
Appears in the 11th International Conference on Architectural Support for Programming Languages and Operating Systems

Scalable Selective Re-Execution for EDGE Architectures

Rajagopalan Desikan† Simha Sethumadhavan Doug Burger
Stephen W. Keckler

Computer Architecture and Technology Laboratory
†Department of Electrical and Computer Engineering

Department of Computer Sciences
The University of Texas at Austin

cart@cs.utexas.edu - www.cs.utexas.edu/users/cart

ABSTRACT
Pipeline flushes are becoming increasingly expensive in mod-
ern microprocessors with large instruction windows and deep
pipelines. Selective re-execution is a technique that can re-
duce the penalty of mis-speculations by re-executing only
instructions affected by the mis-speculation, instead of all
instructions. In this paper we introduce a new selective
re-execution mechanism that exploits the properties of a
dataflow-like Explicit Data Graph Execution (EDGE) archi-
tecture to support efficient mis-speculation recovery, while
scaling to window sizes of thousands of instructions with
high performance. This distributed selective re-execution
(DSRE) protocol permits multiple speculative waves of com-
putation to be traversing a dataflow graph simultaneously,
with a commit wave propagating behind them to ensure cor-
rect execution. We evaluate one application of this protocol
to provide efficient recovery for load-store dependence spec-
ulation. Unlike traditional dataflow architectures which re-
sorted to single-assignment memory semantics, the DSRE
protocol combines dataflow execution with speculation to
enable high performance and conventional sequential mem-
ory semantics. Our experiments show that the DSRE pro-
tocol results in an average 17% speedup over the best de-
pendence predictor proposed to date, and obtains 82% of
the performance possible with a perfect oracle directing the
issue of loads.

Categories and Subject Descriptors: C.1.3[Processor
Architectures]: Other Architecture Styles – Scalable Selec-
tive Re-execution

General Terms: Measurement, Performance, Design, Re-
liability, Experimentation

Keywords: Mis-speculation recovery, selective re-execution,
selective replay, load-store dependence prediction, EDGE
architectures, Speculative dataflow machines

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASPLOS’04, October 9–13, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-804-0/04/0010 ...$5.00.

1. INTRODUCTION
Faster clocks, deeper pipelines, wire delays, and larger

instruction windows necessitate reducing the cost of mis-
speculation recovery. The number of mis-speculations in-
creases with increasing numbers of in-flight instructions as
predictors in high-ILP processors become more aggressive.
Furthermore, the growing cost of on-chip communication is
likely to increase speculation recovery latencies appreciably
in the future. Finally, as on-chip communication becomes
more expensive, a plethora of microarchitectural structures
must make decisions with less information, requiring more
and more predictors scattered throughout the microarchi-
tecture. Thus, the number of predictors, the number of
mispredictions, and the cost of each misprediction are all
likely to increase, forcing future processors to spend larger
fractions of execution time recovering from mispredictions.

Selective re-execution (SRE) is an increasingly popular
technique, in which only the instructions dependent on a vi-
olation must be re-issued on a mis-speculation. For example,
both the Alpha 21264 [15] and the Pentium 4 [12] use limited
SRE to recover from load scheduling mis-speculations. We
believe that scaling SRE in conventional processors will be-
come progressively more difficult, due to the following three
challenges:

• Tracking and maintaining dependences between large
amounts of in-flight state

• The complexity of having many predictions in flight
from multiple, distributed heterogeneous predictors

• The increasing physical distance between the distri-
buted detection of violations and the centralized re-
covery control

In a recent study of various current and proposed re-
execution schemes, Kim et al. [16] conclude that “universal
selective replay, where an instruction can cause a recovery
event at any point during its lifetime, is barely feasible for
current-generation designs, and does not scale to wider ma-
chines or additional types of speculation.”

In this paper, we describe a set of protocols for mis-
speculation recovery, that exploit the unique features of a
new class of architectures to provide efficient, distributed
selective re-execution (DSRE) of data mis-speculations over
the entire instruction window. This new class of ISAs, called
Explicit Data Graph Execution (EDGE) instruction set ar-
chitectures, permit limited dataflow-like execution within
defined program regions, and conventional execution across

those regions, with sequential memory semantics and a con-
ventional programming model. The explicit representation
of the dataflow graph in the EDGE ISA obviates the dy-
namic reconstruction of data dependences in the processor.

We use the EDGE-based TRIPS architecture as the eval-
uation platform for DSRE. The distributed instruction win-
dow in the TRIPS architecture reduces complexity, by facil-
itating re-execution without requiring the instructions to be
buffered in a centralized location, necessary for conventional
microarchitectures. The protocol that we propose provides
a simple mechanism that multiple heterogenous predictors
can use for mis-speculation recovery, while also being scal-
able for both increasing instruction window sizes and wire
delays.

The DSRE protocol enables multiple “waves” of specula-
tive execution to traverse the dataflow graph simultaneously.
To ensure that the right answer is eventually produced and
committed, a “commit wave” traverses the DFG behind the
waves of speculative execution and ensures that the correct
results are eventually saved. In this paper, we propose two
techniques to accelerate the commit wave, which can become
the bottleneck in this scheme. We use DSRE to increase the
performance with one type of speculation, namely load-store
dependence speculation. Our results show that letting all
loads issue aggressively and using DSRE to recover can out-
perform the best competing dependence predictor by 17%,
and achieve 82% of the upper-bound performance of perfect
load/store speculation.

The DSRE protocol, which enables lightweight recovery
from load/store order violations, is not limited to depen-
dence prediction recovery. The same protocol can be used
to recover from any data value mis-speculation–including
other types of value predictors, such as last-value predictor
or stride-value predictor–as well as recovery from soft er-
rors. Since the DSRE protocols we propose use only point-
to-point messages to implement recovery, they are ideal for
distributed microarchitectures built in future technologies,
and may be an enabling technology that support new types
of speculation or execution on highly unreliable computa-
tional substrates.

In Section 2, we further discuss how efficient mis-specula-
tion recovery will be a growing challenge for future large-
window machines, as the number of speculation mechanisms
increases. We also analyze load-store dependence specu-
lation showing that current dependence predictors will be
ineffective for future distributed microarchitectures. In Sec-
tion 3, we provide a brief review of the simulated architec-
ture and provide pointers to other literature on EDGE ISA-
based machines. In Section 4, we describe the base DSRE
protocol, and quantify the performance of DSRE without
commit acceleration. We describe and measure commit ac-
celeration techniques in Section 5, and also study the sensi-
tivity of DSRE to larger instruction window size and higher
network delay. Finally, we conclude in Section 6 by dis-
cussing the possibilities exposed by merging data specula-
tion with EDGE-based dataflow execution.

2. THE NEED FOR EFFICIENT MIS-SPECU-
LATION RECOVERY

The trends toward higher-ILP processors, coupled with
steadily increasing on-chip communication latencies [1, 17]
and issue window sizes, threaten to make mis-speculation re-

covery the dominant component of performance loss. Many
researchers are proposing issue windows of hundreds or thou-
sands of instructions. As the number of instructions in flight
increases, so does the amount of state that must be cleared
on a pipeline flush. As Akkary et al. observe, waiting until a
mis-speculating instruction reaches the head of the reorder
buffer simplifies recovery, but can increase the latency sig-
nificantly for larger windows [2]. To reduce flush latency
at the expense of complexity, many modern processors per-
form a rolling flush, in which all instructions younger than
the mis-speculating instruction are cleared as soon as the
misprediction is detected.

As the number of speculation techniques in modern pro-
cessors grow, efficient mis-speculation recovery becomes in-
creasingly important. Some candidate speculation mecha-
nisms for future microprocessors include:

• Load-store dependence prediction

• Different types of data value speculation like last-value
speculation and stride-value speculation

• Predicate prediction

• Control independence speculation [11]

• Coherence speculation in multiprocessors [13]

In this paper, we evaluate the use of DSRE to reduce
the mis-speculation penalty for load-store dependence spec-
ulation. Issuing loads out-of-order with respect to stores is
necessary for high ILP in current and future machines. Cur-
rent machines use load/store dependence prediction to facili-
tate early issue of loads. However, effective load speculation
is growing more difficult for several reasons. First, larger
instruction windows mean that more conflicting load/store
pairs will exist in the window, putting more pressure on
the dependence predictors. Second, the cost of flushing
the pipeline upon a misprediction is increasing as the in-
flight state increases and control becomes more distributed.
Third, the performance losses due to dependence mispre-
dictions become more of a bottleneck as ILP elsewhere is
increased. Fourth, since wire delays will force partitioning
in future architectures, dependence predictors are likely to
be distributed along with cache banks, reducing their accu-
racy.

2.1 Maintaining Sequential Memory
Semantics

In out-of-order processors, sequential memory semantics
must still be maintained. Program-earlier stores must for-
ward their values to later loads for correct execution. The
conservative policy for addressing this issue is to prevent a
load from issuing until all earlier stores with unresolved ad-
dresses have issued. The ideal policy is an oracle, in which
loads that do not conflict with earlier stores issue to the
caches but wait for the conflicting store if a conflict exists.

Microarchitects have tried to approximate oracle perfor-
mance by providing dependence predictors, which allow some
loads to issue in the presence of earlier unresolved stores,
speculating that they will not be dependent, and flushing
the pipeline if incorrect. Loads incorrectly predicted to be
dependent on an earlier in-flight store do not cause a pipeline
flush, they merely lose an opportunity for higher perfor-
mance by issuing late, after previous stores are resolved even
though they could have been safely issued earlier.

0

2

4

6
In

st
ru

ct
io

ns
 p

er
 C

yc
le

Oracle
One-store predictor
All-stores predictor
Conservative

ammp

art bzip2
compress

equake

m88ksim

mcf
mgrid

mpeg2encode

parser

twolf
hydro2d

tomcatv

turb3d

Hmean

Figure 1: Performance effects of load/store ordering policies with a 2K window

A few examples of simple dependence predictors include
those proposed by Moshovos et al. [20], which used sim-
ple PC-based indices into tables of saturating counters that
specified whether or not a load should issue speculatively,
and store-wait tables as implemented in the Alpha 21264 [15],
where a load-on-conflict prediction waits for all previous
stores to resolve. Store sets [6] are a more complex pro-
posal that attempts to match up loads with specific stores,
so that potentially dependent loads do not have to wait for
all previous stores to resolve, just the ones likely to conflict.
Finally, Yoaz et al. [31] propose a predictor that uses dis-
tance estimations to approximate store set capabilities with
reduced complexity. In this paper, we simulate two types of
dependence predictors, all-stores and one-store.

All-stores: This strategy is similar to the predictor orga-
nization of Moshovos et al. [20]. This predictor uses the PC
to index tables with 4K 1-bit saturating counters, that are
set on a conflict, and only predict no conflict for a load when
the counter value is zero. When all-stores predicts a conflict,
a load waits until all prior stores complete before issuing
safely. The table is cleared unconditionally every 10,000
blocks. PC-indexing outperformed the other indexing func-
tions we measured, including address and PC-address hybrid
indices, as well as the less aggressive store-wait tables of the
Alpha 21264. This predictor matches the predictor being
implemented in the TRIPS prototype [3].

One-store: The second type of predictor we simulate is
a modified variant of store sets [6]. Modifications were nec-
essary because the distributed architecture that we simulate
cannot enforce issue order among stores. Thus, we modified
the predictor, which we call one-store, to force a load to wait
for exactly one store, rather than a set of stores as in the
original proposal. The next paragraph details the differences
between our one-store scheme and store sets.

The one-store predictor uses a PC-indexed Store Set Iden-
tifier Table (SSIT) to maintain a common tag for each load
and store pair. These tags, called Store Set Identifiers (SSID),
are stored in the Last Fetched Store Table (LFST), and
are described in detail in the original paper [6]. Initially
these tables are empty and all loads are predicted as non-
conflicting. When a load-store ordering violation is detected,
a SSID index is allocated to the violating load-store pair, and
an entry is created in the SSIT for the load and the store
containing this SSID. During block dispatch, all stores in the
dispatched block access the SSIT table to check for a valid
LFST entry. If a store finds a valid entry, it inserts its in-
struction identifier in the corresponding entry in the LFST

table. Loads in a block also index the SSIT table during
dispatch. When a load finds a valid SSIT entry, it checks
the LFST table for a valid store entry. If a load finds a valid
store in the SSID table, it marks itself as being dependent
on the store. When a load resolves and reaches the mem-
ory interface, it checks to see if it has been marked as being
dependent on a store. If the load is marked dependent, it
sends data back to its consumers only after the pertinent
store arrives at the memory interface. In our experiments,
we used a 4K entry SSIT table and a 128 entry SSID table.
The SSIT table was indexed using the last 12 bits of the PC
and was unconditionally cleared every million cycles.

We used a Trimaran/TRIPS-based simulation environ-
ment for evaluating DSRE performance. The experimen-
tal methodology is explained in greater detail in the next
section. Figure 1 shows the performance of the simulated
processor using conservative load/store issue, all-stores, one-
store, and oracular prediction. These experiments assumed
the TRIPS prototype configuration of 64 frames, which cor-
responds to a 1K issue window across the 16 ALUs. The
graph confirms prior results that the conservative policy per-
forms poorly with respect to the oracle policy, which is 2.37
times faster on average. The all-store dependence predictor
improves performance significantly over the conservative ap-
proach, but only by 46%, which is approximately only one
third of the additional performance improvement obtained
by the oracle policy. The more aggressive one-store predic-
tor performs much better (66 %) but still achieves only a
fraction of what is possible with oracle, due to the perfor-
mance lost by flushing the pipeline on a mis-speculation.

2.2 Memory Speculation for Large Windows
As issue windows grow larger, from hundreds to thousands

and eventually tens of thousands of instructions, the number
of potential conflicts (stores followed by loads to the same
address) grows. This growth threatens to limit the paral-
lelism that can be exploited in future high-ILP machines.

Table 1 details the load/store conflict behavior for four
different window sizes (1K-8K instructions). These experi-
ments assumed a perfect branch predictor, so the window is
always filled with useful work unless the processor pipeline
is being flushed from a load/store mis-speculation. We also
allow a maximum of 256 hyperblocks to be resident concur-
rently. The three IPC columns show the average instruc-
tion throughput for three of the four ordering schemes from
Figure 1. The column labeled Potential Conflict shows the
fraction of loads in the instruction window that reference

Dependence Predictor
Window IPC Potential Performance (% Accesses)

Size Conservative Oracle one-store Conflict PD:ED PD:EI PI:EI PI:ED
1K 1.17 3.74 2.15 12.17 17.04 12.17 71.57 1.03
2K 1.19 4.87 2.23 14.58 19.19 13.64 68.26 0.92
4K 1.19 5.39 2.23 17.10 21.04 15.02 65.35 0.76
8K 1.19 5.69 2.32 19.37 21.61 15.85 64.21 0.55

Table 1: Performance characterization with memory dependence prediction for a 4K store sets predictor

Benckmarks Potential Conflicts (as % of total loads)
Window Size 128 256 512 1024 2048 4096 8192
mgrid 0.50 1.27 1.85 0.49 0.23 1.25 3.89
applu 0.42 1.33 0.47 0.16 0.22 1.22 13.18
vpr 21.37 24.55 30.17 35.16 39.69 43.30 44.24
art 1.12 1.20 0.99 1.23 1.34 1.73 2.33
mcf 3.61 11.77 19.73 23.14 31.31 30.46 25.42
equake 9.44 25.04 31.61 34.10 32.91 33.03 32.95
ammp 8.38 9.30 8.77 9.59 10.16 12.08 10.77
parser 14.19 18.43 23.10 24.89 25.17 27.46 34.28
eon 11.07 21.03 30.20 38.95 39.59 44.25 44.36
perlbmk 14.94 21.88 26.33 29.44 33.03 39.54 45.13
gap 3.63 8.17 14.72 23.18 25.99 22.68 23.38
gzip 12.98 20.84 25.93 13.72 10.49 15.27 11.08
bzip2 15.61 21.05 38.60 40.35 40.20 40.28 40.40
Average 9.02 14.30 19.42 21.11 22.33 24.04 25.49

Table 2: The number of potential conflicts with increasing window sizes with perfect branch prediction

the same address as a store that is also in the window, when
using oracle load/store dependence prediction. Note that a
conflict will actually occur only if the load issues out of order
from the store. Not surprisingly, the fraction of potentially
conflicting loads increases with window size, and combined
with a larger number of loads in the window, results in a
much larger total possibly conflicting loads. The remain-
ing columns show the behavior of the one-store predictor.
For large instruction windows (8K), on average 15% of the
predicted accesses are predicted as dependent (PD) and ac-
tually end up independent at execution time (EI), thus in-
creasing the load latency for these accesses. Fewer than
0.6% of the accesses are predicted independent (PI) and are
actually dependent (ED), requiring a rollback recovery. The
remaining 85% of the loads have their dependence predicted
correctly and incur no penalty. From column 7 in Table 1,
we can see that the predictor becomes increasingly conser-
vative as windows size increases, and a greater percentage of
the loads are incorrectly predicted to conflict, unnecessarily
forcing them to wait. This class of loads stands to benefit
greatly from DSRE.

To validate the output of the Trimaran/TRIPS-based sim-
ulation, Table 2 shows the number of potential conflicts
observed from a sim-alpha based simulation with perfect
branch prediction [7]. While the benchmarks from the SPEC
suites that we were able to run are somewhat different, the
overall trends are the same.

The remainder of this section describes the related work
from the scientific and patent literature in the area of selec-
tive re-execution implementations for centralized architec-
tures. Section 4 then describes a class of distributed selec-
tive re-execution policies that provide large speedups over
basic load/store dependence prediction.

2.3 Previous Work on Selective Re-Execution
Many researchers have explored and are exploring selec-

tive re-execution to defray growing mis-speculation costs.
Some of the earliest work was done by Rotenberg et al. [25],
who discussed applying selective re-execution to both con-
trol and data mis-speculations recovery for Trace Processors.
Selective re-execution for control prediction exploits control
independence [26], and can be used for techniques like out-
of-order fetch [28].

Calder et al. [4] showed that selective re-execution coupled
with dependence prediction can–in a centralized microarchi-
tecture with small issue windows–approach the performance
of a perfect dependence predictor. Those techniques are in-
sufficient to provide the same gain on distributed microar-
chitectures with much bigger (1000+ entry) instruction win-
dows, which is the problem that we address.

Despite its potential benefit, implementation complexi-
ties prevent current selective re-execution schemes from be-
ing used as a single unified recovery mechanism for multi-
ple types of data value speculation. Recent patents from
AMD [14], Sun Microsystems [22], and Intel [18, 19] pro-
pose selective re-execution for recovering only from load
scheduling speculation, using signals from the lower-level
cache [22] or circular queues [18, 19] to facilitate the re-
execution schemes. Multiple disparate recovery modes are
used due to the design complexity introduced by interaction
among distinct types of speculation, complexity which is ex-
acerbated by slowing global wires. Slowing communication
is causing multi-cycle delays between misprediction detec-
tion and reporting, which will grow progressively worse if
speculation resolution remains centralized. Ernst et al. [8]
also made this observation in recent work. The selective
re-execution schemes we propose in this paper do not suf-
fer from those challenges, since they provide a single, dis-

64−95 95−12732−630−31

(a) TRIPS Core

ICache−0

ICache−1

ICache−2

ICache−3

Predictor
Next block Block Control

Frame 1
Frame 0

Router

Control

Inst Operands

ICache−M

Stitch Table

Frame 64

.

.

.

Register File

L2
Cache

(b) Execution Node

LSQData Cache

Figure 2: Simulated 4x4 TRIPS-like core

tributed framework for handling potentially many types of
speculation simultaneously.

Researchers have also investigated compiler-assisted ap-
proaches for efficient memory disambiguation. Gallagher et
al. [10] proposed the memory conflict buffer for memory dis-
ambiguation. In their approach, the compiler aggressively
hoists load instructions above store instructions and inserts
correction code to provide recovery, when there is an ad-
dress conflict. The memory conflict buffer is used for de-
tecting these conflicts. This scheme relies on a centralized
issue queue for initiating recovery, and is thus unsuitable for
distributed architectures. Early load address computation
using compiler support has been investigated by Cheng et
al. [5]. However, their approach requires changes to the ISA
so that the microarchitectures can differentiate between the
various types of loads in the system.

Finally, Zhou et al. [32] identify the challenges associated
with implementing aggressive selective re-execution on a
conventional superscalar processor, which include retention
of issued instructions that may be re-executed, the reissue
mechanism itself, and the data-dependence driven identifi-
cation of the set of instructions to be re-executed. Of the
solutions they describe, the ROB augmentation that holds
instructions in the window until committed is most similar
to the DSRE protocols proposed in this paper. However,
their approach is not scalable to larger windows and dis-
tributed microarchitectures, nor does it eliminate the per-
formance losses associated with their proposed solutions to
the other two challenges.

3. EXPERIMENTAL METHODOLOGY
To measure the performance losses associated with mem-

ory ordering violations and the performance of selective re-
execution schemes, we simulate a TRIPS-like processor, which
is an instance of an EDGE architecture [3, 27]. The selec-
tive re-execution schemes described later in this paper rely
on the block-atomic execution model and the dataflow-like
execution of this architecture.

The specific processor simulated in this paper, shown in

Figure 2, is a 16-wide issue machine in a 4x4 configura-
tion, driven by executables generated by the Trimaran [30]
compiler, that are re-translated for the simulated processor
core. These cores use an EDGE (Explicit Dataflow Graph
Execution) instruction set, in which the physical location of
the consumers, called targets, are encoded directly into the
bits of each producer instruction. The compiler predicates
basic blocks of instructions and combines them into hyper-
blocks, each of which have only a single entry point. The
blocks execute according to a Static Placement, Dynamic Is-
sue (SPDI) execution model; instructions in each hyperblock
are statically assigned to individual ALUs by the compiler,
but execute in dataflow order. Thus, the processor places
the instructions to minimize wire delays, but the hardware
executes the instructions in dynamic order, achieving higher
instruction-level parallelism than fully static issue can typi-
cally achieve.

The block-atomic execution model fetches one block at a
time, maps it onto the execution array, and commits the en-
tire block at once when complete. Thus, instructions do not
commit individually, but in blocks when everything in the
block has finished. By using a branch predictor to predict
the next block, multiple hyperblocks can execute simultane-
ously on the processor substrate, with all but one executing
speculatively. The issue window is distributed and doubles
as a “block reorder buffer”; its size is the number of instruc-
tion reservation stations at each ALU, times the number of
ALUs. We refer the reader to the literature for more detailed
descriptions of this execution model [21, 27].

The processor configuration that we simulate in this pa-
per resembles the TRIPS prototype implementation [3]. The
processor has 16 fully functional ALUs, and they are con-
nected in a mesh network that consumes 1 cycle per hop.
There are 64 reservation stations per ALU and the proces-
sor can map 1024 instructions at one time. A maximum of
8 hyperblocks can be resident on the processor concurrently.
The branch predictor is a hyperblock exit predictor loosely
modeled on the Alpha 21264 tournament predictor [24].

The simulated memory system has 32KB L1 instruction

Register File

Load−store Queue

N[5]

N[6]N[5]

N[6]

N[0]

N[1]

N[2]

Iteration 1 N[0]

N[1]

N[2]

N[3]

N[4]

Iteration 2

N[0]

N[1]

N[2]

N[3]

N[4]

Iteration 0

N[4]

Mis−speculated instructions

N[3]N[5]

N[6]

N[5] mov N[6,0] W[0] ; write j to register

N[7] teqi 10 N[8] ; Check for loop termination
N[8] mov N[9,P] N[10,P] ; Move predicte bits

N[10] bro_t exit ; Exit if true
N[9] bro_f loop_body ; if false, jump to loop_body

Read G[0] N[0, 0] ; Read j
Read G[1] N[2,0] N[4,0] ; Read a[0] address
N[0] addi 1 N[1,0] ; j = j+1

N[2] lw 0 N[3,1] ; Load a[0]

N[4] sw 0 ; Store a[0]

N[1] mov N[3,0] N[5,0]

loop_body:
TRIPS Assembly

C−Code
for (j=1; j < 10; j++)
 a[0] = a[0]+j;

N[3] add N[4,1] ; a[0] = a[0] + j

N[6] addi 1 N[7] ; Increment loop count

Figure 3: Re-execution on an EDGE architecture

caches partitioned into four banks, and a centralized 32KB
data cache and load-store queue. The TRIPS prototype sys-
tem has distributed data caches and a physically distributed,
logically centralized LSQ. We intend to validate the perfor-
mance of the DSRE protocol using the TRIPS prototype
high-level model in the future, as our current Trimaran-
based simulator does not support distributed data cache and
load-store queue. The 2-way L1 instruction and data caches
each have 64-byte blocks and 1 and 2-cycle hit times, re-
spectively. The L2 cache is 2-way set associative, with a
12-cycle hit latency and a 132-cycle miss penalty to main
memory. The baseline dependence predictor is a centralized
4K table of 1-bit saturating counters indexed by the PC. We
simulate a set of 14 SPEC95 (compress, hydro2d, tomcatv,
turb3d, m88ksim), SPEC2000 (ammp, art, equake, bzip2,
mcf, mgrid, parser, twolf), and mediabench (mpeg2encode)
benchmarks. We used the set of benchmarks that the Tri-
maran tools were able to compile successfully in our environ-
ment. For each benchmark, we fast-forwarded through the
initialization phase and simulated 100 million instructions.
In the next section, we use this simulated processor model
to evaluate the proposed DSRE protocol.

4. DISTRIBUTED SELECTIVE
RE-EXECUTION

EDGE architectures lend themselves to efficient, distri-
buted selective re-execution (DSRE). In the TRIPS instan-
tiation of an EDGE ISA, instructions and their operands are
buffered as they arrive at the reservation stations. When an
operand arrives, its tag indicates the reservation station and
instruction operand to which it corresponds. When all nec-
essary valid bits for an instruction’s operands have been set,
the instruction fires, executes, and sends the result to its
consumers, which are specified using one or two target fields
in the just-issued instruction.

The multiple hyperblocks in flight effectively form a large
dataflow graph (DFG). Within hyperblocks, the DFG is
a statically constructed graph, with arcs going from ALU

to ALU. Cross-block arcs are instantiated through register
names; each block reads from and writes to a subset of the
architectural registers. If a hyperblock produces an output
allocated to R3, and the subsequent hyperblock requires an
input read from R3, the value of R3 will be forwarded from
the older to the younger block as soon as it is produced.
Thus, the large DFG is a collection of smaller, statically
produced DFGs stitched together by dynamically resolved
cross-block arcs through the register file and inter- and intra-
block arcs through memory.

Figure 3 show the C-code for a simple loop, along with
the corresponding TRIPS assembly code. We also show the
data flow graph for 3 different iterations of the main loop
body in the figure. The code snippet has two loop carried
dependences, one through memory and one through the reg-
ister file (register 0). The loads in successive iterations of
the loop depend upon the store in the previous iteration.
The loop carried dependence through memory is shown by
dashed lines. As shown in the figure, this dependence is en-
forced by the load-store queue. If a load mis-speculates, the
DFG sub-tree of the load gets incorrect values. These nodes
are shown shaded in the figure. In a conventional implemen-
tation without selective re-execution, a mis-speculation will
trigger a flush of all instructions after the violating load.

To initiate DSRE of an instruction that has computed
with a wrong value, the correct value is simply sent to the
incorrect instruction’s node with the same tag as the original
incorrect instruction. As shown in Figure 3, the instruction
re-fires, sending a new output value to its dependent chil-
dren. The children subsequently re-fire, and so on, eventu-
ally re-executing the entire DFG subtree data dependent on
the faulting instruction. A re-fired instruction producing a
value that crosses hyperblock boundaries sends a newer ver-
sion of its result to the target hyperblock, which will cause
additional instructions to re-fire. Note that this model per-
mits low-complexity DSRE without having to re-issue any
instructions not dependent on the erroneous instruction, nor
do any instructions need to be re-fetched, re-dispatched, or
moved. Assuming that the ALU and network contention

Op1 Op2 OutOp1 Op2 Op2 OutOut Op1

Only null token
is produced; addition
is not performed again

ADD

c = 1
48

ADD

49

ADD

c = 0 c = 0 c = 1

c = 0 c = 1

50

c = 0
2 47 482

Input Values

Output

Time

c = 1, null
generates null

Legend:

c = commit bit (0 => speculative)

v = version number

Instruction producing Op1 Instruction producing Op2

refires

c = 1, null

Figure 4: Illustration of commit messages

and extra energy consumed by the re-execution are insignif-
icant, re-execution in an EDGE ISA is always beneficial,
since re-executing an operation and everything dependent
on it is no worse than having waited for the actual correct
value rather than speculating.

4.1 Commit Waves: Detecting Block
Completion

In the TRIPS processor, when each hyperblock completes,
it is removed from the array and its instructions are all com-
mitted at once; hyperblocks logically commit atomically. A
hyperblock’s stores are written back to the memory system
in order, which happens during hyperblock commit. Since
the TRIPS processor is a distributed microarchitecture, de-
tecting completion of the oldest hyperblock is accomplished
with point-to-point messages. The block header of each hy-
perblock contains a count of all hyperblock outputs (reg-
ister writes, stores, and a single branch). When an out-
put instruction in a hyperblock reaches the register banks
or caches, the output counter for that hyperblock is decre-
mented. When it reaches zero, all of the outputs of the hy-
perblock have fired, meaning that the block is safe to commit
if it is the oldest hyperblock. If stores or writes are on pred-
icated paths through the hyperblock, the compiler inserts
null store or null write instructions on the other paths, so
that the block always produces the same number of outputs.

However, this scheme for detecting block completion can-
not work without modification in the presence of re-execution
policies. Since multiple waves of execution may be traversing
the hyperblock’s DFG simultaneously, the output instruc-
tions may receive their source operands multiple times, and
thus do not know when it is safe to signal the completion
logic that they have completed non-speculatively.

The solution we explore in this paper is to add a com-
mit bit to each valid bit at the instructions’ operand buffers.
When a commit bit is set, it signals that its operand is
no longer speculative, and none of that operand’s parents
in the DFG may be speculative. The commit bit is only
zero if there are still unresolved data speculations among its
parents. Note that the control speculation (branch predic-
tion) mechanisms are separate from these data speculation

techniques. In order for a block to commit, it must be the
control non-speculative block and all of its register and store
outputs must be non-speculative.

When all of an instruction’s operands have received their
commit bit, then the result computed using those operands
is also non-data-speculative. We simulate two types of com-
mit bit messaging, shown in Figure 4. First, if an operand
arrives at an ALU with its commit bit set, and the instruc-
tion’s other operands are also non-speculative, then the in-
struction fires (or re-fires) and sends its result to its con-
sumers with its commit bit set in the message control header.
The second case occurs when an instruction has already
fired–and has already sent its result with a zero commit
bit–but is later determined to have been correct and be-
comes non-speculative. In this case, a null commit message
is sent to the consumers of that instruction, signaling that
the operand previously sent is now non-speculative.

This late determination of correctness may happen for
several reasons. An arithmetic operation may compare its
speculative, buffered operand with the receipt of a commit-
ted operand, and if they are the same, the result need not be
recomputed, but a null commit message can be sent. More
commonly, a load may have issued speculatively, in the pres-
ence of earlier unresolved stores (with a zero commit bit).
When the load’s address has received its commit bit, and
all earlier stores have also received their commit bits–and
if there was no address conflict with a store–then the load
becomes non-speculative and a null commit message may be
sent.

A block is thus safe to commit when it is the oldest block
(guaranteeing that there is no more control speculation) and
when all of its outputs have received their commit bits. In
terms of the DFG, the process of detecting completion can
be thought of as a “commit wave” traversing the DFG be-
hind the dataflow execution, and signaling completion when
traversal of a hyperblock’s portion of the DFG is complete.

The addition of commit bits requires small extra hardware
capability : one bit of state for inter-ALU operand message
headers, some additional control to encode and decode null
commit messages, three extra bits per instruction reserva-
tion station state, and some extra logic in the load/store

queues to support committing loads on the commit bits,
not the valid bits, of earlier stores.

4.2 Version Numbers: Out-of-Order
Messaging

The scheme described thus far allows multiple, partially
or fully overlapping waves of speculative execution travers-
ing the DFG, succeeded by a “clean-up” commit wave. This
model is simple so long as multiple speculative versions of
an operand are always injected into the inter-ALU network
in order and the network supports in-order delivery of mes-
sages. If either of those requirements are not met, then
the possibility of overwriting the correct computation with
later-arriving mis-speculative data arises. For example, as-
sume that an instruction fires twice and produces versions
A and B, where B is later determined to be correct, so is fol-
lowed by a null commit message. If A and B are re-ordered
(either by injection into the network or by the network it-
self), then the instruction’s consumers will receive B, fire
correctly, then receive A, fire incorrectly, and then receive
the null commit message saving the incorrect result com-
puted with A.

This case would occur if the network re-ordered messages,
although the network we simulate does not exhibit this prob-
lem, because routing is deterministic and messages are never
dropped. However, another window of vulnerability is opened
by the possibility of injecting speculations in the wrong or-
der. For example, assume a load with earlier unresolved
stores accessed the cache but missed. Subsequently, a program-
earlier store to the same address issued, so the store value is
forwarded to the load and sent to the load’s consumers (ver-
sion B). The mis-speculated cache access eventually returns
and could be forwarded to the load’s consumers (version A)–
overwriting the correct computation triggered by version B.
This case could be avoidable by adding extra support to the
memory system, but serves as an illustrative example.

We handle out-of-order messaging by augmenting trans-
mitted operands with version numbers as well as commit
bits. Each arc of the DFG can be traversed multiple times,
with its version number increasing with each of its source
operands. For example, if an ADD instruction fired three
times, the version numbers of the operands sent to its con-
sumers would be 0, 1, and 2, in order, regardless of what the
version numbers of the ADD’s source operands were. The
highest version number is always the correct operand, and
null commit messages are tagged with the version number
that they are committing.

This scheme permits operands to be re-ordered and still
function correctly, since version numbers are buffered with
the operands and commit bits at the consuming instruction’s
reservation station. If an ADD instruction has fired twice
because it received two values of its left operand, which ar-
rived with version numbers 0 and 2, and then later a version
of the left operand arrives with version number 1, that mes-
sage is discarded because that operand has already received
a higher version number, guaranteeing that the lower one is
incorrect. If a null commit message arrived with a version
number 3 for the left operand, the instruction would wait
to receive the actual operand tagged with version number 3
before re-firing and propagating the result to the consumers
with the commit bit set. This policy permits operands and
commit bits (whether arriving with an operand or as null
commit messages) to arrive in any order but still produce

MESSAGE

INCOMING

01=2, v =0, c=0

02=42,v=0, c=0

02=45, v=2, c=0

02=49, v=3, c=0

01=null, v=0, c=1

02=null, v=4, c=1

O1/V/C O2/V/C

2/0/0

42/0/02/0/0

2/0/0

2/0/1 49/3/0

−

49/3/0

− −

2/0/1 49/3/1

STATE ACTION

Table Legend:

 STATE: Output value/Version number (V)/Commit bit (C)

operand 1 is marked as non−speculative.

No Action − only one operand has arrived.

Add inputs and send output message
(out=44; v = 0, c= 0). The output is
speculative because inputs are speculative.

Add instruction is re−executed and a new result
is sent outwith a new version number. The results
are still speculative.(out=51, v =1, c=0)

New output is not generated b/c the operand
values have not changed.

Generate null token; both inputs are
non−speculative.

Message is dropped because its version
number is lower than the last versionnumber
received for this operand.

Figure 5: Version number example

correct execution and guaranteed completion. We show an
example in Figure 5.

Since the counters that track version numbers will be fi-
nite, the system must ensure that it does not overflow them.
For an N -bit version counter, N−1 speculative versions may
be generated, but the Nth must be guaranteed to be cor-
rect. Therefore, after generating N −1 speculative versions,
an instruction waits until it has all of its sources’ commit
bits before producing the Nth version. It may, of course,
discover that version N − 1 was correct and just send a null
commit message instead.

With commit bits, completion of distributed selective re-
execution can be detected, and with version numbers, the
computation will still be correct in the presence of reordered
messages. While we have used load/store dependence pre-
diction as the driving example for this protocol, any data
speculation scheme may use this underlying framework for
low-overhead recovery, so long as it obeys the rules of the
protocol: The last version sent is always the correct one
(with no versioning support), or the highest version number
is always the correct one (with versioning support). Thus,
many types of data value speculation may make use of this
common framework for low-overhead recovery.

Version numbers also provide a convenient mechanism to
throttle speculation. ALUs can be prevented from firing
speculatively when the version of their result reaches a cer-
tain maximum value. To find this optimal value, we per-
formed experiments varying the maximum version number
allowed. Table 3 shows the mean performance across our
benchmarks for the best load-store policy, when we vary the
maximum allowed version number from one to six. We can
see from Table 3 that performance decreases progressively
as we increase the maximum version number allowed. This
indicates that the best performance is obtained when nodes
are allowed to fire only once or twice speculatively. We re-
stricted the maximum version number to one in the rest of
our experiments.

Version number max value 1 2 3 4 5 6
Mean IPC 1.884 1.876 1.873 1.875 1.861 1.849

Table 3: Mean performance for various maximum version numbers

No flush Flush on load mis-spec Flush on commit mis-spec Ideal Bypass
Benchmark cons DSRE all-stores one-store all-stores one-store p-com oracle

ammp 0.94 1.52 2.41 3.11 3.27 3.84 3.96 3.96 3.86
art 1.37 1.89 3.72 3.50 3.72 3.72 3.73 3.73 3.42

bzip2 1.90 2.14 3.16 3.23 3.19 3.19 3.24 3.24 3.19
compress 1.40 1.55 1.56 1.56 1.65 1.64 1.66 1.66 1.64

equake 0.79 1.20 1.71 1.71 1.74 1.74 1.75 1.75 1.73
m88ksim 0.88 1.10 0.93 1.28 1.15 1.40 2.26 2.31 1.45

mcf 0.42 0.79 0.87 0.83 0.88 0.85 0.88 0.88 0.85
mgrid 1.27 1.68 1.31 1.56 3.52 3.36 4.15 4.23 3.40

mpeg2encode 2.63 3.12 3.43 3.32 3.49 3.46 3.51 3.51 3.47
parser 1.27 1.30 1.31 1.31 1.31 1.31 1.32 1.32 1.31
twolf 0.88 1.11 1.27 1.36 1.72 1.63 2.04 2.09 1.62

hydro2d 0.78 1.34 1.03 1.73 2.87 2.94 3.35 3.35 2.95
tomcatv 2.88 3.82 4.96 4.95 4.96 4.95 4.96 4.96 4.94
turb3d 0.53 0.72 0.62 0.74 0.91 1.00 3.28 3.85 1.01
Mean 0.97 1.36 1.42 1.61 1.84 1.88 2.27 2.30 1.89

Table 4: Performance of Load/Store Recovery Schemes

4.3 DSRE Performance
Table 4 shows the performance of the simulated machine

with all of the load/store speculation policies we evaluate
in this paper. The target machine simulated is described
in Section 3. Performance is displayed in instructions per
cycle (counting useful, non-overhead, committed instruc-
tions only). We assumed that flushes are rolling, initiated
when a misprediction is first detected, which is a higher-
performance assumption than initiating flushes when the
block containing the faulting instruction is ready to com-
mit.

Column two (the leftmost data column) shows perfor-
mance using conservative ordering (cons), in which every
load waits for all prior stores to complete. As we showed
in Section 2, this conservative model is by far the worst-
performing model, and greatly inhibits ILP. The third col-
umn shows performance with a pure re-execution protocol
(DSRE), in which all loads issue as soon as they are ready,
and re-execute if an earlier store resolves to the same ad-
dress. Pure DSRE provides a 40% performance boost over
conservative load-store ordering, making it a potential alter-
native to dependence prediction. The difference in perfor-
mance between the DSRE and the oracle policy is primarily
due to the commit wave falling behind the execution wave.

Columns 4 and 5 show the performance of traditional de-
pendence prediction, using all-stores and one-store to selec-
tively stall loads that are predicted to be dependent, and
flush the pipeline if a load is speculatively issued before a
conflicting store. all-stores shows almost exactly the same
average performance as DSRE. The more complex, but more
aggressive, one-store policy improves performance over the
base case by an additional 13%, since some stalled loads can
proceed earlier when their conflicting store arrives, instead
of waiting for all stores. Despite these relatively large per-
formance gains, a large gap still exists with the upper-bound
performance of an oracle, which shows a mean IPC of 2.30,
43% faster than the one-store policy.

In the next section, we describe new policies that attempt
to close this gap, the results of which are shown in columns 6
though 8 and explained after the discussion of those policies.
We also examine the scalability of the DSRE protocol for
larger window size and higher network latency.

5. ACCELERATING AND SCALING DSRE
This section examines two policies to accelerate propaga-

tion of commit bits in order to improve performance with
DSRE. We also study the scalability of DSRE, by looking
at the performance for larger instruction window and higher
network latency.

5.1 Accelerating Commit of Re-executed
Blocks

Our results have shown that the commit traversal of the
DFG is the single largest remaining impediment to achiev-
ing performance close to that of an ideal oracle. Column
8 of Table 4, shows the performance of DSRE with ideal
commit performance (p-com). In the p-com policy, every
load issues as soon as it reaches the memory interface, re-
sulting in multiple speculative waves when a store arrives.
However, the commit bits in the policy are infinitely fast, so
that the commit traversal never inhibits performance. The
mean IPC for p-com is 2.27, which is within 4% of the up-
per bound, demonstrating that the commit traversal is the
remaining bottleneck. If the commit traversal can be made
sufficiently fast, the performance losses due to load/store
conflicts will be negligible. In the rest of this section we de-
scribe two techniques for accelerating the commit traversal:
speculative commit slicing and bottom-up commit traversal.

5.1.1 Speculative Commit Slicing
Our analyses have shown that a significant portion of the

commit traversal’s lag behind the execution traversal of the
DFG is attributable to late-committing stores. For example,
if a store address depends on a load that incurs a L2 cache

? Speculative instruction

ST A ST B ST C ... LD C

All stores are non−speculative

BASELINE:

the commit bit for LD X speculatively
independence for LD X, then forward

Older stores still speculative

ST A ST ? ST ? ... LD X

Older stores still speculative

ST A ST ? ST ? ... LD X

dependence

Older stores still speculative

dependence

ST A ST ? ST C ... LD C

If the commit bit for LD C was forwarded
speculatively and it is later determined that

independence, the pipeline is flushed.

LD X until prior stores are non−speculative

the dependence predictor incorrecty predicted

LD X as dependent, then hold back

Legend:

(1)

(2)

(3)

(4)

ACTION Program Order (older −> younger)

ST/LD Non speculative LD or ST

(commit bit recvd)

LD C sends the commit bit
only when all older stores are non−speculative

stores, if the dependence predictor predicts

if address X is non−speculative.

In the presence of older speculative

In the presence of older speculative
stores, if dependence predictor predicts

Figure 6: Commit Slicing

miss, and is followed by four loads in program order, the
store does not get its commit bit until after the load miss
returns. Only then can those loads forward their commit
bits to their consumers (provided, of course, that the commit
bits for the loads’ addresses have also been received). A
single slow store can thus block all subsequent loads from
forwarding any commit bits until quite late. Since loads
typically reside at the head of dependence chains, a single
slow store may thus block any significant advance execution
of the commit wave.

To accelerate the commit traversal, we allow some loads to
forward their commit bits speculatively–although no modi-
fications are made to architectural state until safe commit is
guaranteed. A load that is unlikely to conflict can forward
its commit bit, and if no violation eventually occurs, the
commit bit speculation improves performance. If a conflict
does occur, the pipeline needs to be flushed, since there is
no way to recall the commit bit. This strategy is safe be-
cause no architectural state is written until all commit bits
are received, at which point any violations will already be
known.

This policy thus uses a hybrid of selective re-execution for
the aggressive execution of loads and speculation with flush-
ing for acceleration of commit bits. To issue the speculative
commit bits accurately, we re-employed the dependence pre-
dictors evaluated earlier (all-stores and one-store).

We show an example in Figure 6. If the load is predicted
independent, the load sends its commit bit as soon as it

receives a commit bit from its address, despite the presence
of earlier unresolved or uncommitted stores. If a conflict
is later detected, the pipeline must be flushed to guarantee
correct execution. If the load is predicted to be dependent,
then the load waits until all previous stores have received
their commit bit (and its address has sent its bit) before
forwarding its commit bit to its successors.

We measured the performance of speculative commit slic-
ing using both dependence prediction strategies, shown in
Columns 6 and 7 of Table 4. Using the simpler all-stores
predictor to perform commit slicing provides a 30% speedup
over using it to perform speculative load issue. It also pro-
vides a 14% speedup over pure dependence prediction using
the more complex one-store predictor. Using the one-store
predictor to do commit slicing, however, provides a smaller
17% speedup over using it for load speculation. Commit slic-
ing with DSRE is faster than using dependence prediction
for loads on every benchmark we measured. Commit slicing
provides a larger speedup for the all-stores predictor, achiev-
ing close to the performance of the more complex one-store
predictor with commit slicing. This is because the all-store
predictor is more conservative, and hence predicts a larger
fraction of the loads as conflicting. This class of loads bene-
fit greatly with DSRE, because only commit bits need to be
sent for these loads when they resolve. Thus, DSRE coupled
with a simple predictor can be used to achieve performance
comparable to that with a more complex predictor.

5.1.2 Bottom-up Commit Traversal
If all operations–including loads–could execute in a single

cycle, selective re-execution would provide no benefit over
conservative load/store ordered execution, because the com-
mit DFG traversal would take the same time as the execu-
tion traversal. DSRE improves performance because not all
operations require a single cycle, especially cache misses, so
the commit traversal can catch up to the execution traversal
while long-latency operations on the critical path execute.
However, since no execution actually occurs on the commit
wave, it may be possible for the commit wave to skip nodes
in the graph, thus completing more quickly.

Speculative Commit Slicing essentially removes some arcs
from the commit traversal graph speculatively, allowing more
of the graph to be traversed in parallel and speeding up the
traversal. An alternate approach is to allow commit bits to
skip over nodes, going directly from the input to the output
of a multi-instruction dependence chain without traversing
the intermediate nodes. If the root of a dependence tree has
only one speculative input, then the intermediate nodes in
the tree can be bypassed when the last committed operand
arrives, by sending the commit bit directly to the leaves,
provided no execution is still in flight.

Bottom-Up Commit Traversal selectively allows a partial
bottom-up traversal to support forwarding of commit bits
over multi-hop chains. If a leaf node–in this case an output-
producing instruction–of the DFG has only one speculative
parent (all other parents, if any, have sent their commit
bits), then the output node forwards its target(s) to the
one speculative parent. The output node knows the par-
ent’s reservation station address since it has already re-
ceived an operand from that parent, assuming the address
was buffered. When the parent generates a commit bit,
it bypasses the intermediate node and sends the commit
bit directly to the output, as shown in Figure 7. Prior to
committing, however, if the parent has only one speculative
parent, it too can forward the output address to its parent
(the grandparent), which can then either do the same thing
(forward up the chain if it has one speculative parent) or
send the commit bit to the output, bypassing two nodes.
If an instruction holding a bypass target re-fires instead of
generating a commit instruction, then the bypass chain is
discarded and the new operand is forwarded to the children
as in the base architecture. When the execution reaches
the outputs, they can begin the process of rebuilding the
bypassing links anew.

The last column in Table 4 shows the performance of this
bottom-up traversal scheme when combined with specula-
tive slicing. The bottom-up traversal scheme performs well
for some benchmarks due to commit acceleration, while it
performs worse on others due to the extra network traffic.
The mean performance of this scheme is marginally better
than speculative slicing with the one-store policy. However,
the bottom-up traversal scheme incurs significant hardware
complexity over the base DSRE scheme, and is not worth
the marginal performance improvement. We are exploring
additional hardware support, such as a separate commit net-
work, as a possibility for further acceleration of commit bits.

5.2 DSRE Scalability
To study the scalability of the DSRE protocol, we in-

creased the instruction window size to 2K instructions and,
in a separate experiment increased the network delay to two

Output Z

t = 3

t = 1
Send Z

t = 2
Send Z

Commit bit arrives

A

B
C

D

E

F

Legend:

t = 4
Bypass commit
to Z

 DFG arc

 Message packet

arc
Committed DFG

Figure 7: Bottom-up Traversal

cycles. We show the results of these experiments in Table 5.
We show the performance of the base configuration–a 1K
window and one cycle inter-ALU delay–in the third row.

The fourth row in Table 5 shows the mean IPC with var-
ious load issue policies with a 2K window. When the win-
dow size is doubled, the performance improves by a mere
2% with a conservative load-issue policy, demonstrating the
well-known result that load speculation is necessary to ex-
ploit large-window ILP. The oracle policy improves by 26%,
showing the potential performance advantages of scaling
the window size. Conventional dependence prediction (with
flushing) improves by just over half of the ideal, increasing
by 14% using the one-store policy. The SRE implementa-
tions scale much better with increasing window size; one-
store policy with DSRE results in a 25.5% improvement in
performance, and all-stores improves by 27%. DSRE with
commit slicing thus scales similarly in performance to the
oracle as the window size grows, even as conventional de-
pendence prediction (with flushing) tails off.

The last row in Table 5 shows the mean performance for
the various load issue policies with a two-cycle network la-
tency. In this configuration, DSRE with speculative commit
slicing achieves 78% of the performance of a perfect oracle,
which is less than the performance improvement obtained

No flush Flush on load mis-spec Flush on commit mis-spec
Configuration cons DSRE all-stores one-store all-stores one-store oracle

Base 0.97 1.36 1.42 1.61 1.84 1.88 2.30
2K window 0.99 1.86 1.63 1.84 2.35 2.36 2.90

2-cycle network 0.78 0.96 1.14 1.28 1.35 1.42 1.82

Table 5: Mean Performance of Load/Store Recovery Schemes

in the base 1-cycle network latency case (82% of oracle).
However, the degradation of performance is fairly consistent
(20-24%) across all policies. DSRE is thus ideally scalable
with increasing window size, and moderately scalable with
increased network delay.

6. FUTURE IMPLICATIONS OF DSRE
For machines that implement EDGE instruction sets, of

which the TRIPS architecture is one example, we have shown
how to design a fully distributed selective re-execution pro-
tocol that requires only simple, local state machines.

DSRE protocols such as these will provide future dis-
tributed microarchitectures with low-overhead recovery from
value mispredictions. In this paper, we focused on load/store
ordering speculation, using a DSRE protocol to show a 17%
performance improvement over conventional dependence pre-
dictors.

The processing of the commit tokens, not ALU or net-
work contention, caused the most performance losses in the
DSRE protocol. We evaluated one technique (speculative
commit slicing) that achieved 82% of the performance of an
oracle predictor, and proposed and evaluated a bottom-up
commit graph pre-traversal for hiding parts of the commit
graph traversal. This technique, however, did not result in
performance improvements large enough to justify the addi-
tional hardware complexity.

Although we focused mainly on load/store dependence
speculation, DSRE protocols can easily handle other types
of value speculation, including value prediction, predicate
prediction, and even “physical speculation,” executing in-
structions on ultra-fast or ultra-low-energy ALU that may
occasionally produce a wrong answer but has physical ben-
efits in the common case [9]. Looking further ahead, DSRE
protocols can support low-overhead recovery for both mis-
speculations and certain types of soft errors. After all, an
operation in a fault-susceptible system is just a correctness
speculation, which cannot be committed until re-executed
and checked.

Speculative Dataflow Machines? Branch mispredic-
tions still cause enormous performance losses in high-end
processors, and branch predictors are improving with only
diminishing returns. While some other architectural propos-
als advocate moving to a “more pure” dataflow model [29]
that has little control, they merely shift the control depen-
dences to data dependences that must be executed conserva-
tively, both in registers and memory, placing a tight asymp-
tote on achievable parallelism.

DSRE protocols can enable a different solution in emerg-
ing EDGE architectures–the compiler grows enormous hy-
perblocks to control-flow graph merge points, which encom-
pass any control flow splits and merges. Within these large,
predicated blocks, a predicated producer of a value may
choose to fire speculatively and inject its operands to the
rest of the graph. If the actual needed operand should have

been generated on a different path, the correct operand can
simply be re-injected and handled gracefully by the DSRE
protocol. The execution of predicates can thus be removed
from the critical path by speculating the values of certain
predicates, with a low-overhead, DSRE-supported recovery
guaranteed if the predicate was mispredicted.

The EDGE architecture model with huge hyperblocks, lit-
tle explicit control flow, and a fine-grained dataflow ISA,
starts to resemble in many aspects past dataflow machines
like Monsoon [23], but with one important distinction: the
dynamic changing of dataflow arcs can be supported by for-
warding values into the DFG speculatively and aggressively,
with the DSRE protocol providing a clean recovery if wrong.
Monsoon also had multiple functional units connected by a
dynamic network, with each functional unit having a token-
store for receiving tokens. This token-store was made ex-
plicit in the data flow model to simplify resource manage-
ment. However, dataflow arcs in Monsoon were fixed, as
it did not have support for speculation. Data speculation,
coupled with distributed selective re-execution, may eventu-
ally make dataflow architectures truly competitive by also
allowing them to achieve high performance on conventional,
imperative languages.

7. ACKNOWLEDGMENTS
We thank Professor Anant Agarwal for his comments on an ini-

tial draft of the paper. This research is supported by the Defense

Advanced Research Projects Agency under contract F33615-03-

C-4106, NSF instrumentation grant EIA-9985991, NSF CAREER

grants CCR-9985109 and CCR-9984336, two IBM University Part-

nership awards, grants from the Alfred P. Sloan Foundation and

the Intel Research Council.

8. REFERENCES
[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and

D. Burger. Clock rate vs. ipc : The end of the road for
conventional microprocessors. In Proceedings of the
27th Annual International Symposium on Computer
Architecture, pages 248–259, June 2000.

[2] H. Akkary, R. Rajwar, and S. T. Srinivasan.
Checkpoint processing and recovery: Towards scalable
large instruction window processors. In Proceedings of
the 36th Annual International Symposium on
Microarchitecture, pages 423–434, December 2003.

[3] D. Burger et al. Scaling to the end of silicon with
EDGE architectures. IEEE Computer, 37(7):44–55,
July 2004.

[4] B. Calder and G. Reinman. A comparative survey of
load speculation architectures. Journal of
Instruction-Level Parallelism, 2, May 2000.

[5] B.-C. Cheng, D. A. Connors, and W. mei W. Hwu.
Compiler-directed early load-address generation. In
Proceedings of the 31st Annual ACM/IEEE

International Symposium on Microarchitecture, pages
138–147, December 1998.

[6] G. Z. Chrysos and J. S. Emer. Memory dependence
prediction using store sets. In Proc. of the 25th
Annual Int’l Symp. on Computer Architecture
(ISCA’98), pages 142–153, June 1998.

[7] R. Desikan, D. Burger, and S. W. Keckler. Measuring
experimental error in microprocessor simulation. In
Proc. of the 28th Int’l Symp. on Computer
Architecture, pages 266–277, June 2001.

[8] D. Ernst and T. Austin. Practical Selective Replay for
Reduced-Tag Schedulers. In Proceedings of the 2nd
Annual Workshop on Duplicating, Deconstructing, and
Debunking (WDDD-2), pages 58–63, June 2003.

[9] D. Ernst, N. S. Kim, S. Pant, S. Das, R. Rao,
T. Pham, C. Ziesler, D. Blaauw, T. Austin,
K. Flautner, and T. Mudge. Razor: A low-power
pipeline based on circuit-level timing speculation. In
Proceedings of the 36th Annual International
Symposium on Microarchitecture, pages 7–18,
December 2003.

[10] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C.
Gyllenhaal, and W. mei W. Hwu. Dynamic memory
disambiguation using the memory conflict buffer. In
Proceedings of the Sixth International Conference on
Architectural Support for Programming Languages
(ASPLOS-VI), pages 183–193, October 1994.

[11] A. Gandhi, H. Akkary, and S. T. Srinivasan. Reducing
branch misprediction penalty via selective branch
recovery. In Proceedings of The Tenth International
Symposium on High-Performance Computer
Architecture, pages 254–264, December 2004.

[12] G. Hinton, D. Sager, M. Upton, D. Boggs,
D. Carmean, A. Kyker, and P. Roussel. The
microarchitecture of the Pentium 4 processor. Intel
Technology Journal Q1, 2001.

[13] J. Huh, J. Chang, D. Burger, and G. S. Sohi.
Coherence decoupling: Making use of incoherence. In
Proceedings of the Eleventh International Conference
on Architectural Support for Programming Languages
(ASPLOS-XI), October 2004.

[14] J. B. Keller, R. W. Haddad, and S. G. Meier.
Scheduler which discovers non-speculative nature of an
instruction after issuing and reissues the instruction.
United States Patent 6,564,315, May 2003.

[15] R. Kessler. The Alpha 21264 microprocessor. IEEE
Micro, 19(2):24–36, March 1999.

[16] I. Kim and M. Lipasti. Understanding scheduling
replay schemes. In Proceedings of The Tenth
International Symposium on High-Performance
Computer Architecture (HPCA’04), pages 138–147,
December 2004.

[17] D. Matzke. Will physical scalability sabotage
performance gains? IEEE Computer, 30(9):37–39,
September 1997.

[18] A. A. Merchant, D. J. Sager, and D. D. Boggs.
Computer processor with a replay system. United
States Patent 6,163,838, December 2000.

[19] A. A. Merchant, D. J. Sager, D. D. Boggs, and M. D.
Upton. Computer processor with a replay system
having a plurality of checkers. United States Patent
6,094,717, July 2000.

[20] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and
G. S. Sohi. Dynamic speculation and synchronization
of data dependences. In Proceedings of the 24th
Annual International Symposium on Computer
Architecture, pages 181–193, June 1997.

[21] R. Nagarajan, K. Sankaralingam, D. Burger, and
S. W. Keckler. A design space evaluation of grid
processor architectures. In Proceedings of the 34th
International Symposium on Microarchitecture, pages
40–51, December 2001.

[22] R. Panwar and R. C. Hetherington. Appartus for
executing coded dependent instructions having
variable latencies. United States Patent 5,987,594,
November 1999.

[23] G. Papadopoulos and D. Culler. Monsoon: an explicit
token-store architecture. In Proceedings of the 17th
Annual International Symposium on Computer
Architecture, pages 28–31, May 1990.

[24] N. Ranganathan, R. Nagarajan, D. Burger, and S. W.
Keckler. Combining hyperblocks and exit prediction to
increase front-end bandwidth and performance.
Technical Report TR-02-41, Department of Computer
Sciences, The University of Texas at Austin, Austin,
TX, September 2002.

[25] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith.
Trace processors . In Proceedings of the 30th annual
ACM/IEEE international symposium on
Microarchitecture, pages 138–148, December 1997.

[26] E. Rotenberg, Q. Jacobson, and J. E. Smith. A study
of control independence in superscalar processors. In
Proceedings of The Fifth International Symposium on
High-Performance Computer Architecture (HPCA’99),
pages 115–124, January 1999.

[27] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim,
J. Huh, S. W. Keckler, D. Burger, and C. R. Moore.
Exploiting ilp, tlp and dlp with the polymorphous
trips architecture. In Proceedings of the 30th Annual
International Symposium on Computer Architecture,
pages 422–433, June 2003.

[28] J. Stark, P. Racunas, and Y. N. Patt. Reducing the
performance impact of instruction cache misses by
writing instructions into the reservation stations
out-of-order. In International Symposium on
Microarchitecture, pages 34–43, December 1997.

[29] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin.
Wavescalar. In Proceedings of the 36th Annual
International Symposium on Microarchitecture, pages
291–302, December 2003.

[30] Trimaran : An infrastructure for research in
instruction-level parallelism.
http://www.trimaran.org.

[31] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan.
Speculation techniques for improving load related
instruction scheduling. In Proc. of the 26th Annual
Int’l Symp. on Computer Architecture (ISCA’99),
pages 42–53, May 1999.

[32] H. Zhou, C. ying Fu, E. Rotenberg, and T. Conte. A
study of value speculative execution and
misspeculation recovery in superscalar
microprocessors. Technical report, ECE Department,
N. C. State University, January 2000.

