
RoboBench: Towards Sustainable Robotics System Benchmarking

Jonathan Weisz, Yipeng Huang, Florian Lier, Simha Sethumadhavan, and Peter Allen

Abstract— We present RoboBench, a novel platform for
sharing robot full-system simulations for benchmarking. The
creation of this platform and benchmark suite is motivated
by a need for reproducible research. A challenge in creating
a full-system benchmarks are incompatibilities in software
created by different groups and the difficulty of reproducing
software environments. We solve this problem by using software
containers, an emerging virtualization technology. RoboBench
enables sharing robot software in a runnable state, capturing
the software behavior of robots carrying out missions. These
simulations make clear the performance impact and resource
usage of programs and algorithms relative to other software
involved in the mission. These containers are integrated with
the CITK platform for reproducible research, which automates
generation and publishing of the containers. We present an
overview of the system, a description of our prototype set of
benchmark missions, along with a validation study comparing
the computational load profile of a mission performed on a
real and simulated robot. Additionally, we present prelim-
inary results of an overall analysis of the benchmarks in
the RoboBench suite, showing where computational work is
expended in robotics common robotics tasks. RoboBench is
extensible, and is the first step toward a robust, quantitative
approach to engineering computationally-efficient robots.

I. INTRODUCTION

Benchmarking has been central to improvements in a num-
ber of computer science disciplines, by making possible re-
peatable measurements to quantify improvements. Currently,
comparative research in robotics has focused on competitions
between systems [3][4], and on benchmarking capabili-
ties [15][19], both of which have shortcomings in their ability
to advance research. Competitions such as RoboCup lead to
robot systems that excel at certain missions, and teams are
required to share binaries and/or source code. But vital infor-
mation such as detailed build instructions, and the system’s
required library versions are insufficiently shared to allow
replication of results long after the competition. In terms of
capabilities benchmarks, input datasets and comparison tools
have helped comparing algorithms within domains, leading
to immense improvements in individual subsystems—indeed,
this is the current definition of benchmarking in robotics.
However, benchmarks for subsystems do not test software
running as part of a whole robot, and are unable to shed
light on how to optimize systems as a whole.

We advocate for a study of robot systems, which takes into
account the cost of computing over the course of robot mis-
sions, optimizing robotics algorithms from the perspective of

This work has been supported by National Science Foundation grants
CNS 1239134, IIS 1208153, and a fellowship from the Alfred P. Sloan
Foundation. J. Weisz, Y. Huang, S. Sethumadhavan and P. Allen are with
the Department of Computer Science, Columbia University, E-mail: jweisz,
yipeng, simha, allen@cs.columbia.edu. F. Lier is with CITEC, Bielefeld
University. E-mail: flier@cit-ec.uni-bielefeld.de.

Container 0: navigating REEM
laser

scanner
OMPL

mobile

base
Gazebo

CONTROL

PERCEPTION

ACTUATORS

SENSOR TYPE

TASK

speaking

manipulating

grasping

mapping

observing

navigating

•

•

•

•

•

•

ROBOT TYPE

quadrotor

fi xed-wing

walker

grasper

wheeled

underwater

•

•

•

•

•

•

•

•

•

•

•

•

PLANNING 

FRAMEWORK

OMPL

MRPT

OpenRAVE

orocos

•

•

•

•

•

•

•

•

SIMULATOR

Gazebo

MOOS-IvP

hrpsys simulator

•

•

•?? ?

Container 1: grasping PR2 Kinect OMPL
two-fi nger 

hand
Gazebo

Container 2: observing quadrotor
stereo

cameras
autopilot throttle Gazebo

Task Robot Sensors Frameworks Actuators Simulator

Fig. 1. Containers capture a fixed combination of software that form
a simulation. In the top part of this figure, we see mission tasks, robot
subsystems, and simulators form combinatorially many designs, allowing
for high flexibility for researchers. But the open-ended framework presents
a high entry barrier for peers to replicate systems for benchmarking. Bottom,
successfully working simulations with a fixed set of software are distributed
as containers, which are guaranteed to run on other users’ computers.

covering the most used functions first, while paying attention
to costs incurred in infrastructure such as ROS and networks.
To make repeatable, quantitative studies of systems possible,
we need an ability to share fully built systems that are ready
to run missions.

Researchers need a robotics software benchmark suite,
consisting of fully built robot simulations, that can be shared
with non-experts in robotics to study the overall properties
of its software. These properties include a breakdown of
algorithms involved, and an analysis of the hardware re-
quirements of the software. Studying such as benchmark
suite would guide research in what software needs to be
optimized first, and what specialized hardware may be useful
for supporting robotics.

We present RoboBench, a benchmarking platform inte-
grated with the CITK open research sharing platform [13]
for sharing robotics systems research. The key enabling
technology for bringing together disparate simulations from
different projects is Linux containers, a form of virtual
machine images. With containerization, we are able to pack-
age simulations with all their dependencies, forming an
extensible benchmark suite.

In order to achieve our goal of creating a sustainable
benchmark suite, we make the following contributions in this
paper.

• A novel tool for procedurally creating robotics simula-

To Appear at the 2016 IEEE International Conference on Robotics and Automation




tions containers, which are automatically adapted and
deployed to the users’ host machine.

• A representative set of containerized missions, capturing
a variety of software environments commonly used in
robotics.

• A case study in using software profiling tools inside
containers. The measurement results obtained from con-
tainers are validated against results from a real physical
robot.

• An overview of observations garnered from profiling the
reference set of benchmarks.

As a case study using the RoboBench suite, we analyze
the amount of time spent in applications and routines during
missions. A surprisingly large amount of CPU cycles go into
software for launching and coordinating software submod-
ules. Our data motivate a need for an efficient framework
for communication between software modules. Among the
remaining compute cycles, we find sensory software (e.g.,
vision, point clouds), and continuously running routines (e.g.,
collision detection) occupy a large portion of CPU time.
These algorithms may be better supported by specialized
hardware, which may include GPUs and field programmable
gate arrays (FPGAs).

The rest of this paper is organized as follows: Section II
motivates and describes the benefits of using containers;
Section III presents a framework for making RoboBench
extensible; Section IV describes the initial set of simulations
in RoboBench; Section V demonstrates using RoboBench
to determine how robot energy is spent in computing; Sec-
tion VI covers existing benchmark suites in various domains;
and Section VII concludes.

II. A CASE FOR CONTAINERS FOR ROBOTS

Where simulations reduce the hardware cost for robotics
research, virtualization could further reduce the software
maintenance cost of simulators. In order to create a sustain-
able benchmark of whole robot systems, we distribute pack-
ages of all software dependencies for individual simulations,
along with the scripted recipe for creating the simulation.

Our approach runs contrary to common robotics software
development, where software packages provide general in-
terfaces to support many robot designs and missions, as
depicted in the top half of Figure 1. This conventional
approach to assembling software is demonstrated in various
simulations that are publicly available in robotics repositories
such as ROS [18] and robotpkg1. But in setting out to create
a suite of such simulations, we found it impossible to main-
tain several system simulations in a environment at once.
Different simulations depend on conflicting libraries, and
sometimes depend on obsolete libraries—this is a common
problem in all software, including robotics. These difficulties
prevent researchers from replicating results derived from
simulations.

Containers are an emerging feature in Linux for creat-
ing lightweight virtual machine images capable of solving

1http://robotpkg.openrobots.org/

aforementioned problems. We use Docker [2], the leading
application for using Linux containers, to create, package,
and distribute robotics simulations, as shown in the bottom
half of Figure 1. Simulation containers come with inputs
that specify mission goals, a description of the robot, all
software libraries to support mission tasks, and a simulated
environment.

This approach provides several benefits: 1) Guaranteed
deployment: similar to VM images, containers come with
installations of libraries and their own Linux environment.
2) Ability to host multiple simulations: each simulation gets
a dedicated file system root directory, allowing multiple
simulations to reside on a host, even if they require conflict-
ing dependencies. 3) Lightweight: unlike full virtualization,
containers do not incur the overhead of a guest kernel or OS;
container images have a tractable size that can be hosted
on public repositories for containers such as Dockerhub.
4) Native hardware access: with proper configuration, the
container can access the GPU for rendering and computation
with near native machine performance.

Due to this ability to extend the longevity of research soft-
ware, Docker and Linux containers have attracted attention
for enabling reproducible research in other fields [7]. This
approach may also assist sharing of software and experiments
at conferences and journals.

In addition to creating the containers for simulations, our
work overcomes the following problems in using containers
for robotics research: 1) User adoption: adoption of the
containerization would require robotics researchers to track
yet another complex technology, which would limit the
adoption of this approach. 2) Metadata and documentation:
while functionally complete, containers still need to be asso-
ciated with documentation for its construction, purpose, and
expected behavior. 3) Diversity of host machines: configuring
a container to use host resources (e.g., graphics and sound
hardware) requires complex command line options specific
to each host machine. These issues were overcome in part by
extending the CITK platform through the citman application
described in the next section.

III. INTEGRATION OF ROBOBENCH AND THE CITK
PLATFORM

We present citman, a tool for automatically generat-
ing containers from existing build scripts (also known as
recipes). The citman tool interacts with the CITK2 project to
enable automatic documentation and testing of the generated
containers. Using citman, researchers can build, run, and
publish simulation containers similar to those in RoboBench.
As CITK recipes are added by other researchers, they are
automatically available through citman, and can be profiled
with minor alterations. CITK recipes which demonstrate

2CITK is a platform for improving experiment replication and publication
for robotics software. CITK does so by providing a content management
system for publishing metadata associated with simulations, which are
themselves assured to compile from available sources using a continuous
integration (CI) framework.



continuous integration service

user / tester’s host

Simulation Container

Navigation 
scenarioGrasping 

scenario

Simulation Container

Navigation 
scenarioGrasping 

scenario

simulation container

navigation 
scenariograsping 

scenario

RoboBench App Manager

confi guration 
repository 

& container 
repository

simulation developer’s host

simulation 
container

grasp 
planning 

framework

simulation 
confi g. 
script

grasping 
test

scenario

grasping 
scenario

build test / accuracy test

Fig. 2. Our proposed RoboBench infrastructure for system benchmarking.
We build upon existing continuous integration services, which check for
successful compilation and accurate program outputs, to create containers
of simulations. The containerized simulations are then shared via public
repositories. Users obtain and configure simulations to run on new machines
with the RoboBench Application Manager.

interesting workloads may be selected to become part of the
benchmark suite.

Developing the recipes for complex full system simula-
tions is challenging. The CITK platform provides a language
for building and testing full systems, along with a repository
of modules and datasets useful in systems. By extending
CITK’s modular recipe framework, RoboBench seeks to
create an appealing platform for developers to build full
system tests for their own development needs.

The CITK repository currently has some full-mission
simulations, but it still is missing missions that would
include important robotics domains and frameworks. As
part of creating RoboBench, we have added recipes that
include important frameworks used in a more diverse set
of robotics domains. In these domains we have implemented
sample missions which demonstrate use of these frameworks
and validated that our containerization and benchmarking
approach works.

As the name suggests, continuous integration (CI) testing
is a software engineering practice where code committed
by developers is frequently tested to ensure they produce
correct results. CI testing can encompass testing of multiple
programs working together as a robotic system. By require-
ment, a body of code and dependencies that is able to pass CI
testing is able to compile and run without human invention,
and therefore ready to be captured in a container.

In theory, CI alone (without using containers) should guar-
antee preservation and delivery of artifacts. The ongoing tests
and maintenance by developers should ensure that a running
system always be available. In reality, the required libraries
beyond the control of the system developer may become
obsolete, at which point a working system simulation ceases
to be available. Containerization mends this shortcoming of
CI by capturing the binaries, libraries, and environment when
it is presently working, ensuring that the simulations will run
some time in the future.

In particular, citman extends the CI capabilities provided
by the CITK project, which are in turn built on Jenkins CI3,
a widely used CI framework. We chose to extend this project

3https://jenkins-ci.org/

Fig. 3. Six of the robots in RoboBench carrying out tasks in simulation.
From left to right, top row: PR2 grasping, REEM grasping, REEM naviga-
tion; bottom row: humanoid walking, quadrotor localization, AUV swarm.

because of its focus on CI for robotic systems, and for the
additional documentation and metadata sharing services it
provides.

Our integration of RoboBench’s citman tool with CITK
provides an additional benefit of having CITK’s testing
capabilities available inside containers. CITK provides a
way to test system simulations using finite state machine
testing (FSMT), which checks the command line output of
programs for correct results at specified times. This model
of testing is ideal for checking for successful start-up of all
the programs and satisfactory termination of the simulation,
and for launching analysis tools such as code profilers at
specified times during a robotics mission.

By facilitating creation of containers from existing and
inherently useful tests, our framework may increase the num-
ber of simulations captured in RoboBench, forming a larger
benchmark suite. Further details for integrating tests in the
RoboBench / CITK platform can be found on the RoboBench
portal of the CITK server, found at www.robobench.net,
described further in Section VII. The reader is encouraged to
visit this site for detailed instructions on how to download
and install the citman application to reproduce the results
found in the following sections.

IV. SELECTION OF BENCHMARK SIMULATIONS

Table I shows the seven simulations currently included in
the benchmark suite, which include simulations of 1) PR2
grasping: a robot segmenting a point cloud scene with a
bottle, followed by grasping it; 2) PR2 navigation: a robot
finding a path around a map; 3) REEM grasping, 4) REEM
navigation: a REEM robot performing equivalent tasks as the
PR24; 5) humanoid walking: a two legged robot maintaining
balance and walking; 6) quadrotor localization: an aerial
reconnaissance drone using vision-based localization, flying
to preset waypoints; 7) AUV swarm: a simulation of mul-
tiple autonomous underwater vehicles performing collision
avoidance while navigating to waypoints.

4PR2 and REEM are both grasping robots used in research settings.

www.robobench.net


TABLE I
SUMMARY OF ROBOTS, SIMULATION FRAMEWORKS, MISSION TASK, AND CAPABILITIES USED FOR TASK

Simulation Robot Dependencies Mission task Capabilities used
PR2
grasping

PR2 Interactive
Manipulation

Ubuntu 12.04, ROS
(Groovy), Gazebo

Segment image from Kinect, iden-
tify a bottle and grab it

Point cloud clustering, grasp plan-
ning

PR2
navigation

PR2 Gazebo Ubuntu 12.04, ROS
(Groovy), Gazebo

By searching a preloaded map, find
a way between two points

Search based path planning

REEM
grasping

REEM Ubuntu 12.04, ROS
(Hydro), Gazebo

Identify bottle and grab it Grasp planning

REEM
navigation

REEM Ubuntu 12.04, ROS
(Hydro), Gazebo

Navigate through doorway to adja-
cent room

Search based path planning

Humanoid
walking

Model of humanoid
walker under real time
control

ROS (Hydro), HRPSYS
Simulator

Maintain balance, walk in straight
line

Forward dynamics modeling, in-
verse dynamics control

Quadrotor
localization

TUM quadrotor AR
drone

Ubuntu 12.04, ROS
(Hydro), TUM Simulator

Navigate to a set of waypoints Detect video stream features,
Kalman filter sensor fusion

AUV swarm Swarm of AUVs under
control of pHelmIvP
autopilot

MOOS IVP simulator Navigate to a set of waypoints Collision avoidance by calculating
closest point of approach between
vessels

While these robots do not form a comprehensive set of
robot designs, these robots were selected to form a repre-
sentative set of different operating environments, including
aerial, terrestrial, and aquatic robots, which come equipped
with wide variety of sensory input, levels of autonomy, and
actuator designs. The robots’ behaviors are supported by a
set of middleware frameworks including ROS, and planning
frameworks including MoveIt!5. These robots receive sen-
sory input from simulators such as Gazebo [12], HRPSys6,
and MOOS-IVP [5], and their activity can be viewed through
visualization user interfaces such as Rviz7.

V. CASE STUDY: ROBOBENCH ENERGY
CHARACTERIZATION

As mobile robots become more autonomous and take
on longer mission durations, the energy efficiency of their
subsystems becomes a greater concern. An often overlooked
component of energy consumption is that of computation,
which we forecast will take up a greater fraction of the
total energy budget in future robots. Significant research
effort has been devoted to improving robot capabilities, in
terms of features and accuracy, along with the efficiency
of individual algorithms. But despite the immense gains in
individual subsystems, it is not clear how these optimizations
form an energy-efficient computer architecture for mobile
robotics.

In this section we provide motivation for creating a
system-wide benchmark suite, starting by making a case
that robot computation efficiency is increasingly important.
Using the amount of CPU time a software spends as an
approximation of its energy consumption, we reveal what
pieces of software incur the most energy cost over the
course of a mission. This helps researchers evaluate the
overall impact of individual algorithm optimizations, taking
into account what programs ultimately take the most time.
This kind of study of the computational demands of the

5http://moveit.ros.org/support/
6http://wiki.ros.org/hrpsys
7http://wiki.ros.org/rviz

Fig. 4. Fraction of robot battery energy spent on computation.

collection of robotics software is only made possible by the
infrastructure provided by RoboBench.

A. Brain vs. Brawn

Robots, as mobile computers with wheels and limbs, have
the unique energy demands of having to power motors and
sensors. Lighter materials, efficient actuators, and capacious
batteries all drive improvements in robot mission endurance.
But as robots are required to operate with increasing levels
of autonomy while subject to more varied environments,
mobile robots are acquiring more advanced sensors (e.g.,
stereo cameras and laser scanners), and actuators (hands),
both of which present greater computational demands.

Figure 4 shows an estimate of the percentage of battery
energy spent on computation for nine robots, using data ob-
tained from public specification sheets. The compute energy
is estimated via the total dissipated power (TDP) of the
CPU, which overestimates the processor load but excludes
energy consumed by memory and cooling. We find later
in this section that sensor processing and safety monitoring
run constantly, even when the motors are idle, such that the
rated TDP is a reasonable approximation for compute energy.
The energy expenditure outside of compute (sensors and
motors) is obtained from specification sheets, or is derived
by dividing total energy stores by the rated endurance and the
subtracting the TDP, yielding the most conservative estimate.
The values are plotted against endurance as a measure of



mobility and autonomy. Logarithmic axes are used to fit the
immense range of robot designs on the same chart.

We see that autonomous underwater vehicles (AUVs)
spend 10-40% energy on computation, due to their ability
to loiter for long periods while neutrally buoyant; when
they do move, AUVs use hydrofoils and control surfaces
to glide through the water while moderating their buoyancy,
achieving highly efficient movement. Modest improvements
in computational efficiency could significantly enhance AUV
endurance. This is in contrast to the rotorcraft fliers, which
spend all their energy just to stay aloft. Therefore, compute
is not the key consideration when optimizing for quadrotor
endurance.

The most computationally capable robots, the humanoid
Nao, mobile manipulator PR2, and the Turtlebot 2, with
its netbook payload, spend 8-12% energy on computation.
These terrestrials make use of compute power for seeing,
planning, and/or grasping, and increasingly for interacting
with humans through facial, speech recognition and voice
synthesis; all of these tasks place increasing computational
load on robot systems.

Robots that operate tethered to an external power source,
such as Baxter or Atlas, or mobile robots that derive energy
from fuel, such as the BigDog or Cheetah robots, are
excluded from this study.

B. Robot Software Profiling and Instrumentation

The relative importance of programs and functions in
a system’s workload can be measured via sampling-based
profiling, which entails occasionally recording the processor
stack while a workload is in progress. We use OProfile8

to measure what percentage time is spent in applications
and libraries. Where possible, we either obtained debug
symbol libraries or compiled binaries with profiling symbols
to expose function names and parameter signatures, allowing
us to obtain a highly detailed, function-level, breakdown of
where CPU cycles are spent. This allows analysis of the
amount of CPU load presented by all software, including
sensory processing, planning, control, and any middleware
frameworks such as ROS.

Sampling based software profiling is not well supported
inside virtual environments. In our experience OProfile most
reliably identifies the source code for function call samples.
The competing Linux perf tool supports sampling within
KVM based virtual machines, but not in container-based
machines such as Docker containers. When using perf within
containers, perf delays resolving source code information to
after sampling is complete, looking in file system locations
which may have been removed by Docker’s union file
system; therefore, perf does not reliably generate source-level
information.

We use GNU Gprof and Google perftools9 to further
analyze programs taking most time, in particular to plot their
internal function call dependencies.

8http://oprofile.sourceforge.net/about/
9https://github.com/gperftools/gperftools

Fig. 5. Distribution of time spent in programs and routines in a PR2 during
a grasping task.

For each simulation we identified the processes that only
exist because the robot is running in simulation; these include
any samples occurring in setting up the virtual world, such
as Gazebo’s core linear complementarity solvers for physics
simulation, UI software such as Rviz, graphics drivers, and
our profiling tools. These are removed from the analysis.

Due to space constraints, we present analysis of three
example robots; the other simulations are available as part
of the RoboBench suite.

C. Analysis of PR2 Grasping Simulation

We analyze the system profile of the PR2 robot during a
mission where the robot segments a point cloud, identifies
a bottle, and plans and carries out a grasp. We compare the
system profile of this simulation to that of a physical robot
doing the same task. Figure 5 shows the relative amount
of CPU cycles spent by programs in PR2, showing the top
categories that account for 75% of the samples during the
mission.

In some aspects the simulated robot differs from the
physical measurement: activity from nodelet appears only
in the physical robot because the simulated robot does not
compress and decompress sensor data streams; likewise, this
simulated robot lacks activity in driving camera and network
stacks. These discrepancies are caused by the simulator’s
limited ability to model distributed computing resources in
the robot. Outside of these differences, the two activity traces
follow the same trends.

This measurement provides a number of interesting find-
ings: 1) A large amount of computing energy is spent in
infrastructure code: Python routines for setting up main
programs and logging are one of the largest consumers
of CPU time. Also prominent are networking routines and
pthread waits. The systems we profiled all rely on mid-
dleware frameworks, such as ROS, in order to support a
plug-and-play model consisting of many different modules.
Often these frameworks themselves require significant com-
putational power. 2) Collision detection, sensory input run
constantly: outside of frameworks, the largest consumers of
CPU time that do computational work are nodelet binary



TABLE II
FUNCTION CALLS USING THE MOST CYCLES IN SIMULATED PR2, EXCLUDING CYCLES SPENT IN CALLEE FUNCTIONS

Program Source code file name Function signature Function description % mission
CPU cycles

self filter color bodies.cpp ConvexMesh::intersectsRay() raytracing a point in point cloud to see if it is
from robot itself

11.2%

collider node collider.cpp Collider::degradeSingleSpeckles() denoising octree entries, remove errant data 3.4%
collider node collider.h Collider::getOccupiedPoints() octree lookup 3.2%
collider node OcTreeDataNode.hxx OcTreeDataNode::hasChildren() octree traversal 1.4%

for compressing point clouds, self filter for clustering
points in the point cloud and identifying the robot’s arms,
and collider node for processing laser scanner input
and collision detection. These are routines that are called
from several sources and run constantly, regardless of the
robot activity. 3) Complex robotics algorithms may represent
relatively little computing energy: As a corollary, various
algorithms that are of high research interest comprise a small
portion of the runtime; these include vision routines that
run occasionally, such as image segmentation, and motion
planning to find a grasp. 4) The most expensive functions
include three dimensional loops: the function calls that show
up most frequently during the simulation all have nested
loop structures accessing a three dimensional data structure,
Table II shows the signatures of these function calls. 5) The
workload is highly multiprogrammed: numerous programs
are needed to support the task, with over 300 processes
showing activity at some point in the mission.

D. Analysis of Humanoid Walking Simulation

The humanoid robot walking simulation has a robot in an
environment generated in an OpenHRP simulator. The robot
is balanced with an OpenRTM real time controller. 70% of
the robot compute cost occurs in calls to libhrpModel,
which is the library that provides forward and inverse dy-
namics routines. Within this library, it appears the majority
of the time, 40% of the cycles, is spent in recursive calls
to calcInverseDynamics. These functions are in turn
backed up by the Eigen linear algebra library. This confirms
intuition that inverse dynamics is computationally more tax-
ing than forward dynamics, along with forward and inverse
kinematics combined.

E. Analysis of Quadrotor Localization Simulation

We simulate a quadrotor flying in a street scene, nav-
igating to preset waypoints. The quadrotor must use in-
put from a camera, gyroscope, and accelerometer to lo-
calize itself. The system profile shows that the binary
for SLAM, drone stateestimation, takes 27% of
the CPU time, the remaining time is spent in the bi-
naries state publisher, drone autopilot, Python,
message to tf, and rosout each taking 13%-15%
of cycles each. Further analysis of the function calls in
drone stateestimation shows sensor fusion is the
bulk of computation.

Case Study Summary: The applications, functions, and
algorithms identified in this type of study may be ideal

TABLE III
SUMMARY OF ROBOTICS BENCHMARKS

Problem domain Benchmark

Sensor

vision SD-VBS [20]
mobile system vision MEVBench [9]
SLAM SLAMBench [16]
visual servoing ViSP [14]

Autonomy
physics simulation Bullet benchmark [1]
2d motion planning MoVeMA [8]

Actuator arm motion planning Planner Arena [15]
grasp planning OpenGRASP [19]

TABLE IV
SUMMARY OF ARCHITECTURE BENCHMARKS

Hardware system class Benchmark
Microcontroller embedded systems EEMBC [17]
Single threaded CPU SPEC CPU2006 [11]
Multithreaded CPU PARSEC [6]
Cloud and datacenter workloads CloudSuite [10]

candidates for optimization. More interesting, however, is
the fact no algorithms overwhelmingly occupy this set of
robots’ computers as they complete their missions. The
largest improvements in computing efficiency may come
from changes to robot software infrastructure, along with
possible computer architecture and hardware support for
select algorithms.

VI. RELATED WORK

Benchmarking is has been central to the systematic devel-
opment of several computer science fields. Within robotics
much research has been done in creating benchmarks orga-
nized around specific problem domains. Table III shows a
number of such benchmarks. These benchmark suites help
answer questions such as ”how accurately or how efficiently
does an application solve a problem?” As an additional
benefit, the benchmark suites shown in Table III concisely
share with non-experts emerging problems and state-of-the-
art applications througout robotics.

RoboBench presents a class of benchmarks different from
any shown in Table III. The benchmark simulations that can
be created by the RoboBench framework capture the software
behavior of an entire software system, and help answer ques-
tions such as ”what applications and algorithms are running
in a robot?”. RoboBench benchmarks concisely share with
non-experts in robotics implementations of robotic software
systems, similar to how benchmarks in Table IV capture the
software behavior of various classes of computers.



VII. CONCLUSION & FUTURE WORK

In many computer science fields, reproducible benchmark-
ing is a cornerstone of evaluating designs and the peer review
process. The robotics community has increasingly recognized
the need for benchmarks in systematic research. However,
the lack of a platform for distributing whole systems has
limited benchmarks to evaluating isolated components. In
this paper, we have presented a framework for creating
system benchmarks, which are important for a system-wide
view of performance and efficiency. This view is a first step
for answering important questions about robot designs, such
as the computational needs of a system designed to perform
a particular mission.

Some projects in the recent years, such as ROS and
robotpkg, have addressed the distribution problem of soft-
ware system engineering, through package repositories; how-
ever, this has not provided adequate stability to keep large
software projects available without significant maintenance.

Emerging technologies (e.g., containerization, CI) over-
come these challenges by assuring the availability of running
systems, long after they were developed. In this paper we
presented how to leverage these technologies to create a
sustainable, extensible robotics benchmark suite.

As a case study of how system-wide benchmarking is
useful, we measured the relative cost of different software
components of a few mobile robots carrying out missions.
Insights such as these are crucial for guiding further re-
search and development, such as designing efficient custom
hardware for robotics. The availability of such a suite of
benchmarks enables researchers from outside the robotics
community to analyze the benchmarks and take part in
related research activities.

Our measurements from the simulations, though secondary
to the main contribution of the paper, are in themselves
surprising. Background tasks that persist the whole life of
the mission, such as sensor processing for obstacle avoidance
and intermodule communication overhead, may consume
more CPU cycles than short-lived but complex tasks such
as motion planning, therefore limiting the impact of soft-
ware optimizations targeted at individual modules on overall
system efficiency.

The instructions for replicating the experiments presented
in this paper, the descriptions for all the simulated sys-
tems and their subcomponents, and the data that comprises
the graphs shown in this paper are available at www.

robobench.net.
With this paper we introduce just one possible use case

for a benchmark simulation suite. At the webpage above we
provide instructions on how to install and use citman, and
on how to submit new simulations for inclusion. We hope
this infrastructure will promote system-level benchmarking,
while maintaining the transparency necessary to enable re-
producible scientific research.

REFERENCES

[1] “Bullet physics library,” http://bulletphysics.org/wordpress/.

[2] “Docker: An open platform for distributed applications for developers
and sysadmins.” https://www.docker.com/, accessed: 2015-03-02.

[3] A. Ahmad, I. Awaad, F. Amigoni, J. Berghofer, R. Bischoff, A. Bonar-
ini, R. Dwiputra, G. Fontana, F. Hegger, N. Hochgeschwender, et al.,
“Specification of general features of scenarios and robots for bench-
marking through competitions,” RoCKIn Deliverable D, vol. 1, 2013.

[4] J. Anderson, J. Baltes, and C. T. Cheng, “Robotics competitions as
benchmarks for AI research,” The Knowledge Engineering Review,
vol. 26, no. 01, pp. 11–17, 2011.

[5] M. R. Benjamin, H. Schmidt, P. M. Newman, and J. J. Leonard,
“Nested Autonomy for Unmanned Marine Vehicles with MOOS-IvP,”
Journal of Field Robotics, vol. 27, no. 6, pp. 834–875, November/De-
cember 2010.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, 2008.

[7] C. Boettiger, “An introduction to Docker for reproducible research,”
SIGOPS Oper. Syst. Rev., vol. 49, no. 1, pp. 71–79, Jan. 2015.

[8] D. Calisi, L. Iocchi, and D. Nardi, “A unified benchmark frame-
work for autonomous mobile robots and vehicles motion algorithms
(MoVeMA benchmarks),” in Workshop on experimental methodology
and benchmarking in robotics research (RSS 2008), 2008.

[9] J. Clemons, H. Zhu, S. Savarese, and T. Austin, “MEVBench: A
mobile computer vision benchmarking suite,” in Workload Character-
ization (IISWC), 2011 IEEE International Symposium on, Nov 2011,
pp. 91–102.

[10] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: A study of emerging scale-out workloads on
modern hardware,” SIGPLAN Not., vol. 47, no. 4, pp. 37–48, Mar.
2012.

[11] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sept. 2006.

[12] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sendai, Japan, Sep
2004, pp. 2149–2154.

[13] F. Lier, J. Wienke, A. Nordmann, S. Wachsmuth, and S. Wrede,
“The cognitive interaction toolkit improving reproducibility of robotic
systems experiments,” in Simulation, Modeling, and Programming
for Autonomous Robots, D. Brugali, J. Broenink, T. Kroeger, and
B. MacDonald, Eds. Springer International Publishing, 2014, vol.
8810, pp. 400–411.

[14] E. Marchand, F. Spindler, and F. Chaumette, “ViSP for visual servoing:
a generic software platform with a wide class of robot control skills,”
Robotics Automation Magazine, IEEE, vol. 12, no. 4, pp. 40–52, Dec
2005.

[15] M. Moll, I. A. Sucan, and L. E. Kavraki, “An extensible
benchmarking infrastructure for motion planning algorithms,” CoRR,
vol. abs/1412.6673, 2014. [Online]. Available: http://arxiv.org/abs/
1412.6673

[16] L. Nardi, B. Bodin, M. Z. Zia, J. Mawer, A. Nisbet, P. H. J. Kelly,
A. J. Davison, M. Luján, M. F. P. O’Boyle, G. D. Riley, N. Topham,
and S. Furber, “Introducing SLAMBench, a performance and accuracy
benchmarking methodology for SLAM,” CoRR, vol. abs/1410.2167,
2014. [Online]. Available: http://arxiv.org/abs/1410.2167

[17] J. Poovey, T. Conte, M. Levy, and S. Gal-On, “A benchmark char-
acterization of the EEMBC benchmark suite,” Micro, IEEE, vol. 29,
no. 5, pp. 18–29, Sept 2009.

[18] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[19] S. Ulbrich, D. Kappler, T. Asfour, N. Vahrenkamp, A. Bierbaum,
M. Przybylski, and R. Dillmann, “The OpenGRASP benchmarking
suite: An environment for the comparative analysis of grasping and
dexterous manipulation,” in Intelligent Robots and Systems (IROS),
2011 IEEE/RSJ International Conference on. IEEE, 2011, pp. 1761–
1767.

[20] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor, “SD-VBS: The san diego vision
benchmark suite,” in Proceedings of the 2009 IEEE International
Symposium on Workload Characterization (IISWC). Washington, DC,
USA: IEEE Computer Society, 2009, pp. 55–64.

www.robobench.net
www.robobench.net
http://bulletphysics.org/wordpress/
https://www.docker.com/
http://arxiv.org/abs/1412.6673
http://arxiv.org/abs/1412.6673
http://arxiv.org/abs/1410.2167

	Introduction
	A Case for Containers for Robots
	Integration of RoboBench and the CITK Platform
	Selection of Benchmark Simulations
	Case Study: RoboBench Energy Characterization
	Brain vs. Brawn
	Robot Software Profiling and Instrumentation
	Analysis of PR2 Grasping Simulation
	Analysis of Humanoid Walking Simulation
	Analysis of Quadrotor Localization Simulation

	Related Work
	Conclusion & Future Work
	References

