip layout diagram reproduced from [3], [4] showing rows
of analog, mixed-signal, and digital components, along with crossbar
interconnect. Each of the four rows of analog components are logically
organized as a macroblock. “CT” refers to continuous time. SRAMs are
used as lookup tables for nonlinear functions.

Figure 3. Die photo reproduced from [3], [4] of analog computer chip
fabricated in 65 nm showing major components. “VGAs” are variable-gain
amplifiers. Die area is 3.8mm2.

nonlinear functions, such as sine, signum, and sigmoid with
the SRAM lookup table.

Overflow detection is done using analog voltage compara-
tors to detect values exceeding the safe range. We compare a
reference value (usually the maximum or minimum allowed
values) to the signal carrying the variable. When a value
exceeds the safe range an exception bit is set in a latch
whose value can be read out during exception checking.

B. Analog Accelerator: Architecture

The analog accelerator acts as a peripheral to a digital
host processor, which provides a configuration for the analog
accelerator, performs calibration, controls computation, and
reads out the output values. Table I summarizes the essential
system calls and corresponding instructions for the analog



Instruction
type

Instruction Parameters Description

Control init Find calibration codes for all function units

Config setConn source analog interface,
destination analog interface Create an analog current connection between the analog interfaces of two units

Config setIntInitial pointer to integrator,
initial condition Set integrator to have ODE initial condition value represented by the float value

Config setMulGain pointer to multiplier,
gain Set multiplier to have gain represented by the float value

Config setFunction pointer to lookup table,
pointer to nonlinear function Set lookup table to have nonlinear function represented by function pointer

Config setDacConstant pointer to DAC,
constant bias Set DAC to generate constant additive bias value represented by the float value

Config setTimeout timeout clock cycles Set timer so analog computation, once started, stops after predetermined amount of time
Config cfgCommit Finish configuration and write any new configuration changes to chip registers
Control execStart Start analog computation by letting integrators deviate from their initial condition value
Control execStop Stop analog computation by holding integrators at their present value
Data input setAnaInputEn pointer to analog input Open up chip’s analog input channel, so outside stimulus can alter computation results
Data input writeParallel unsigned char data Write to chip’s digital input a value, which can be used by DAC or lookup table
Data output readSerial character array Read from chip to character pointer the outputs of ADCs

Data output analogAvg pointer to ADC,
number of samples Record the digital output value of an ADC from multiple samples

Exception readExp character array Read from chip to character pointer the exception vector indicating which analog units
exceeded their operating range

Table I
ANALOG ACCELERATOR INSTRUCTION SET ARCHITECTURE

accelerator; we walk through how to use the instructions in
the steps below.

Calibration: Before using the analog accelerator, the
analog circuitry must first be calibrated. Numerical errors
in analog computing come from three types non-ideal be-
haviors.

1) offset bias: a constant additive shift in values,
2) gain error: an error in how much values are multiplied,
3) nonlinearity: the possibility that the DC transfer char-

acteristic has a non-constant slope.
The effect of these non-ideal behaviors varies between
function units due to process variations. We use small DACs
in each block to compensate for the first two sources of
error by shifting signals and adjusting gains. These DACs
are controlled by registers, whose contents are set during
calibration by the digital host. The settings vary across
different copies of the analog accelerator chip, but remain
constant during accelerator operation and between solving
different problems. When an analog unit is calibrated, its
inputs and outputs are connected to DACs and ADCs; then,
the digital processor uses binary search to find the settings
that give the most ideal behavior. The third source of error,
nonlinearity, is kept under control via overflow exception
detection, which we discuss later.

Configuration: Before computation is offloaded to the ac-
celerator, the programmer maps out the connections between
analog units, along with settings of the units, and sends it to
the analog accelerator using the configuration instructions.
This configuration bitstream is written to digital registers on
the analog accelerator. These digital registers contain only

static configuration, akin to the program, and no dynamic
computational data.

Computation: The architecture interface has instructions
which control the start and stop of integration, which signify
the beginning and end of analog computation.

Exceptions: A key aspect of the analog accelerator com-
pared to prior analog computing designs is its ability to
report exceptions. After computation is done, the chip can
report if any exceptions occurred during analog computation.
All analog hardware designs have a range of inputs where
the output is linearly related to the input. Exceeding this
range leads to clipping of the output, similar to overflow of
digital number representations. The integrators and ADCs
detect when their inputs exceed the linear input range, and
these exceptions are reported to the digital host. At the same
time, the host also observes if the dynamic range is not
fully used, which may result in low precision. When such
exceptions occur the original problem is scaled to fit in the
dynamic range of the analog accelerator and computation is
reattempted.

IV. ANALOG ACCELERATION FOR LINEAR ALGEBRA

In this section we discuss systems of linear equations,
and how digital and analog computers solve them. Then, we
discuss how systems of linear equations are used throughout
scientific computing.

A. Systems of Linear Equations

Solving systems of linear equations entails finding an
unknown solution vector u that satisfies Au = b, where A
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Figure 4. Taxonomy of some classes of problems in scientific compu-
tation. Physical phenomena are described as partial differential equations.
PDEs are solved by applying appropriate space and time discretizations,
converting the continuous problem format into discrete node variables,
interrelated by systems of algebraic equations. The dark boxes show steps to
convert or solve problems. One way analog acceleration supports scientific
computation is by acting as explicit solvers for systems of ODEs [3], [4].
This paper focuses on using analog computing as an iterative solver for
sparse linear equations.

is a matrix of known coefficients and b is a vector of known
constant biases. Linear algebra algorithms that solve these
problems include sparse matrix, dense matrix, structured,
and unstructured grid algorithms, and are the bulk of the
Berkeley Dwarfs taxonomy [6]. As shown in the bottom
layer of Figure 4, scientific computation workloads mostly
solve sparse linear algebra problems, where variables are
loosely interconnected. Machine learning and optimization
problems frequently solve dense linear algebra problems,
where variables have all-to-all connectivity. Performance and
efficiency gains in solving linear algebra problems would be
highly beneficial.

Linear algebra techniques are categorized as direct and
iterative solvers. Direct solvers focus on factoring the matrix,
resulting in algorithms that assign correct values to the
solution one element at a time. Notable direct solvers include
Cholesky decomposition and Gaussian elimination. The lit-
erature on analog computing points out that analog comput-
ers are not suitable for direct linear algebra approaches [7].
On the other hand, iterative solvers start at an initial guess
uinit; the entire solution evolves step-by-step toward the
correct answer according to an algorithm until the solution
stops changing and is accurate at ufinal. Even if an iterative
solver is stopped short of full convergence, the intermediate
solution still approximately satisfies the original system of
linear equations. Notable iterative solvers include conjugate
gradients (CG) and steepest gradient descent.

In analog computing, we can imagine the iterative solver

du0

dt

du1

dt
u1

u0

-a10

-a00

-a01

-a11

b1

b0

Figure 5. Solving a system of two linear equations with two unknowns
in an analog accelerator.

taking smaller steps more frequently, until it is taking
infinitesimally small steps in continuous time. In continuous-
time gradient descent, the time derivative of the solution
vector is set to be the gradient pointing in the direction
of the correct answer, resulting in the system of ODEs:
du
dt = b−Au(t). For example, a simple two-variable system
of linear equations would be solved using the system of
ODEs:

d

dt

[
u0(t)
u1(t)

]
=

[
b0
b1

]
−
[
a00 a01
a10 a11

] [
u0(t)
u1(t)

]
(2)

This ODE can be mapped to analog hardware as shown
in Figure 5. As u(t) evolves, the derivative approaches
zero so long as A is a positive definite matrix. When the
derivative becomes zero, the steady state value of u(t)
satisfies the system of linear equations, and can be read out
using ADCs. These techniques were used in early analog
computers [8]–[14], and have been recently explored in
small scale experiments with analog computation [15]–[18].

In contrast to solving time-varying ODEs, here the analog
accelerator’s ADCs only have to sample the value of the
stable output ufinal, which means that sampling frequency
is not a concern. If even higher precision is needed, more
significant digits can can be obtained from the analog result
by solving more times, each time setting b to be the residual,
and scaling the problem up as necessary to fully use the
dynamic range of the analog hardware. This procedure
is shown in Algorithm 2. The longer sampling period,
combined with Algorithm 2, mitigates concerns regarding
ADC precision described in Section II-B.

Finally we note that imprecise solutions from analog
acceleration are still useful in multigrid partial differential
equation solvers. In multigrid PDE solvers, the overall
PDE is converted to several linear algebra problems with



Data: A, b
Result: uprecise with high precision
uprecise ← 0;
residual← b;
while ||residual|| > tolerance do

analog accelerator solves Aufinal = residual;
uprecise ← uprecise + ufinal;
residual← b−Auprecise;

end
Algorithm 2: Building precision in analog result

Figure 6. An example elliptic PDE. The continuously varying field has
been discretized into node variables which are solved using linear algebra.

varying spatial resolution. Lower-resolution subproblems
are quickly solved and fed to high-resolution subproblems,
aiding the high-resolution problem to converge faster. The
linear algebra subproblems can be solved approximately.
Overall accuracy of the solution is guaranteed by repeating
the multigrid algorithm. Because perfect convergence is not
required, less stable, inaccurate, low precision techniques,
such as analog acceleration, may also be used to support
multigrid.

B. Linear Algebra for Elliptic Partial Differential Equations

As shown in Figure 4, elliptic partial differential equations
are a fundamental class of PDEs. This class of problems
is important in physical field simulations, such as fluid
dynamics and solid mechanics. While such problems are not
intrinsically difficult to solve, they dominate scientific com-
putation workloads, and can take significant of computing
power to solve when the problems have high dimensionality,
high spatial resolution, and when they must be solved to high
accuracy and precision.

The 2D Poisson elliptic PDE has the form ∂2u
∂x2 + ∂2u

∂y2 =
b(x, y). The continuous spatial partial derivatives indicate
that u(x, y) varies continuously over 2D space. The problem
is discretized into L×L grid points, converting the contin-
uous field into node variables. For example, using a 3 × 3
grid on the unit square:

u0 u1 u2
u3 u4 u5
u6 u7 u8

would result in nine node variables in the vector u which

are interrelated according to the system of linear equations:

Au = b

A =
1
1
32



4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4


u = [u0, u1, . . . , u8]

>,b = [b0, b1, . . . , b8]
>

The coefficients in the matrix are a result of using a second-
order central finite difference stencil. The coefficient value
of 9 in front of A emerges because we discretized the 2D
unit square into thirds on each side. Notice A is sparse,
meaning that most coefficients are zero, a result from the
fact cells are only related to itself, and to its four neighbors.

In practice, physics simulations using PDEs have millions
of grid points in the vector u, far larger than the problem
sizes that can fit in an analog accelerator. Both digital
and analog techniques would subdivide the large grid size
problem into smaller linear problems. For example, the 3×3
2D problem can be solved as a set of three independent 1D
subproblems:

Asus = bs

As =
1
1
h2

 4 −1 0
−1 4 −1
0 −1 4

 ,us =

us0us1
us2

 ,bs =

bs0bs1
bs2

 ,
This decomposition temporarily ignores the coefficients that
connect the 1D problems into a 2D problem. The subprob-
lems can be solved separately on multiple accelerators, or
multiple runs of the same accelerator.

Solving the system of equations as block matrices only
ensures that the solution vector us is correct for the subprob-
lem. To get overall convergence across the entire problem,
the set of subproblems would be solved several times,
using a larger iteration across the subproblems. Typically,
the larger iteration is an iterative method operating on
vectors, and do not have as strong convergence properties
as iterative methods on individual numbers. Therefore, it is
still desirable to ensure the block matrices are large, so that
more of the problem is solved using the efficient lower level
solver.

Using this domain decomposition technique, in conjunc-
tion to accuracy boosting and a multigrid algorithm we
can use the analog accelerator to calculate an elliptic PDE
solution as shown in Figure 6. These divide-and-conquer and
approximate computing techniques in solving PDEs miti-
gates concerns regarding precision and scalability described
in Section II-B.



V. METHODOLOGY AND EVALUATION

In this section we compare analog and digital computa-
tion in terms of performance, hardware area, and energy
consumption, using 2D Poisson PDEs as an example prob-
lem. We take into account accuracy, problem size, and the
bandwidth of the analog accelerator design.

Accuracy: We compare the analog accelerator and the
digital algorithm running on a CPU at equal solution accu-
racy, measured as the error in the solution. This is done by
stopping the numerical iteration in the digital version well
short of machine epsilon provided by high-precision digital
floating point numbers. The stopping criterion is when no
element in the output vector u changes by more than 1/256
of full scale. This is equivalent to the amount of precision
in the output vector that can be obtained from one run of
the analog accelerator.

Problem size: We vary the total number of grid points in
the problem N = L2, where L is the number of increments
on one side. We compare analog and digital solutions for
grids of up to 2048 points. The relatively small problem size
is due to the lack of dense data storage for analog variables
in analog accelerators. As a case in point, the fabricated
prototype chip has only four integrators to hold variables.
Nonetheless, the chip establishes confidence in using the
analog blocks for computation. Using the validated schemat-
ics we build circuit simulations in Cadence R© Virtuoso R©,
in order to extrapolate the area and energy consumption of
larger scale analog accelerators.

Bandwidth: The most important parameter in the analog
accelerator design is the analog components’ bandwidth.
Increasing the bandwidth of the analog circuit design propor-
tionally decreases the solution time, but also increases area
and energy consumption. We do a design space exploration
of analog accelerators with different bandwidths.

A. Analog and Digital Computation Time

We compare the time it takes for the analog accelerator
and a digital algorithm to solve a 2D Poisson PDE.

In digital computing, the PDE can be solved using many
linear algebra algorithms. Figure 7 establishes that conjugate
gradients (CG) has the best convergence rate among classical
iterative methods. The CG algorithm is implemented using
stencils to capture the sparse structure of the matrix, without
having to allocate memory for the full matrix, and avoiding
iterating through the rows and columns of the matrix. We
measure the computation time on single threaded code,
running on an Intel Xeon X5550, clocked at 2.67 GHz. The
problem sizes we tackle are smaller than 2048 total grid
points, so the program data is entirely resident in the first
level cache.

Figure 8 shows that the prototype analog design would
have parity in terms of computing speed once it reaches a
size of roughly 650 integrators. In Section VI-D we give a
theoretical model why the analog computer’s solution time

1.00E-17
1.00E-15
1.00E-13
1.00E-11
1.00E-09
1.00E-07
1.00E-05
1.00E-03
1.00E-01
1.00E+01
1.00E+03

0 5 10 15 20 25 30 35

L2
_n

or
m

 e
rr

or

iterations

cg steepest sor gs jacobi

Figure 7. Comparison of the convergence rate for a Poisson equation.
The L2-norm of the error is plotted against the number of numerical
iterations. The numerical algorithms are conjugate gradients, steepest
descent, successive over-relaxation, Gauss-Seidel, and Jacobi iterations.
We see CG converges to a solution limited by the precision of double
precision floating point numbers the quickest. The problem is discretized
using finite differences with 16 points over three dimensions, for a total
of 4096 grid points. Boundary condition u(x, y, z) = 1.0 for the plane
x = 0, u(x, y, z) = 0.0 otherwise.
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Figure 8. Comparison of time taken to converge to equivalent precision,
for an analog accelerator and a CPU. The time needed to converge is
plotted against the total number of grid points N = L2. The convergence
time for an analog solution is measured from simulations of larger analog
accelerator circuits based on the prototyped hardware. We give the projected
the solution time for an 80 KHz bandwidth analog accelerator design. The
convergence time for the digital comparison is the software runtime on a
single CPU core.

scales linearly with respect to the problem size, measured
in grid points. An analog accelerator with 650 integrators
occupies about 150 mm2, accounting for integrators, mul-
tipliers, current mirrors, DACs, and ADCs; this is smaller
than desktop CPU die sizes.

B. Choice of ADC Precision and Analog Bandwidth

In this section we explore the timing, area, and energy
costs of high-bandwidth analog accelerators equipped with
higher-resolution ADCs.

Choice of ADC resolution: The ADC conversion res-
olution is a limiting factor in the effectiveness of analog
acceleration, as discussed in Sections II-B and IV-A. The
prototype analog accelerator is equipped with 8-bit ADCs,
which limits the precision that the digital CG algorithm has
to achieve for an equivalent result. We assume the model
analog accelerator has 12-bit ADCs, which increases the
accuracy of the analog acceleration result, forcing the CG



Unit type Power Core power
fraction

Area Core area
fraction

integrator 28 µW 80% 0.040 mm2 40%
fanout 37 µW 80% 0.015 mm2 33%

multiplier 49 µW 80% 0.050 mm2 47%
ADC 54 µW 50% 0.054 mm2 83%
DAC 4.6 µW 100% 0.022 mm2 61%

Table II
SUMMARY OF ANALOG CHIP COMPONENTS TAKEN FROM [3], [4].

comparison to run for more iterations to achieve the same
level of accuracy.

Choice of analog bandwidth: The prototype chip is
designed as an ODE solver for embedded systems, with a
relatively low bandwidth of 20 KHz, a design that ensures
that the prototype chip accurately solves for time-dependent
solutions in ODEs. The reason that high bandwidth is not
used when solving ODE dynamics is that high bandwidth
designs are more sensitive to parasitic effects, which degrade
the solution’s accuracy. However, the small bandwidth of the
prototype makes it unrepresentative of an analog accelera-
tor designed to solve time-independent algebraic equations,
where accuracy degradation in time-dependent behavior has
no impact on the final steady state output.

Power and area scaling: We scale up the bandwidth of
the model, within reason, to up to 1.3 MHz to explore the
performance, area, and energy traits of a high bandwidth
design. We assume an analog accelerator with bandwidth
multiplied by a factor of α has higher power and area
consumption in the core analog circuits, by a factor of α.

For power/bandwidth, we observe that analog circuits
operate faster when the internal node voltages representing
variables change faster. As such, we need larger currents
to charge and discharge the node capacitances in the signal
paths carrying variables. A derivation shows that:

• (node voltage change) = (charge change) / capacitance
• (charge change) = time * (charging current)

= (charging current) / frequency
• (node voltage change)

= (charging current) / (frequency * capacitance)

We hold the capacitance fixed to the capacitance of the
prototype’s design—this is a conservative decision: careful
design may permit smaller choices of capacitance. From
this derivation we see the bandwidth, represented here as
frequency, is linearly related to charging current, which is
finally linearly related to the power consumption.

For area/bandwidth, we observe that the transistor aspect
ratio W/L has to increase to increase the current, and
therefore bandwidth, of the design. L is kept at a minimum
dictated by the technology node, leaving bandwidth to be
linearly dependent on W. Thus we estimate area increasing
linearly with bandwidth. The assumption on area scaling
is conservative; higher bandwidth may be obtained for less
than proportional increase in area.
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Figure 9. Comparison of time taken to converge to equivalent precision,
for high bandwidth analog accelerators and a digital CPU. The time needed
to converge is plotted against the total number of grid points N = L2. We
give the projected solution time for 80 KHz, 320 KHz, and 1.3 MHz
analog accelerator designs. The high bandwidth designs have increasing
area cost. In this plot the 320 KHz and 1.3 MHz designs hit the size of
600 mm2, the size of the largest GPUs, so the projections are cut short.
The convergence time for digital is the software runtime on a single CPU
core.
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Figure 10. The power consumption of analog accelerators as a function of
number of grid points it can simultaneously solve. The 20 KHz design is
the prototyped analog accelerator. Higher bandwidth designs are projections
from the prototype.

Table II shows the area and power consumption of the
components of the prototype analog accelerator chip. The
core power and area fraction show the fraction of each block
that form the analog signal path. The area and power for
core components that touch the analog variables scale up
and down for different bandwidth designs. Not all area and
power consumption of the blocks of the prototype design
are involved in the analog signal path, and do not need
to scale up for higher bandwidth designs. The non-core
transistors and nets not involved in analog computation
include calibration and testing circuits, and registers. The
physical power and area measurements from the prototype
analog accelerator provides a basis for projections, using this
scaling model, summarized in Figures 10 and 11.

We compare the solution energy of analog and digital
solvers in Figure 12. Using an estimate of 225 pJ for every
floating point multiply-add operation in GPUs [19], we
derive the amount of energy needed for GPUs to compute
the solution to equivalent accuracy as the analog accelera-
tor. The conjugate gradient algorithm uses a sustained 20
clock cycles per numerical iteration per row element. The
comparison assumes identical transfer cost of data from
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Figure 12. The energy needed to solve 2D problems of varying number of
total grid points, for different analog accelerator designs, compared against a
GPU running CG. The 80 KHz design shows some energy savings relative
to the GPU. High bandwidth analog accelerators are quickly limited by
its large chip area cost and cannot solve problems with many grid points.
Furthermore, because not all power and area is spent on the analog critical
path, efficiency gains cease after bandwidth reaches 80 KHz.

main memory to the accelerator versus the CPU: the energy
needed to transfer data to and from memory is not modeled,
due to the relatively small problem sizes, allowing the
program data to be entirely cache resident.

While increasing the analog bandwidth directly improves
solution speed, high bandwidth designs are limited in the
number of variables that can fit in 600 mm2, the size of the
largest GPU dies. As bandwidth increases, a higher fraction
of area and power consumption becomes directly involved
in analog computation, resulting in a more energy-efficient
design. Once almost all of the power consumption is di-
rectly involved in analog computation, increasing bandwidth
results in a proportional increase in power and decrease in
computation time, so the efficiency gains do not increase
after bandwidth reaches 80 KHz. We conclude that analog
accelerators need as high bandwidth as area permits for
high speed solution. Analog acceleration may offer some
efficiency gains for linear algebra, but not by a significant
factor.

VI. ANALYSIS OF RESULTS

In this section we analyze our experimental results and re-
examine claims regarding the perceived benefits of analog
computing. We investigate how algorithms, continuous-time
computation, continuous-value representation, and choice

of the targeted problem each impact the performance and
efficiency of analog and digital techniques.

A. Continuous-Time: Advantages

In analog computation variables evolve continuously: they
are multiplied and summed in continuous time. No power-
hungry clock signal is needed to synchronize operations.
We observe these low-power traits in the analog accelerator:
even in the designs that fill a 600 mm2 die size, the analog
accelerator uses about 0.7 W in the base prototype design
and about 1.0 W in the design with 320 KHz bandwidth.
The projected analog power figures are significantly below
the TDP of clocked digital designs of equal area.

Continuous-time analog computation is also implicitly
asynchronous. The outputs of functional units respond, to
an extent limited by bandwidth, immediately to their inputs.
For example, a non-zero input to an integrator causes change
to the integrator’s stored variable, and that change is imme-
diately reflected in its output for other units to consume. The
variables in integrators and on datapaths all evolve until the
system is at steady state, distinct from how only groups of
variables change at a time in discrete-time computation.

In discrete-time iterative linear algebra algorithms, the
solution vector changes in steps, and each step is charac-
terized by a step size. The step size affects the algorithm’s
efficiency, and requires many cycles to calculate. In CG,
for example, the step size is calculated from the gradient
magnitude and takes up half of the multiplication operations
in each step. In the analog accelerator, the step size is
reduced to an infinitesimal value, sidestepping the notion
of discrete step sizes. Instead, numerical convergence in the
analog accelerator is limited only by the bandwidth of the
analog components.

B. Continuous-Time: Disadvantages

While discrete-time evolution has drawbacks, it permits
algorithms to intelligently select a step size, which has ad-
vantages in solving systems of linear equations. Both solvers
are performing iterative numerical algorithms, but the digital
program runs conjugate gradients, the most efficient and
sophisticated of the classical iterative algorithms. In CG,
each step size is chosen, taking into account the gradient
magnitude of the present point, along with the history of step
sizes. With these additional calculations, CG avoids taking
redundant steps, accelerating toward the answer when the
error is large, slowing when close to convergence [20]. Note
in Figure 7, the CG method has the steepest slope on a log-
linear chart, more efficient than any other method presented.

In contrast, the analog accelerator has a limited variety of
iterative algorithms it can carry out. In using the analog
accelerator for linear algebra, the rate of convergence is
limited by the bandwidth of the design, so the convergence
rate within a time interval cannot be arbitrarily large. There-
fore, the numerical iteration in the analog accelerator is akin



to fixed-step size relaxation or steepest descent. While we
can consider the analog accelerator as doing continuous-
time steepest descent, taking many infinitesimal steps in
continuous time, doing many iterations of a poor algorithm
is in this case no match for a better algorithm. Efficient
discrete-time algorithms such as CG, multigrid, and spectral
methods were known to researchers by the 1950s. Analog
computers remained in use in the 1960s to solve steepest
descent due to their better immediate performance relative
to early digital computers.

C. Continuous-Value: Advantages

Changing the value of a digital binary number affects
many bits. For example, sweeping an 8-bit unsigned integer
from 0 to 255 needs 502 binary inversions. Using more
economical Gray coding, 255 inversions are still needed to
sweep the range of an 8-bit integer. In general, the amount
of charge needed for binary arithmetic is an exponential
function of precision. To worsen the case for digital, real
variables are usually encoded in floating point, which are
costlier per operation. The logarithmically encoded expo-
nent portion of floating point variables makes adding and
subtracting variables complicated.

Analog computing is economical because real values are
encoded in physical attributes, such as electrical current.
The amount of energy needed to change the value of a
variable is proportional to the size of the change in value.
The precision of an analog variable is only limited by its
signal to noise ratio. In effect, a single wire can capture many
bits of information. Finally, no special hardware is needed
to sum and subtract analog values encoded as current. The
analog crossbars can sum values by simply joining branches.

D. Continuous-Value: Disadvantages

Despite its efficiency, continuous-value representation in
the analog accelerator has drawbacks when used to assist
digital computing. While the computation taking place inside
the accelerator takes place at high precision, ADC conver-
sion of the results is not so favorable. Each time the analog
accelerator runs to solve an equation, the digital host only
obtains as many bits of precision as the ADC conversion.
At the levels of ADC precision we consider, 8 − 12 bits,
the digital algorithm takes only a few iterations to reach the
same level of precision. On the other hand, while operation
on floating points is costly, the digital algorithm can continue
operating on the same set of data until precision is limited
by the precision of floating point numbers.

Furthermore, floating point numbers are more able to
represent variables with high dynamic range. In contrast, the
problem’s coefficients and constants must fit in the range
of gain provided by multipliers and the output range of
DACs. In order to multiply and add large numbers, the
analog accelerator must use a procedure that scales down

Scaling the dynamic range of equation variables into that of the circuit:
any system of linear equations of the form Au = b, with arbitrarily large
magnitude coefficients in the A matrix, b vector, and solution u, can be
scaled to fit in the dynamic range of the analog computer. The solution is
found using the convergent system of ODEs du

dt
= b−Au(t), where A is

positive definite, subject to an initial condition on u(0) = u0. The closed
form solution for u(t), at some instant of time t, is:

u(t) = A−1b+ ce−At

c = u0 −A−1b

Where eAt is the matrix exponential. When we use the analog accelerator
as a linear algebra solver, the system is solved when:

e−At = 0

Now, suppose A has some element with value sg that exceeds the maximum
gain g that the multipliers can give as coefficients. We can scale down the
magnitude of A and instead program into the analog accelerator the matrix
As = A

s
that has gains that are in the acceptable range. For the closed

form equations to hold:

u(t) = A−1
s

b

s
+ ce−Asst

c = u0 −A−1
s

b

s

We see that the result u(t) remains unchanged so long as we also scale
down b by s, and scale up time t by a factor s. That is, given limited
bandwidth in the system, we have restricted the dynamic range in A by
extending the time it takes for the ODE to simulate. This is referred in the
literature as value and time scaling; correct selection of scaling parameters
can be challenging when using analog computers [7], [8], [10], [21], [22].

multiplication coefficients and added constants, but extends
the amount of the time it takes to solve a problem (see inset).

For example, when the two dimensional Poisson equation,
defined on the unit square, is discretized with L increments
to a side into system of linear equations, the absolute value
of the elements inside the coefficients matrix increases in
proportion to L2. In order to map these matrices with
larger magnitude coefficients into the dynamic range of the
multipliers, we must scale down the elements of the matrix
by L2. In exchange, the analog computer requires more time,
proportional to L2, in order to solve the equation.

This ability for analog computers to trade dynamic range
in variables by extending the computation time is a useful
trick. But in comparison to computing on floating point
numbers which have much higher dynamic range, this need
to scale variables is a burdensome trade off.

E. Dimensionality

In the 2D Poisson elliptic equation example, we solved
system of linear equations with coefficient matrices that
result from discretization of two-dimensional space. These
matrices have a sparse pentadiagonal form, meaning coeffi-
cients are non-zero along only five diagonals of the matrix.
We now explore the scaling trends for 1D, 2D, 3D sparse
matrices, as shown in Table III.

In the 2D example, analog acceleration follows a favorable
scaling trend compared to CG, but the energy scaling favors



Analog Conjugate gradients
Grid points HW cost Conv. time Energy=HW×time Convergence steps Time per step Time and energy

1D N = L N = L integrators N = L N2 = L2 N = L N = L N2 = L2

2D N = L2 N = L2 integrators N = L2 N2 = L4 N0.5 = L N = L2 N1.5 = L3

3D N = L3 N = L3 integrators N = L3 N2 = L6 weak dependence N = L3 N = L3

Table III
TIME, AREA, AND ENERGY TRENDS FOR ANALOG ACCELERATION AND CONJUGATE GRADIENTS, FOR DIFFERENT TYPES OF CONNECTIVITY BETWEEN
VARIABLES, WHICH AFFECTS THE A MATRIX. N DENOTES THE NUMBER OF VARIABLES. L DENOTES THE NUMBER OF INCREMENTS PER DIMENSION.

CG. The overall effect there is a range of number of variables
being solved where analog possibly wins in both speed and
energy consumption.

In 3D problems, analog acceleration is not feasible, due to
comparable scaling of solution speed and unfavorable scal-
ing of energy consumption. Changing the dimensionality of
the problem from 2D to 3D poses no significant challenges
to a software algorithm. For each node value, the stencil will
request node values in neighbors in all three dimensions. The
node values for neighbors in the highest order dimension will
be least recently used, and will have the least data locality.
Compared to 2D problems, 3D problems have a larger data
cache footprint, and an increase in the cache access stride
length.

Analog computing, on the other hand, faces greater chal-
lenges in creating a hardware mapping for 3D problems on
a 2D chip, due to difficulty in laying out the integrators in a
way that balances and minimizes the analog interconnects.

F. Targeted Problem Class

Efficient linear algebra algorithms form the heart of
modern continuous math workloads. These linear algebra
algorithms operate on discrete-value variables which evolve
in discrete time steps, which are approximations of the real
dynamics of the physical world. Our objective was to apply
analog computing to sparse systems, a fundamental kernel
found in applications, with the hypothesis that a continuous
model would yield benefits. Nonetheless, the intense demand
for efficient linear algebra has led to powerful digital algo-
rithms, optimized to run well on digital hardware, that make
discrete approximations worthwhile, making the baseline in
this study difficult to beat.

The analog accelerator is fundamentally an ODE dynam-
ics simulator, meaning useful computational results are in the
dynamic output waveform. As discussed in Section II-B, the
dynamic output waveform has uses in embedded systems,
where analog computation results are directly useful in
driving actuators. In this paper we consider analog accel-
eration for digital computers, which potentially limits useful
computation results to the steady state output, which can be
precisely measured with slow, high-precision ADCs.

Analog acceleration may have greater benefits in other
domains of continuous math, such as solving nonlinear
PDEs. As shown in Figure 4, the solution of nonlinear PDEs

proceeds in the same way as in the linear case, typically
with discretization into nonlinear ODEs, then using implicit
solvers that require solving systems of algebraic equations at
each time step. The key difference is these are now nonlinear
systems of equations, requiring Newton-Raphson method-
based iterative solvers. These iterative solvers have contin-
uous time formulations, which again involve solving ODEs
of the form du

dt = f(u(t)). It is within our near future work
to investigate how analog techniques can solve nonlinear
problems, which can be vexing for digital algorithms.

VII. RELATED WORK

Analog electronic computers were used in the 1950s
and 1960s for scientific simulations, including problems
in optimization, ODEs, and PDEs [8]–[10], [21], [23]. By
1968 attention shifted to hybrid analog-digital computers,
which introduced digital computers to provide capacious
memory and ability to do discrete-time algorithms [11]–
[14]. In the years since, digital computers, which provided
the convenience and noise margin of binary variable encod-
ing, capacious memory, and versatile numerical algorithms,
eliminated analog computing from general use.

The development of analog and hybrid computers ran
in parallel with the development of digital differential
analyzers, which were digital numerical processors where
variables were encoded in binary and evolved in discrete
time. The digital units in DDAs were connected in the
same topology of an analog computer, according to the
differential equation being solved [7]. These designs faced
difficulties in number dynamic range and scaling, which led
to the development of extended resolution and floating-point
variants of DDAs [22], [24]. These area-intensive function
units were used in a time-multiplexed fashion, previewing
the development of modern floating-point pipelines [25].

Computing using analog signals is resurgent in architec-
ture research, due to challenges in IC scaling that limit the
power dissipated by digital circuits [26], [27]. Analog com-
puting circuits can be instantiated alongside digital circuits
to handle workloads from a direct, numerical standpoint [1]–
[5], [18], [28], [29], or to handle workloads developed in the
field of neuromorphic computing.

In neuromorphic computing, broad classes of applications
using both discrete and continuous variables are mapped to
a variety of neural network topologies [30]–[32]. The neural



networks can in turn be simulated as software, or can be sim-
ulated using resistive analog networks and A/D conversion,
giving efficient multiplication and nonlinear lookups [33].
In neuroscience, analog circuits have been investigated for
modeling ODEs that describe non-trivial neurons.

We draw distinction between our approach to analog
acceleration and that of neuromorphic computing. Most
important, we do not use training to get a network topology
and weights that solve a given problem. No prior knowledge
of the solution or training set of solutions is required. The
analog acceleration technique presented here is a procedural
approach to solving problems: there is a predefined way to
convert a system of linear equations under study into an
analog accelerator configuration.

Second, the analog computation presented in our work
thrives on the possibility of connecting outputs of integrators
to their inputs. This is in contrast to most neuromorphic
computing approaches, which use cellular neural networks,
autoencoders, and multilayer perceptrons, which are purely
feedforward networks. The full crossbar between analog
components allow any topology, including cycles, between
components. In neural network terminology such topologies
are recurrent neural networks and Hopfield networks, and
represent the most powerful class of networks.

Among other emerging architectures, the quantum algo-
rithm for linear systems of equations allows characterization
of the solution vector in order of logN time, where N is the
size of the solution vector [34]. The solution is not readily
measurable, but the algorithm has uses in algorithms that
rely on linear algebra [35].

VIII. CONCLUSIONS

In this work we discussed how analog computing is differ-
ent from digital computing in these key aspects: the variables
evolve continuously in time; the variables have a continuous
range of values; and the algorithm executed on the hardware
is distinct. We presented an architecture for using solutions
given by an analog accelerator, and we discussed methods
to control downsides of analog computing such as limited
problem size, limited dynamic range, and limited precision.

We used analog acceleration to solve systems of linear
equations, an attractive and important application for this
novel hardware design. Among linear algebra problems with
2D connectivity, analog acceleration may have both 10×
higher performance and 33% lower energy consumption,
within a range of problem sizes. Notably, the obvious
approach to improving analog accelerator performance, by
increasing the analog circuit bandwidth, provides speedups,
and can offer solutions requiring less energy, but has high
area costs.

We recognize the performance increases and energy sav-
ings are not as drastic as one expects when using a fun-
damentally different computing model than digital, syn-
chronous computing. This is primarily due to highly efficient

algorithms for digital computers which are the dominant
factor in comparing solver systems, implemented as either
digital or analog hardware. Other numerical subroutines,
such as those used in finding solutions to nonlinear systems
of equations, present greater challenges to existing algo-
rithms, and may show promise for analog computing.
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