
On the Feasibility of Online Malware Detection with
Performance Counters

John Demme Matthew Maycock Jared Schmitz Adrian Tang
Adam Waksman Simha Sethumadhavan Salvatore Stolfo

Department of Computer Science, Columbia University, NY, NY 10027
jdd@cs.columbia.edu, mhm2159@columbia.edu, {jared,atang,waksman,simha,sal}@cs.columbia.edu

ABSTRACT
The proliferation of computers in any domain is followed by
the proliferation of malware in that domain. Systems, in-
cluding the latest mobile platforms, are laden with viruses,
rootkits, spyware, adware and other classes of malware. De-
spite the existence of anti-virus software, malware threats
persist and are growing as there exist a myriad of ways to
subvert anti-virus (AV) software. In fact, attackers today
exploit bugs in the AV software to break into systems.

In this paper, we examine the feasibility of building a mal-
ware detector in hardware using existing performance coun-
ters. We find that data from performance counters can be
used to identify malware and that our detection techniques
are robust to minor variations in malware programs. As a
result, after examining a small set of variations within a fam-
ily of malware on Android ARM and Intel Linux platforms,
we can detect many variations within that family. Further,
our proposed hardware modifications allow the malware de-
tector to run securely beneath the system software, thus
setting the stage for AV implementations that are simpler
and less buggy than software AV. Combined, the robustness
and security of hardware AV techniques have the potential
to advance state-of-the-art online malware detection.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—Hard-
ware/software interfaces; K.6.5 [Management of Com-
puting and Information Systems]: Security and Pro-
tection—Invasive software

General Terms
Security in Hardware, Malware and its Mitigation

Keywords
Malware detection, machine learning, performance counters

1
This work was supported by grants FA 99500910389 (AFOSR),

FA 865011C7190 (DARPA), FA 87501020253 (DARPA), CCF/TC
1054844 (NSF), Alfred P. Sloan fellowship, and gifts from Microsoft
Research, WindRiver Corp, Xilinx and Synopsys Inc. Any opinions,
findings, conclusions and recommendations do not reflect the views
of the US Government or commercial entities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA ’13 Tel-Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

1. INTRODUCTION
Malware – short for malicious software – is everywhere.

In various forms for a variety of incentives, malware exists
on desktop PCs, server systems and even mobile devices like
smart phones and tablets. Some malware litter devices with
unwanted advertisements, creating ad revenue for the mal-
ware creator. Others can dial and text so-called “premium”
services resulting in extra phone bill charges. Some other
malware is even more insidious, hiding itself (via rootkits or
background processes) and collecting private data like GPS
location or confidential documents.

This scourge of malware persists despite the existence of
many forms of protection software, antivirus (AV) software
being the best example. Although AV software decreases
the threat of malware, it has some failings. First, because
the AV system is itself software, it is vulnerable to attack.
Bugs or oversights in the AV software or underlying system
software (e.g., the operating system or hypervisor) can be
exploited to disable AV protection. Second, production AV
software typically use static characteristics of malware such
as suspicious strings of instructions in the binary to detect
threats. Unfortunately, it is quite easy for malware writers
to produce many different code variants that are functionally
equivalent, both manually and automatically, thus defeating
static analysis easily. For instance, one malware family in
our data set, AnserverBot, had 187 code variations. Alterna-
tives to static AV scanning require extremely sophisticated
dynamic analysis, often at the cost of significant overhead.

Given the shortcomings of static analysis via software im-
plementations, we propose hardware modifications to sup-
port secure efficient dynamic analysis of programs to detect
malware. This approach potentially solves both problems.
First, by executing AV protection in secure hardware (with
minimum reliance on system software), we significantly re-
duce the possibility of malware subverting the protection
mechanisms. Second, we posit that dynamic analysis makes
detection of new, undiscovered malware variants easier. The
intuition is as follows: we assume that all malware within a
certain family of malware, regardless of the code variant, at-
tempts to do similar things. For instance, they may all pop
up ads, or they may all take GPS readings. As a result, we
would expect them to work through a similar set of program
phases, which tend to exhibit similar detectable properties
in the form of performance data (e.g., IPC, cache behavior).

In this paper, we pose and answer the following central
feasibility question: Can dynamic performance data be used
to characterize and detect malware? We collect longitudi-
nal, fine-grained microarchitectural traces of recent mobile

Android malware and Linux rootkits on ARM and Intel plat-
forms respectively. We then apply standard machine learn-
ing classification algorithms such as KNN or Decision Trees
to detect variants of known malware. Our results indicate
that relatively simple classification algorithms can detect
malware at nearly 90% accuracy with 3% false positives for
some mobile malware.

We also describe hardware support necessary to enable
online malware detection in hardware. We propose methods
and techniques for (1) collection of fine-grained runtime data
without slowing down applications, (2) secure execution of
AV algorithms to detect at runtime the execution of malware
and (3) secure updating of the AV algorithms to prevent
subversion of the protection scheme.

Another important contribution of the paper is to describe
the experimental framework for research in the new area of
hardware malware detection. Towards this we provide a
dataset used in this research. This dataset can be down-
loaded from: http://castl.cs.columbia.edu/colmalset.

The rest of the paper is organized as follows. In Section 2
we provide background on malware, then describe the key
intuition behind our approach (Section 3), and explain our
experimental method (Section 4), followed by evaluations of
Android ARM malware, x86 Linux Rootkits and side chan-
nels (Sections 5, 6, 7). We describe hardware support in
Section 8 and our conclusions in Section 9.

2. BACKGROUND ON MALWARE
In this section, we provide an abbreviated and fairly in-

formal introduction on malware.

2.1 What is Malware and Who Creates It?
Malware is software created by an attacker to compro-

mise security of a system or privacy of a victim. A list of
different types of malware is listed in Table 1. Initially cre-
ated to attain notoriety or for fun, malware development
today is mostly motivated by financial gains [1, 2]. There
are reports of active underground markets for personal in-
formation, credit cards, logins into sensitive machines in the
United States, etc. [3]. Also, government-funded agencies
(allegedly) have created sophisticated malware that target
specific computers for espionage or sabotage [4, 5, 6]. Mal-
ware can be delivered in a number of ways. To list a few, an
unsuspecting user can be tricked into: clicking on links in
“phishing” emails that download and install malware, open-
ing email attachments with malicious pdfs or document files,
browsing web pages with exploits, using infected USB sticks
or downloading illegitimate applications repackaged to ap-
pear as normal applications through mobile stores.

2.2 Commercial Malware Protections
The most common protection against malware is anti-

virus (AV) software. Despite what the name anti-virus sug-
gests, anti-virus can also detect and possibly remove cat-
egories of malware besides viruses. A typical AV system
works by scanning files during load time for known signa-
tures, typically code strings, of malware. Figure 1 shows how
anti-virus signatures are prepared: Honeypots collect mal-
ware and non-malware which are then analyzed by humans
to create signatures. These signatures are then delivered to
the host anti-virus software periodically.

A complementary approach to signature-based detection
is also used in practice [7]. In reputation based AV detec-

Honey Pot

AnserverBot
DroidKungFu

PlanktonNew Zitmo

Signature
Generation

Suspicious
Programs

Behavioral Analysis

Coarse-Grained:
Dynamic traces

Current

Fine-Grained:
(μ)-arch execution

profiles

Proposed

Internet

Signatures

Signatures,
Classifiers

ANALYST

USER

Internet
(Filled With
Malware)

Alerts (Current)

Coarse
Grained:

Call & File
Analysis

Fine
Grained:

(μ)-arch Profile
Analysis

Alerts (Proposed)

Figure 1: AV signature creation and deployment.

tion, users anonymously send cryptographic signatures of
executables to the AV vendor. The AV vendor then deter-
mines how often an executable occurs in a large population
of its users to predict if an executable is malware: often, un-
common executable signatures occurring in small numbers
are tagged as malware. This system is reported to be effec-
tive against polymorphic and metamorphic viruses but does
not work against non-executable threats such as malicious
pdfs and doc files [8]. Further it requires users to reveal
programs installed on their machine to the AV vendor and
trust the AV vendor not to share this secret.

2.3 How Good is Anti-Virus Software?
Just like any other large piece of software, AV systems

tend to have bugs that are easily exploited, and thus AV

Table 1: Categories of Malware
Malware Brief Description

Worm Malware that propagates itself from one infected
host to other hosts via exploits in the OS interfaces
typically the system-call interface.

Virus Malware that attaches itself to running programs
and spreads itself through users’ interactions with
various systems.

Polymorphic
Virus

A virus that, when replicating to attach to a new
target, alters its payload to evade detection, i.e.
takes on a different shape but performs the same
function.

Metamorphic
Virus

A virus that, when replicating to attach to a new
target, alters both the payload and functional-
ity, including the framework for generating future
changes.

Trojan Malware that masquerades as non-malware and
acts maliciously once installed (opening backdoors,
interfering with system behavior, etc).

AdWare Malware that forces the user to deal with unwanted
advertisements.

SpyWare Malware that secretly observes and reports on
users computer usage and personal information ac-
cessible therein.

Botnet Malware that employs a user’s computer as a mem-
ber of a network of infected computers controlled
by a central malicious agency.

Rootkit Malware that hides its existence from other appli-
cations and users. Often used to mask the activity
of other malicious software.

http://castl.cs.columbia.edu/colmalset

protections are easily bypassed. In a recent paper, Jana and
Shmatikov [9] found that all of the 36 commercially available
AV systems they examined could be bypassed. Specifically,
they detected many bugs in the code that parse program
binaries which either allowed bad code to pass undetected
or gain higher privilege. They argued that the problem of
building robust parsers (and hence software malware detec-
tors) is not easy since the number of file formats is quite
large, and many of their specifications are incomplete in sev-
eral ways. Their paper demonstrates the futility in trying to
secure complex, million-line softwares like AV. Unlike soft-
ware detectors, the hardware malware detectors we propose
do not have to deal with multiple executable formats. In-
stead they work on single input format – integer streams
from performance counters. Further, they are not easily
turned off. Thus hardware detectors are significant step to-
wards more robust detectors.

2.4 Malware Arms Race
There is an arms race between malware creators and de-

tectors. The earliest detectors simply scanned executables
for strings of known bad instructions. To evade these detec-
tors, attackers started encrypting their payloads. The detec-
tors, in response, started scanning for the decryption code
(which could not be encrypted) packed with the malware.
The malware creators then started randomly mutating the
body of the payload by using different compilation strategies
(such as choosing different register assignments or padding
NOPs) to create variants [10].

In response to these advances in malware creation, de-
fenders were motivated to consider behavioral detection of
malware instead of static signatures. Behavior-based de-
tection characterizes how the malware interacts with the
system: what files it uses, the IPC, system call patterns,
function calls and memory footprint changes [11, 12, 13].
Using these characteristics, detectors build models of nor-
mal and abnormal program behaviors, and detect abnormal
execution by comparing against pre-built behavioral mod-
els. Many of these schemes use machine learning techniques
to learn and classify good and bad behaviors from labeled
sets [14, 15, 16, 17].

2.5 Improving Malware Detection
While behavioral schemes permit richer specification of

good and bad behaviors than static checkers, they tend to
have high performance overheads since the more effective
ones demand creation and processing of control- and data-
flow graphs. Because of their overheads behavior-based de-
tectors are not typically used on end hosts, but analysts in
malware-detection companies may use them to understand
malware-like behaviors. All of these techniques are envi-
sioned to be implemented in software.

In this work, for the first time, we use hardware perfor-
mance counters for behavior based detection of malware,
and describe the architecture necessary to support malware
detection in hardware. Our performance counter based tech-
nique is a low-overhead technique that will not only allow
analysts to catch bad code more quickly, it may also be
feasible to deploy our system on end hosts. Unlike static
signature based detection AV, we aim to detect variants of
malware from known malware signatures. Unlike reputation
based system our scheme does not require users to reveal
programs installed on their computer.

bz
ip

2-
i1

L1 Exclusive Hits Arithmetic µOps Executed

bz
ip

2-
i2

bz
ip

2-
i3

m
cf

hm
m

er
sj

en
g

lib
qu

an
tu

m
h2

64
om

ne
tp

p
as

ta
r

as
ta

r
Xa

la
nc

Figure 2: Performance counter measurements over time

in the SPEC benchmark suite. We also observe readily

apparent visual differences between the applications. In-

tuitively, we expect it to be possible to identify programs

based on these data.

Recent research has also examined using hardware per-
formance counters for detecting anomalous program behav-
iors [18, 19]. This is a different and (intuitively) harder prob-
lem than attempted here. The anomaly detection works aim
to detect small deviations in program behavior during an at-
tack such as a buffer overflow or control flow deviation from
otherwise mostly benign execution. In contrast, we attempt
to identify execution of whole programs such as a key logger
when it is run, typically as the end result of exploitation
such as a buffer overflow vulnerability.

3. KEY INTUITION
A major thesis of this paper is that runtime behavior cap-

tured using performance counters can be used to identify
malware and that the minor variations in malware that are
typically used to foil signature AV software do not signifi-
cantly interfere with our detection method.

The intuition for this hypothesis comes from research in
program phases [20, 21]. We know that programs exhibit
phase behavior. They will do one activity A for a while, then
switch to activity B, then to activity C. We also know that
programs tend to repeat these phases – perhaps the program
alternates between activities B and C. Finally, and most
importantly, it has been shown that these phases correspond
to patterns in architectural and microarchitectural events.

Another important property of program phases and their
behaviors is that they differ radically between programs.
Figure 2 plots event counts over time for several SPEC appli-

cations. In it, we see the differences between the benchmarks
as well as interesting phase behavior. Given these data, it
seems intuitive that these programs could be differentiated
based on these time-varying signatures.

Our hypothesis that minor variations in malware do not
significantly affect these data cannot be inferred from pre-
vious work. Rather, it is based on two observations:

• First, regardless of how malware writers change their soft-
ware, its semantics do not change significantly. For instance,
if a piece of malware is designed to collect and log GPS data,
then no matter how its writer re-arranges the code, it still
collects and logs GPS data.

• Second, we assume that in accomplishing a particular task
there exist subtasks that cannot be radically modified. For
instance, a GPS logger will always have to warm up the
GPS, wait for signals, decode the data, log it and at some
future point exfiltrate the data out of the system. As a
result of these invariant tasks, we would expect particular
phases of the malware’s execution to remain relatively in-
variant amongst variations.

Since it is not obvious that either of our arguments are
true, we quantitatively test them in subsequent sections. In
summary, we find that when we build detection methods
using a small subset of variations, these detection methods
often work on the other variations as well.

4. EXPERIMENTAL SETUP
Can simple performance metrics be used to identify mal-

ware? To answer this question we conduct several feasibil-
ity studies. In each, we collect performance counter data
on malware and train a set of classifiers to detect malicious
behavior. In addition to data from malware programs, we
collect data from non-malware programs (Figure 3). Here
we describe our program sets, provide details of our data
collection infrastructure, describe our classifiers, and discuss
types and granularity of malware detection.

4.1 Malware & Non-Malware Programs Used
In this study we used 503 malware and 210 non-malware

programs from both Android ARM and Intel X86 platforms.
The full list of programs is available in the dataset web-
site1. The malware programs were obtained from three
sources. First from the authors of previous work studying
Android malware [22], and second from a website2 that con-
tains a large number of malware. We also obtained two
publicly available Linux x86 rootkits [23, 24]. Data from
non-malware programs serve two purposes: during training
as negative examples, and during testing to determine false
positive rates, i.e., the rate of misclassifying non-malware.

For the purposes of this paper, we use a wide definition
of malware. Malware is any part of any application (an
Android APK file or rootkit binary) that has been labeled
as malware by a security analyst. We use this definition
to enable experimentation with a large amount of malware,
which is necessary for supervised machine learning.

This definition of malware is, however, inaccurate. Much
malware comes attached to legitimate code, so users often
execute malware alongside their desired applications. As
such, an accurate definition would require malware samples

1http://castl.cs.columbia.edu/colmalset
2http://contagiominidump.blogspot.com/

ARM
ANDROID

PANDABOARD

Old Malware

New Malware

Goodware

Side Channel

Rootkits

Goodware

X86
LINUX

Pe
rfo

rm
an

ce

C
ou

nt
er

 S
am

pl
in

g

Performance
Counter

Database

Classifier 1

Classifier 2

Classifier N

Classifier N-1

Classifier 3

Classifier N-2

. . .

Figure 3: Our workflow for malware experiments.

that have undergone deep forensic analysis to determine ex-
act portions that result in malicious actions, and to identify
inputs or environmental conditions under which the malware
actually performs malicious actions.

As researchers designing a problem for supervised ma-
chine learning algorithms, this presents a particular chal-
lenge: what parts of our “malware” data should be labeled
as such for training? Should we label the entirety of the
software as malicious while much of our “malicious” training
data could actually be mostly benign? The only other op-
tion is to laboriously pick out the good threads or program
portions from the bad. This latter option, however, is nei-
ther scalable nor practical and to the best of our knowledge
not available even in datasets from commercial vendors [25].

While our definition of malware is inaccurate, it is practi-
cal. However, it makes our classification task more difficult
since our classifiers see both malicious behaviors and legiti-
mate behaviors with “malware” labels during training. With
more accurate labels we would likely see lower false posi-
tive rates and higher malware identification rates. In other
words, our experimental framework is conservative and one
would expect better results in practice. Our experiments are
only designed only to demonstrate feasibility.

4.2 Data Collection
We have written a Linux kernel module that interrupts

once every N cycles and samples all of the event counters
along with the process identifier of the currently executing
program. Using this tool we collect multi-dimensional time-
series traces of applications like those shown in Figure 2.

Our data collection tool is implemented on two platforms.
For x86 workloads, we run Linux 2.6.32 on an 8 core (across
two sockets) Intel Xeon X5550 PC with TurboBoost up to
2.67GHz and 24GB of memory. These processors are based
on Intel’s Nehalem design, which implement four config-
urable performance counters, so our Intel x86 data is 4-
dimensional. For ARM workloads, we run Android 4.1.1-1
which is based on Linux 3.2. We use a distribution of An-
droid from Linaro that runs on Texas Instrument’s Pand-
aBoard, a demonstration board for their OMAP4460 pro-
cessor with dual ARM Cortex-A9 cores. ARM architectures
of this generation have six configurable performance coun-
ters, so ARM data is 6-dimensional. To mitigate perfor-
mance overheads from interrupts, we use sampling periods
of 50,000 and 25,000 cycles for Intel and ARM respectively.

Bias Mitigation: We aim to mimic real-world deploy-
ment conditions as much as possible when collecting data.
There are a variety of factors that could affect our results:
(1) Contamination – malware does its best to infect ma-
chines and be persistent, possibly influencing subsequent
data captures. We control for this by wiping and restoring
all non-volatile storage in between data captures for differ-
ent malware families and, more importantly, between data

http://castl.cs.columbia.edu/colmalset
http://contagiominidump.blogspot.com/

collection runs of the training and testing set. (2) Envi-
ronmental noise and input bias: these two factors cannot be
controlled in deployment conditions, so in order to make our
problem both more difficult and realistic, we do not control
for them. (3) Network connectivity: some malware requires
an internet connection, so our test systems were connected
over Ethernet and were not firewalled or controlled in any
way, as they would be in the wild. (4) User bias: We had
three different users collect data in arbitrary order for the
training and testing runs to mitigate systematic biases in
interacting with applications. (5) Ensuring successful mal-
ware deployment: We cannot say with certainty if malware
actually worked during a run. While the consequences were
clear for some malware such as adware, for some malware we
observed unexplainable behaviors, such as the system crash-
ing. It is unknown to us whether these bizarre behaviors
were intended or not (there are no specification documents
for malware), so all data collected was included, possibly
polluting our training and testing data, again likely making
our classification task more difficult.

4.3 Machine Learning Methods
In machine learning, classifiers are able to examine data

items to determine to which of N groups (classes) each item
belongs. Often, classification algorithms will produce a vec-
tor of probabilities which represent the likelihoods of the
data item belonging to each class. In the case of malware
detection, we can simply define two classes: malware and
non-malware. As a result, the output from each of our clas-
sifiers will be two probabilities representing the likelihood of
the data item being malware or non-malware.

Features Our data collection produces multi-dimensional
time series data. Each sample is a vector made up of event
counts at the time of sampling. In addition to that, we can
also aggregate multiple samples, and then use the aggregate
to build feature vectors. Aggregation can even out noise
to produce better trained classifiers or dissipate key signals
depending on the level of aggregation and the program be-
havior. In this paper, we experiment with a number of dif-
ferent feature vectors: (1) raw samples (2) aggregations all
the samples between context swaps using averages or sums,
(3) aggregations between context swaps (previous option)
with a new dimension that includes the number of samples
aggregated in a scheduling quanta, (4) histograms in inter-
vals of execution. This last one, histograms, breaks up the
samples into intervals of fixed size (32 or 128 samples) and
computes discrete histograms (with 8 or 16 bins) for each
counter. It then concatenates the histograms to create large
feature vectors (192 or 768 on ARM).

Classifiers There are a large number of classifiers we
could use. Classifiers broadly break down into two classes:
linear and non-linear. Linear algorithms attempt to sep-
arate n-dimensional data points by a hyperplane – points
on one side of the plane are of class X and points on the
other side of class Y. Non-linear classifiers, however, have
no such restrictions; any operation to derive a classification
can be applied. Unfortunately, this means that the amount
of computation to classify a data point can be very high. In
choosing classifiers to implement for this paper we choose
to focus on non-linear algorithms as we did not expect our
data to be linearly separable. Here we briefly describe the
algorithms we implement:

• In k-Nearest Neighbors (KNN), the classifier is trained by

inserting the training data points along with their labels into
a spatial data structure like a kd-tree. In order to classify
a data point, that point’s k nearest neighbors (in Euclidean
space) are found using the spatial data structure. The prob-
ability that the data point is of each class is determined by
how many of its neighbors are of that class and their Eu-
clidean distance.

• Another way to classify data points is to use a decision
tree. This tree is built by recursively splitting training data
into groups on a particular dimension. The dimension and
split points are chosen to minimize the entropy with each
group. These decisions can also integrate some randomness,
decreasing the quality of the tree but helping to prevent over
training. After some minimum entropy is met or a maximum
depth is reached, a branch terminates, storing in the node
the mix of labels in its group. To classify a new data point,
the decision tree is traversed to find the new point’s group
(leaf node) and return the stored mix.

• One way to increase the accuracy of a classifier is to use
multiple different classifiers and combine their results. In
a random forest, several (or many) decision trees are built
using some randomness. When classifying a new data point,
the results of all trees in the forest are weighted equally.

• Finally we attempt classification with Artificial Neural
Networks (ANNs). In our neural nets, we define one input
neuron for each dimension and two output nodes: one for the
probability that malware is running, and one for the prob-
ability that non-malware is running. We train our ANNs
using backpropagation.

For implementation, we use KNN, Decision Trees, and
Random Forests from the Waffles ML library3. For our
ANNs, we use the FANN library4.

4.4 Training and Testing Data
As mentioned before many production malware detectors

build blacklists using static malware signatures. As a re-
sult, they can only detect malware that the AV vendor has
already discovered and cataloged. Minor variations thereof
– which are relatively easy for attackers to produce – can-
not be detected in the wild using existing signatures. If we
wanted to, we could design a hardware detector that works
exactly as the software signature AV. We would evaluate
the feasibility of this by running the same malware multiple
times under different conditions to produce the training and
testing data. But in this work we want to design a more ro-
bust malware detector that in addition to detecting known
malware, will also detect new variants of known malware.
In order evaluate this functionality, we train a classifier on
data from one set of programs – non-malware and variants
of malware in a family. We then test the classifier’s accuracy
on different variants of malware in the same family (and also
on non-malware programs). To mitigate bias, the data for
training and testing are collected in separate runs without
knowledge of whether the data is to be used for testing or
training. The data is also collected by different users.

4.5 Classification Granularity
Our data collection can procure performance counter data

every 25,000 or 50,000 cycles with little slowdown. So in
theory we can classify malware at the granularity of each

3waffles.sourceforge.net 2012-08-31
4fann.sourceforge.net FANN-2.2.0

sample. However, due to large number of small variations in
programs we should expect a large number of false positives.
We have indeed found this to be the case, and in fact, we
obtained high false positives even at a coarser granularity
of every operating system context swap. Due to space con-
siderations we do not present these results. As such, in this
paper, we present classification results for malware at two
even coarser granularities: thread and application group. In
the thread based classification, each thread is classified as
malware (or non-malware) by aggregating the classification
probabilities for all data points in that thread. In application
group level classification, we classify Android Java packages
and package families as malware. This approach requires our
classifier to determine if, for example, “com.google.chrome”
is malicious or not and allows the classifier to use samples
from any thread executing that code.

5. DETECTING ANDROID MALWARE
With the rise of Android has come the rise of Android

malware. Although Android has the concept of permissions,
permissions-based approach often fail because users typi-
cally provide permissions indiscriminately or can be tricked
into giving permissions by the application. For instance, a
fake application packaged like Skype can trick the user into
giving permissions to access the camera and microphone.
In fact, several Android malware mask themselves as legiti-
mate software, and it is not uncommon for malware writers
to steal existing software and repackage it with additional,
malicious software.

5.1 Experimental Design
The Android malware data sets are divided up into fam-

ilies of variants. In families with only one variant, we use
the same malware but different executions of it for train-
ing and testing. For families with more than one variant,
we statically divide them up, using 1

3
for training and the

rest for testing. The names of each family and the number
of installers (APKs) for each can be found in our results,
Table 2. In total our data set includes nearly 368M perfor-
mance counters samples of malware and non-malware.

Classifier Parameters The classification algorithms out-
lined in Section 4 can be parameterized in different ways.
For instance, for k-Nearest Neighbors, k is a parameter. We
search a large space of classifiers, varying many parameters.
In order to determine the best set of parameters, we want
to choose the classifier that identifies the most malware cor-
rectly. However, as we make the classifier more sensitive, we
find more malware but also identify some legitimate software
as malware. In order to determine which classifier to use,
we find the one that performs best (on the training data)
for a given false positive percentage. As a result, the results
we present are not necessarily monotonically increasing.

Re-training Optimization Since malware applications
are known to include both malicious and benign code, we
use an optimization to select data points for training that
are more likely to be from the malicious part of an malware
package. We first train our classifier on all data points. We
then run all of our training data through this classifier and
sort the data based on the classifier’s score, i.e., we calculate
the probability of data being malware as called by the mal-
ware classifier. We then use only the most “malware-like”
data in our training set to re-train the classifier, which we
then use in evaluation. The intuition behind this technique

Accuracy of Malware Thread Classifiers

Excluding 'netd' application

Figure 4: The accuracy of binary classifiers in deter-

mining whether or not each running thread is malware.

is that the non-malicious parts of our training data are likely
to look a lot like non-malware to the classifier, so we use
our initial classifier to filter out those data. In many cases,
this retraining allows us to retrain with a smaller amount of
data while achieving comparable accuracy (and speeding up
training and testing.) In the case of decision trees, we find
that this technique significantly improves results. Further,
it creates relatively small decision trees, so the computa-
tional requirements of classifying each sample is orders of
magnitude lower than some of the other methods.

Next we report results on detecting malware at the gran-
ularity of threads and at the application level.

5.2 Malware Thread Detection Results
Testing The classification metric we use is the percentage

of threads correctly classified. For instance if the malware
application has T threads, our classifier, in the ideal case,
will flag only those subset of threads that perform mali-
cious actions. For non-malware, ideally all threads should
be flagged as benign. As mentioned before, the testing data
samples are obtained from a separate run from training and
under different input and environmental conditions. We also
use different non-malware applications in testing than in
training to ensure that we do not build a de facto white-
or blacklist of applications.

Training We ensure that an equal number of samples
from malware and non-malware are used for training. Strictly
speaking this is unnecessary but we did it to prevent our
classifier results from being biased by the volume of samples
from the two categories. The samples are chosen without
any relation to the number of threads to mitigate classifica-
tion bias due to thread selection.

Results Figure 4 shows malware detection by thread in
a form similar to a typical ROC curve. As expected, if we
allow some false positives, the classifiers find more malware.
These results indicate that performance counter data can,
with simple analysis, be used to detect malware with rela-
tively good accuracy. Further analysis of results shows that
a single application makes up the majority of non-malware
during the testing phase. This application is an Android sys-

tem application called “netd” and is responsible for dynam-
ically reconfiguring the system’s network stack. As such, it
runs often, and our classifiers are excellent at correctly pre-
dicting this application as non-malware. If we remove this
application from our testing data, we obtain the results in-
laid in Figure 4. While they are not as good, they remain
positive. We further break down our results by malware
family in Table 2. This table shows the number of APKs we
were able to obtain for each family along with the number
of threads observed. It also shows the number of threads
that our classifier correctly identified while maintaining a
10% or better false positive rate. We find a range of results,
depending on the family.

Table 2: Malware Families for Training and Testing
Malware Training Testing Threads

Family APKs Threads Threads Flagged Rate

Tapsnake 1 31 3 3 100%
Zitmo 1 5 1 1 100%
Loozfon-android 1 25 7 7 100%
Android.Steek 3 9 9 9 100%
Android.Trojan.
Qicsomos 1 12 12 12 100%
CruseWin 1 2 4 4 100%
Jifake 1 7 5 5 100%
AnserverBot 187 9716 11904 11505 96.6%
Gone60 9 33 67 59 88.1%
YZHC 1 9 8 7 87.5%
FakePlayer 6 7 15 13 86.7%
LoveTrap 1 5 7 6 85.7%
Bgserv 9 119 177 151 85.3%
KMIN 40 43 30 25 83.3%
DroidDreamLight 46 181 101 83 82.2%
HippoSMS 4 127 28 23 82.1%
Dropdialerab 1 18* 16* 13 81.3%
Zsone 12 44 78 63 80.8%
Endofday 1 11 10 8 80.0%
AngryBirds-
LeNa.C 1 40* 24* 19 79.2%
jSMSHider 16 101 89 70 78.7%
Plankton 25 231 551 432 78.4%
PJAPPS 16 124 174 136 78.2%
Android.Sumzand 1 8 9 7 77.8%
RogueSPPush 9 236 237 184 77.6%
FakeNetflix 1 27 8 6 75.0%
GEINIMI 28 189 203 154 75.9%
SndApps 10 110 77 56 72.7%
GoldDream 47 1160 237 169 71.3%
CoinPirate 1 8 10 7 70.0%
BASEBRIDGE 1 14* 72 46 63.8%
DougaLeaker.A 6 12* 35* 22 62.9%
NewZitmo 1 5 8 5 62.5%
BeanBot 8 122 93 56 60.2%
GGTracker 1 16 15 9 60.0%
FakeAngry 1 7 10 5 50.0%
DogWars 1 14 8 2 25.0%

* Indicates that data collectors noticed little activity upon launching
one or more of the malware APKs, so we are less confident that the
payload was successfully achieved.

5.3 Malware Package Detection Results
Testing For application/package-based malware detec-

tion, our classifiers use samples from all the threads belong-
ing to a particular software. For instance, all of the samples
collected from the testing set of Anserverbot are used to
determine whether or not that set of software is malware.

Training In the previous experiment on detecting mal-
ware granularity by threads, we used an equal number of
samples for both malware and non-malware, but did not
normalize the number of samples by application or malware
family. In this study, however, in addition to using an equal

Accuracy of Malware Family Classifiers

Figure 5: The accuracy of binary classifiers in deter-

mining whether families of malware and normal Android

packages are malware.

number of samples for non-malware and malware, we use
an equal number of samples from each malware family and
an equal number of samples from each non-malware appli-
cation. This ensures that during training our classifiers see
data from any application that ran for a non-trivial amount
of time and they are not biased by application run times dur-
ing the training phase. Since we want to have equal number
of samples, we leave out short-running applications and mal-
ware families that produce fewer than 1,000 samples.

Results The results of our package classifiers are found
in Table 3 and Figure 5. The results are equally positive by
application as they are for threads. As in the last experi-
ment (thread results), we ran a large number of classifiers
with different parameters and selected the best parameter
for each false positive rate based on the accuracy of the clas-
sifier on the training data (these were 100s of different clas-
sifiers). However, unlike the last study, we found that our
decision tree classifiers did near-perfectly on all the training
data so we could not pick one best parameter configuration.
In Figure 5 we show the best and worst accuracies we ob-
tained with different parameters for the decision trees which
performed near-perfectly on the testing data. Future work
should consider a methodology for selecting classifier pa-
rameters in such cases of ties. The table shows raw classifier
scores for our malware and some non-malware, both sorted
by score. The particular classifier results showcased here ag-
gregate raw decision tree scores from all samples collected
from each malware family and non-malware package. We
see that on average our malware scores are higher for mal-
ware than non-malware. There is, however, some overlap,
creating some false positives.

5.4 Conclusions on Android Malware
In our experiments we are testing on a different set of

variants from those we train on, showing that our classifiers
would likely detect new malware variants in the field that
security investigators had not yet seen. Table 4 shows the
area under the curve for both schemes with 10% false posi-
tives. This is a capability that static signature-based virus

Table 3: Malicious Package Detection Results: Raw Scores
Score Malware Family Score Malware Family Score Malware Family Score Goodware
0.67 YZHC 0.61 CruseWin 0.58 NewZitmo 0.55 appinventor.ai todoprogramar.
0.66 Tapsnake 0.61 BASEBRIDGE 0.58 DogWars HappyWheelsUSA
0.65 Android.Sumzand 0.61 Bgserv 0.57 GEINIMI 0.53 com.android.keychain
0.65 PJAPPS 0.61 DougaLeaker.A 0.56 FakePlayer 0.53 com.pandora.android
0.64 Loozfon-android 0.61 jSMSHider 0.56 AngryBirds-LeNa.C 0.51 com.bestcoolfungames.antsmasher
0.63 SndApps 0.61 FakeAngry 0.55 Android.Trojan.Qicsomos
0.63 GGTracker 0.61 Jifake 0.53 GoldDream 0.38 com.twitter.android
0.62 Gone60 0.61 RogueSPPush 0.53 RogueLemon 0.38 com.android.packageinstaller
0.62 FakeNetflix 0.60 Android.Steek 0.53 AnserverBot 0.37 com.android.inputmethod.latin
0.62 Zsone 0.60 Dropdialerab 0.49 Plankton 0.36 android.process.media
0.62 CoinPirate 0.60 HippoSMS 0.49 BeanBot 0.44 Average
0.62 Zitmo 0.60 Endofday 0.47 LoveTrap
0.61 DroidDreamLight 0.59 KMIN 0.59 Average

Table 4: AUC below 10% False Positive Rates
Classifier Thread Detection Package Detection

Decision Tree 82.3 83.1
KNN 73.3 50.0

Random Forest 68.9 35.7
FANN 53.3 38.4

scanners lack, so there is little basis for comparison. We also
showed that our results are consistently positive for two dif-
ferent detection granularities (and thus metrics) increasing
our confidence in our malware detection scheme.

Are these results as good as they can be? We are unable
to answer this question. The reason is that malware often
includes both malicious and non-malicious code, but we do
not attempt to separate them. As a result, we label all the
threads in malware APKs as malicious in our testing set.
But what if only half the threads are responsible for ma-
licious behavior whereas the other half are legitimate code
which was not present in our training data? Were this the
case, it could well be that we are perfectly detecting all the
malicious threads.

Nonetheless, many of our results are quite promising. For
instance, after training on data from only five of our YZHC
variants, the remaining variants are given significantly higher
malware scores than our unseen non-malware. Similarly, af-
ter training on only 1

3
of AnserverBot’s variants, threads

from the remaining variants are tagged as malware far more
often than are non-malware. With further refinement in
terms of labeling data and better machine learning methods,
we expect that accuracy could be improved significantly.

6. DETECTING LINUX ROOTKITS
Rootkits are malicious software that attackers install to

evade detection and maximize their period of access on com-
promised systems. Once installed, rootkits hide their pres-
ence, typically by modifying portions of the operating sys-
tems to obscure specific processes, network ports, files, di-
rectories and session log-on traces. Although there exist
open-source tools like chkrootkit5 and rkhunter6 to detect
rootkits, their use of known signatures makes it easy for
rootkits to evade detection by varying their behaviors. Fur-
thermore, since these tools work on the same software level
as the rootkits, they can be subverted.

5http://www.chkrootkit.org/
6http://rkhunter.sourceforge.net/

6.1 Experimental Design
In this case study, we examine the feasibility of rootkit

detection with performance data. We examine the two pub-
licly available Linux rootkits which give an attacker the abil-
ity to hide log-on session traces, network ports, processes,
files and directories. The Average Coder Rootkit works as
a loadable kernel module that hides traces via hooking the
kernel file system function calls [23]. The Jynx2 Rootkit
functions as a shared library and is installed by configuring
the LDPRELOAD environment variable to reference this
rootkit [24].

To exercise these rootkits, we run the“ps”, “ls”, “who”, and
“netstat”Linux commands and monitor their execution. The
Average Coder rootkit is used to hide processes, user logins
and network connections whereas the Jynx2 rootkit affects
“ls” to hide files. To introduce some input bias and collect
multiple samples for both training and testing, we run each
command with a variety of different arguments. We run half
the commands before the rootkit is installed and half after.
After data collection, we split the executions up into training
and testing sets. Since we do not repeat commands with the
same arguments, our training data are input biased differ-
ently from our testing data, making the learning task both
more difficult and more realistic. To increase the variability
in our data, we also simulate various user actions like logging
in/out, creating files, running programs and initiating net-
work connections. Lastly, to protect against contamination,
we wiped our system between installation of the rootkits and
collection of “clean” data.

For this case study, we also show the results from an ad-
ditional classifier: tensor density. This classifier discretizes
the vector space into many buckets. Each bucket contains
the relative density of classes in the training data set. A
data point is classified by finding its bin and returning the
stored mix. Although simple, the tensor has O(1) lookup
time, so the classifier is very time-efficient.

6.2 Results
We experimented with five different classifiers, the results

of which are presented in Figure 6. The “combined” clas-
sifier was trained and tested on all of the above programs
whereas the other experiments used data from only one of
the programs.

Our rootkit identification results are interesting, though
not quite as good as the results presented for Android mal-
ware in Section 5. The reason rootkit identification is ex-
tremely difficult is that rootkits do not operate as indepen-
dent programs. Rather, they dynamically intercept pro-

http://www.chkrootkit.org/
http://rkhunter.sourceforge.net/

Combined Rootkit Classifier ls netstat

ps who

Figure 6: Accuracy of rootkit classifiers on several applications in addition to a classifiers trained and test on all of

the applications combined.

grams’ normal control flows. As a result, the data we collect
for training is affected only slightly by the presence of rootk-
its. Given these difficulties, we believe our rootkit detection
shows promise but will require more advanced classification
schemes and better labeling of the data to identify the pre-
cise dynamic sections of execution that are affected.

7. SIDE-CHANNEL ATTACKS
As a final case study, we look at side-channel attacks.

Side-channel attacks are not considered malware. However,
they also threaten security, and we find that our methods
can be used even to detect these attacks.

In a side-channel attack unintentional leaks from a pro-
gram are used to infer program secrets. For example, cryp-
tographic keys can be stolen by observing the performance
of the branch predictor or of the caches for many micropro-
cessor implementations. Nearly any system is vulnerable to
side-channel attacks [26].

In a microarchitectural side-channel attack, a victim pro-
cess is a process that has secrets to protect and an attacker
process attempts to place itself within the system in such
a way that it shares microarchitectural resources with the
victim. Then it creates interference with the victim, e.g.,
thrashes a shared resource constantly so as to learn the activ-
ity of the victim process with respect to that shared resource.
The interference pattern is then mined to infer secrets. Since
the attackers’ interference pattern is programmed we intu-
itively expect that attacker programs that exploit microar-
chitectural side-channels should have clear signatures.

Experimental Design To test our intuition we examine
one very popular class of side-channel attacks known as a
cache side-channel attack. We hypothesize that one partic-
ular method for this type of attack - the prime and probe
attack method - is a good target for hardware anti-virus.
To test our hypothesis, we implement several variants of the
standard prime-and-probe technique. In this technique, an
attacker program writes to every line in the L1 data cache.
The program then scans the cache repeatedly — using a pat-

tern chosen an compile time — reading every line. Whenever
a miss occurs, it means there was a conflict miss caused by
the victim process sharing the cache. The result of a success-
ful prime-and-probe attack is data about the cache lines used
by the victim process over time. Using OpenSSL as the vic-
tim process, we compare cache side-channel attack processes
against a wide array of benign processes. These benign pro-
grams include SPEC2006 int, SPEC2006 fp, PARSEC, web
browsers, games, graphics editors and other common desk-
top applications, as well as generic system-level processes.

Results We train our machine learning algorithms on one
third of our total data: 3872 normal program threads and
12 attack threads. We then test our classifiers on the other
2
3

of the data. Our results in this case are perfect. We catch
100% of the attackers and do not have any false positives on
all four classifiers we used. These results demonstrate that
cache side-channel attacks are easy to detect with perfor-
mance counters. We have tested a sub-type of side-channel
attacks on one microarchitectural structure but it is likely
that other types of microarchitectural side-channel attacks
are also detectable. While these initial results are promising
further study is necessary to prove this hypothesis.

8. HARDWARE SUPPORT
Moving security protection to the hardware level solves

several problems and provides some interesting opportuni-
ties. First, we can ensure that the security system cannot
be disabled by software, even if the kernel is compromised.
Second, since the security system runs beneath the system
software, it might be able to protect against kernel exploits
and other attacks against hypervisors. Third, since we are
modifying the hardware, we can add arbitrary static and dy-
namic monitoring capabilities. This gives the security sys-
tem unprecedented views into software behavior.

The overall hardware security system that we propose is
shown in Figure 7. The system has four primary compo-
nents:

AV

Strongly
Isolated

Core

NOC: Rx for
performance cntr. data,
Tx: security exceptions

Isolated
Secure Bus

SHA-2
HASH

TRAINED
CLASSIFIER

PERF.
FEATURES

REVISION AES KEY

UPDATE
ENCRYPTED

W/ AES
SIGNING KEY
ENCRYPTED

1

2

1: Encrypt Update Payload with AES key
2: Take SHA-2 Hash of Update Payload
3: Include Hash of Verification Key
4: Sign Hash and AES Key w/ AV Signing key

VERIF KEY
HASH

3

4

AT THE MALWARE VENDOR DURING HARDWARE UPDATE

Receive Payload

Unencrypt with verif
key embedded in HW

Verify Hash of Verif Key
matches hash o
verif key on chip

Stop

No

Yes Check integrity of
payload

with SHA-2 hash

Stop

No

Decrypt payload w/
AES Key

Check Revisiion is
the Current HW

Revision

Yes

Yes

Apply Update

ACTION
PROGRAM

Figure 7: Hardware Architecture for AV Execution and Update Methods for Performance Counter Based AV

Data Collection We must define what data the security
processor can collect and how that data is collected
and stored.

Data Analysis The security system must analyze incom-
ing data to determine whether or not malicious behav-
ior is occurring.

Action System If a threat is detected by the system, it
must react in some manner. This may involve mea-
sures as extreme as shutting down the system or as
mild as reporting the threat to a user.

Secure Updates Any security measure must, from time
to time, be updated to deal with the latest malware.
However, these updates must be secure to ensure that
only a trusted authority can update the system.

There are many ways to implement a hardware malware
detector. The most flexible solution is to allocate one or
more general-purpose cores which allows any classification
algorithm to be used for detection. Alternatives include mi-
crocontrollers or microcontrollers with special-purpose mal-
ware detection units that are located on chip, on-chip/off-
chip FPGA, and off-chip ASIC co-processor. These choices
represent different trade-offs in terms of flexibility and area-
and energy-efficiency that need to be explored in detail in the
future. In the rest of the section, however, we focus on the
backbone system framework required to realize any of these
design choices. As we discuss the system framework, we
make recommendations or highlight research advancements
needed to enable online malware detection with performance
counters.

But first, a note on terminology: irrespective of the design
choice i.e., microcontroller, accelerator, big or little cores,
on-chip unit or off-chip co-processor, FPGA or ASIC, we
refer to the entity hosting the classifier algorithm as the AV
engine and the units running the monitored programs as
targets.

8.1 System Architecture
The system architecture should allow the AV engine: (1)

to run independently of any operating system or the hyper-
visor, and at the highest privilege level in the system. This
is to enable continuous monitoring of software at all levels
in the stack (2) to enable access to physical memory to store

classifier data and (3) to provide strong memory and execu-
tion isolation for itself. Isolation ensures that the AV engine
is not susceptible to denial-of-service attacks due to resource
provisioning (e.g., memory under- or over-flow), or resource
contention (e.g., stalling indefinitely due to excessive con-
gestion on the network-on-chip).

Some of these features already exist in processor archi-
tectures today. For instance, AMD processors allow a core
to carve out a region of the physical memory and lock down
that physical memory region from access by other cores [27].
Similarly, some architectures support off-chip coprocessors
to have dedicated and isolated access to physical memory
through IOMMUs. These features must be extended with
mechanisms that guarantee starvation-freedom in shared re-
sources such as the memory controller and in the network-
on-chip (or buses in the case of an off-chip AV) to ensure
robust communication between the AV engine and the tar-
gets.

Recommendation #1 Provide strong isolation mecha-
nisms to enable anti-virus software to execute without inter-
ference.

8.2 Data Collection
From the perspective of implementing an A/V engine in

hardware, no additional information beyond performance
information and thread ID is necessary for thread-based
classification. For application-level classification, hardware
will need application level identifiers associated with each
thread. Thread IDs can already be obtained by hardware.

The AV engine receives performance counter information
periodically from the targets. In our experiments, the data
from the performance counters is fetched once every 25,000
cycles. This translates to a bandwidth requirement of ap-
proximately a few hundred KB/s per target. If the number
of active targets (which is at most cores-times-simultaneous-
threads many) is not too large like in today’s systems, we
can design off-chip AV engines using simple serial protocols
(such as I2C) with round-robin collection of data from tar-
gets. However, as the number of cores increases, on-chip
solutions will become more relevant.

Performance data can be either pulled or pushed from
the targets. In the pull model – the model used in our ex-
periments – the targets are interrupted during execution to
read their performance counters which impacts performance

(roughly 5% empirically). If future hardware support allows
performance counters to be queried without interruption,
these overheads can be reduced to effectively zero. Another
modification that would simplify the design of the AV engine
would be to set up the counters to push the data periodically
to the AV engine.

The amount of storage required to store the ML data
varies greatly depending on the type of classifier used for
analysis. For the KNN algorithm, the data storage was
roughly 50 MB for binary classification. On the other hand,
other analyses needed only about 2.5 MB. Given the vari-
ability in storage size and the amount needed, it appears
that AV engines will most certainly need mechanisms to ac-
cess physical memory for retrieving stored signatures.

Recommendation #2 Investigate both on-chip and off-
chip solutions for the AV implementations.

Recommendation #3 Allow performance counters to
be read without interrupting the executing process.

Recommendation #4 Ensure that the AV engine can
access physical memory safely.

8.3 Data Analysis
A wide variety of classifiers can be implemented for data

analysis. In this paper we experiment with four well-known
classifiers to estimate their potential for malware identifica-
tion. Most likely, advances in machine learning algorithms
and implementations will enable better classification in the
future. To allow for this flexibility it appears that general
purpose cores are preferable to custom accelerators for the
AV engine. However, the AV engine may present domain-
specific opportunities for instruction customization, such as
special types of memory instructions or microarchitectural
innovations in terms of memory prefetchers.

A classification scheme is at best as good as the discern-
ing power of its features. We show that current performance
counters offer a good number of features that lead to good
classification of malware. However, it is likely that the ac-
curacy can be improved further if we included more fea-
tures. Thus, we add our voice to the growing number of per-
formance researchers requesting more performance counter
data in commercial implementations. Specifically, from the
point of view of our malware detection techniques, informa-
tion regarding instruction mixes and basic block profiles for
regions would be very helpful. These inputs can inform the
analysis of working-set changes.

Recommendation #5 Investigate domain-specific opti-
mizations for the AV engine.

Recommendation #6 Increase performance counter cov-
erage and the number of counters available.

8.4 Action System
Many security policies can be implemented by the AV

engine. Some viable security policies are:

• Using the AV engine as a first-stage malware predictor.
When the AV engine suspects a program to be malicious it
can run more sophisticated behavioral analysis on the pro-
gram. Hardware analysis happens ‘at speed’ and is orders of
magnitude faster than behavioral analysis used by malware
analysts to create signatures. Such pre-filtering can avoid
costly behavioral processing for non-malware programs.

• Migrating sensitive computation. In multi-tenant settings
such as public clouds, when the AV engine suspects that an
active thread on the system is being attacked (say through

a side-channel) then the AV engine can move the sensitive
computation. Of course, in some scenarios it may be accept-
able for the AV system to simply kill a suspect process.

• Using the AV engine for forensics. Logging data for foren-
sics is expensive as it often involves logging all interactions
between the suspect process and the environment. To miti-
gate these overheads, the information necessary for forensics
can be logged only when the AV engine suspects that a pro-
cess is being attacked.

Thus there are a broad spectrum of actions that can be
taken based on AV output. The AV engine must be flexible
enough to implement these security policies. Conceptually,
this means that the AV engine should be able to interrupt
computation on any given core and run the policy payload
on that machine. This calls for the AV engine to be able to
issue a non-maskable inter-processor interrupt. Optionally,
the AV engine can communicate to the OS or supervisory
software that it has detected a suspect process so that the
system can start migrating other co-resident sensitive com-
putation.

Recommendation #7 The AV engine should be flexible
enough to enforce a wide range of security policies.

Recommendation #8 Create mechanisms to allow the
AV engine to run in the highest privilege mode.

8.5 Secure Updates
The AV engine needs to be updated with new malware

signatures as they become available or when new classifica-
tion techniques are discovered. The AV update should be
constructed in a way to prevent attackers from compromis-
ing the AV. For instance, a malicious user should not be
able to mute the AV or subvert the AV system to create a
persistent, high-privilege rootkit.

We envision that each update will contain one or more
classifiers, an action program that specifies security poli-
cies, a configuration file that determines which performance
features are to used with what classifiers, and an update re-
vision number. This data can be delivered to the AV engine
securely using techniques used for software signing but re-
quires a few tweaks to allow it to work in a hardware setting.
The process is described in Figure 7.

First, we require that the AV engine implements the afore-
mentioned flowchart directly in hardware: this is because we
do not want to trust any software, since all software is poten-
tially vulnerable to attacks. Second, we require hardware to
maintain a counter that contains the revision number of the
last update and is incremented on every update. This is to
prevent an attacker from rolling back the AV system, which
an attacker might do to prevent the system from discover-
ing new malware. The AV engine offers this protection by
rejecting updates from any revision that is older than the
revision number is the hardware counter. In other words,
there are fast-forwards but no rewinds.

Recommendation #9 Provide support in the AV engine
for secure updates.

9. CONCLUSIONS
In this paper we investigate if malware can be detected in

hardware using data available through existing performance
counters. If possible, it would be a significant advance in
the area of malware detection and analysis, enabling mal-
ware detection with very low overheads. Further, it would
allow us to build malware detectors which are invisible to

the system, in the hardware beneath the operating system.
The intuition that drove us to ask this question was the

observation that programs appear to be unique in terms of
their time-series behavior, while variants of the same pro-
grams do similar things. Our results indicate that this intu-
ition is true. We can often detect small changes to running
programs (rootkit detection) or be somewhat insensitive to
variations (malware detection) depending on how we train
our classifier.

We demonstrate the feasibility of our detection methods
and highlight the increased security from leveraging hard-
ware, but more research is necessary. First, our detector ac-
curacy can be improved. This will involve further research
into classification algorithms and ways to label malware data
more accurately. Second, our classifiers are not optimized for
hardware implementations. Further hardware/algorithm co-
design can increase accuracy and efficiencies.

Despite our results it is not clear if dynamic analysis like
ours provides a significant advantage to defenders in the mal-
ware arms race. While we are able to detect some variants,
could virus writers simply continue permuting their malware
until it evades our detector? Would this level of change to
the virus require some human intervention, making the task
more difficult? We suspect that our techniques increases dif-
ficulty for virus writers. This is because the virus writer now
needs to take into account a wide range of microarchitec-
tural and environmental diversity to evade detection. This
is likely difficult, thus the bar for repeatable exploitations is
likely to be higher. However, this topic merits further study.

Traditionally, the problem of dealing with malware has
been relegated to the software community. Although much
work has been done in the area, the limitations of pure soft-
ware approaches in practical settings are significant. The
addition of hardware support takes the fight against mal-
ware to a new arena, one with different and perhaps higher
standards for attack compared to the state-of-the-art.

Acknowledgements
The authors thank anonymous reviewers, Prof. Martha Kim
and members of the Computer Architecture and Security
Technologies Lab (CASTL) at Columbia University for their
feedback on this work. They also thank Computing Re-
source Facilities at Columbia University Department of Com-
puter Science for their technical assistance in server manage-
ment.

10. REFERENCES
[1] B. Stone-Gross, R. Abman, R. Kemmerer, C. Kruegel,

D. Steigerwald, and G. Vigna, “The underground economy of
fake antivirus software,” in Economics of Information Security
and Privacy III (B. Schneier, ed.), pp. 55–78, Springer New
York, 2013.

[2] J. Caballero, C. Grier, C. Kreibich, and V. Paxson, “Measuring
Pay-per-Install: The commoditization of malware distribution,”
in Proc. of the 20th USENIX Security Symp., 2011.

[3] Trend Micro Corporation, “Russian underground.”

[4] R. Langner, “Stuxnet: Dissecting a Cyberwarfare Weapon,”
Security & Privacy, IEEE, vol. 9, no. 3, pp. 49–51, 2011.

[5] Laboratory of Cryptography and System Security (CrySyS
Lab), “sKyWIper: A Complex Malware for Targeted Attacks,”
Tech. Rep. v1.05, Budapest University of Technology and
Economics, May 2012.

[6] E. Chien, L. OMurchu, and N. Falliere, “W32.Duqu: The
Precursor to the Next Stuxnet,” in Proc. of the 5th USENIX
Workshop on Large-Scale Exploits and Emergent Threats
(LEET), 2012.

[7] Z. Ramzan, V. Seshadri, and C. Nachenberg, “Reputation-based
security: An analysis of real world effectiveness,” Sep 2009.

[8] L. Bilge and T. Dumitras, “Before we knew it: an empirical
study of zero-day attacks in the real world,” in Proc. of the
2012 ACM conf. on Computer and communications security,
pp. 833–844, 2012.

[9] S. Jana and V. Shmatikov, “Abusing file processing in malware
detectors for fun and profit,” in IEEE Symposium on Security
and Privacy, pp. 80–94, 2012.

[10] P. SzÃűr and P. Ferrie, “Hunting for metamorphic,” in In Virus
Bulletin Conference, pp. 123–144, 2001.

[11] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and
E. Kirda, “Accessminer: using system-centric models for
malware protection,” in Proc. of the 17th ACM conf. on
Computer and communications security, pp. 399–412, 2010.

[12] M. Christodorescu, S. Jha, and C. Kruegel, “Mining
specifications of malicious behavior,” in Proc. of the the 6th
joint meeting of the European software engineering conf. and
the ACM SIGSOFT symp. on The foundations of software
engineering, ESEC-FSE ’07, pp. 5–14, 2007.

[13] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff,
“A sense of self for unix processes,” in Proc. of the 1996 IEEE
Symp. on Security and Privacy, pp. 120–135, 1996.

[14] W. Lee, S. J. Stolfo, and K. W. Mok, “A data mining
framework for building intrusion detection models,” in In IEEE
Symposium on Security and Privacy, pp. 120–132, 1999.

[15] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov,
“Learning and classification of malware behavior,” in Proc. of
the 5th intl. conf. on Detection of Intrusions and Malware,
and Vulnerability Assessment, pp. 108–125, Springer-Verlag,
2008.

[16] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian,
and J. Nazario, “Automated classification and analysis of
internet malware,” in Proc. of the 10th intl. conf. on Recent
advances in intrusion detection, RAID’07, pp. 178–197,
Springer-Verlag, 2007.

[17] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Krügel, and
E. Kirda, “Scalable, behavior-based malware clustering,” in
Network and Distributed System Security Symposium, 2009.

[18] C. Malone, M. Zahran, and R. Karri, “Are hardware
performance counters a cost effective way for integrity checking
of programs,” in Proc. of the sixth ACM workshop on Scalable
trusted computing, pp. 71–76, 2011.

[19] Y. Xia, Y. Liu, H. Chen, and B. Zang, “Cfimon: Detecting
violation of control flow integrity using performance counters,”
in Proc. of the 2012 42nd Annual IEEE/IFIP Intl. Conf. on
Dependable Systems and Networks (DSN), pp. 1–12, 2012.

[20] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder,
“Discovering and exploiting program phases,” Micro, IEEE,
vol. 23, pp. 84 – 93, nov.-dec. 2003.

[21] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase
monitoring and prediction on real systems with application too
dynamic power management,” in Proc. of the 39th Annual
IEEE/ACM Intl. Symp. on Microarchitecture, pp. 359–370,
2006.

[22] Y. Zhou and X. Jiang, “Dissecting android malware:
Characterization and evolution,” in Security and Privacy (SP),
2012 IEEE Symp. on, pp. 95 –109, may 2012.

[23] F. Matias, “Linux rootkit implementation,” Dec 2011.

[24] BlackHat Library, “Jynx rootkit2.0,” Mar 2012.

[25] T. Dumitras and D. Shou, “Toward a standard benchmark for
computer security research: the worldwide intelligence network
environment (wine),” in Proc. of the First Workshop on
Building Analysis Datasets and Gathering Experience
Returns for Security, pp. 89–96, ACM, 2011.

[26] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan,
“Side-Channel Vulnerability Factor: A Metric for Measuring
Information Leakage,” in The 39th Intl. Symp. on Computer
Architecture, pp. 106–117, 2012.

[27] A. M. Azab, P. Ning, and X. Zhang, “Sice: a hardware-level
strongly isolated computing environment for x86 multi-core
platforms,” in Proc. of the 18th ACM conf. on Computer and
communications security, (New York, NY, USA), pp. 375–388,
ACM, 2011.

	Introduction
	Background on Malware
	What is Malware and Who Creates It?
	Commercial Malware Protections
	How Good is Anti-Virus Software?
	Malware Arms Race
	Improving Malware Detection

	Key Intuition
	Experimental Setup
	Malware & Non-Malware Programs Used
	Data Collection
	Machine Learning Methods
	Training and Testing Data
	Classification Granularity

	Detecting Android Malware
	Experimental Design
	Malware Thread Detection Results
	Malware Package Detection Results
	Conclusions on Android Malware

	Detecting Linux Rootkits
	Experimental Design
	Results

	Side-Channel Attacks
	Hardware Support
	System Architecture
	Data Collection
	Data Analysis
	Action System
	Secure Updates

	Conclusions
	References

