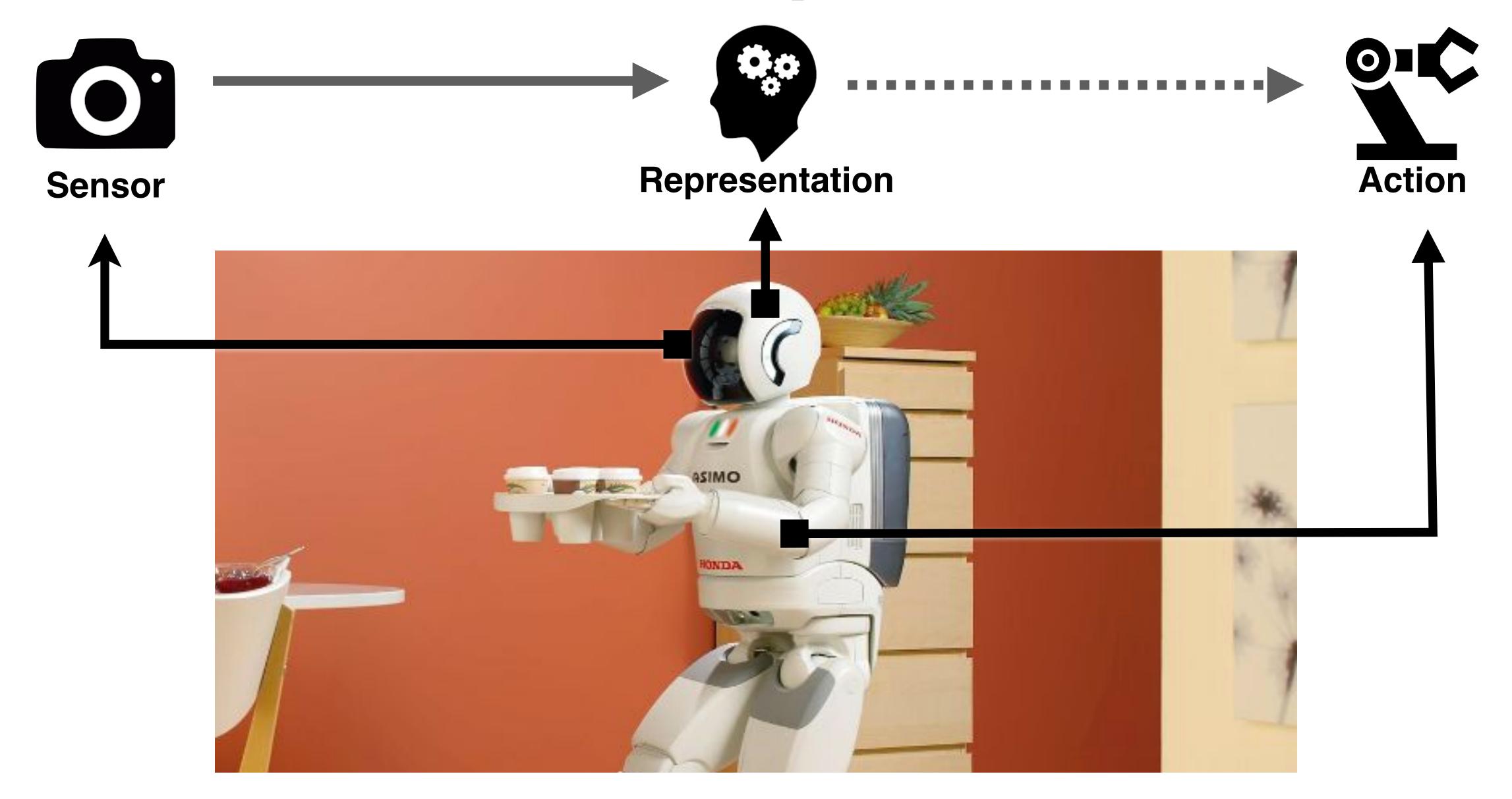
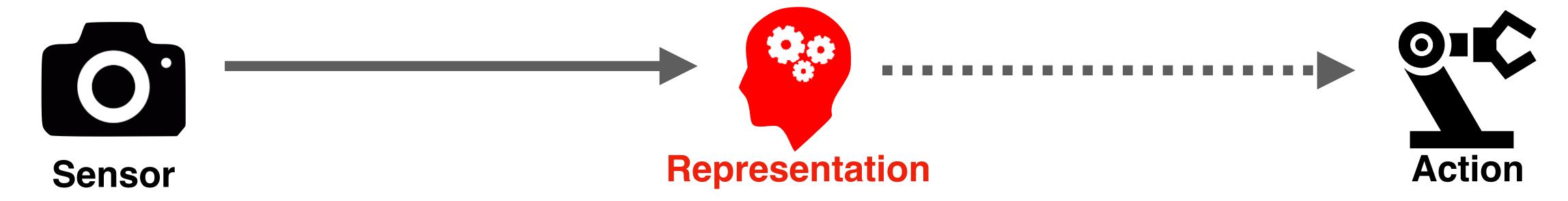
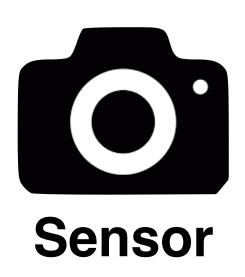
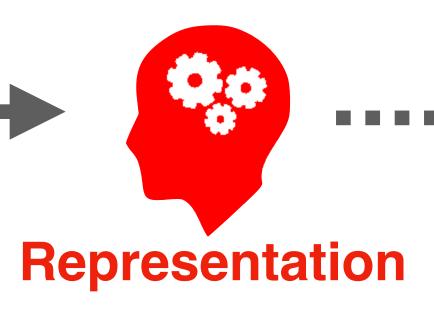
Learning Visual Representations for Generalizable Manipulation

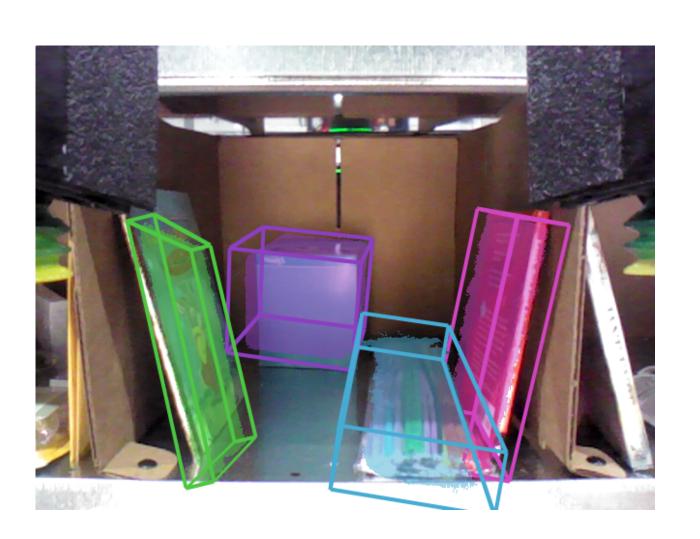
Shuran Song



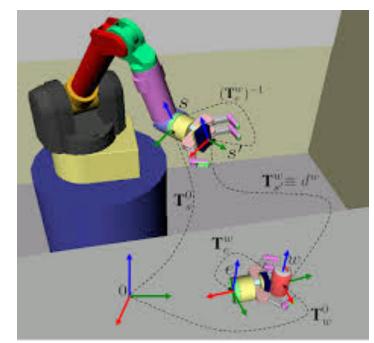






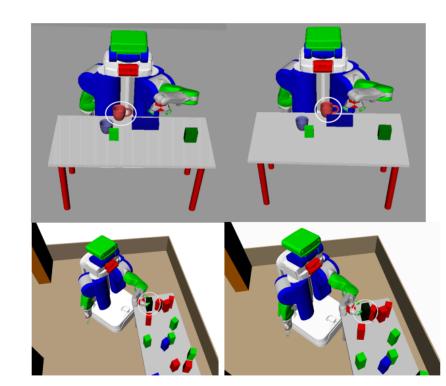


3D Object Detection 6D Poses Estimation



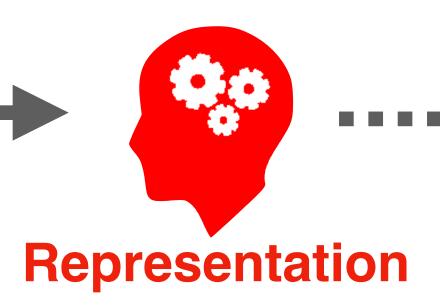
Berenson et al., 2009a Berenson and Srinivasa, 2010

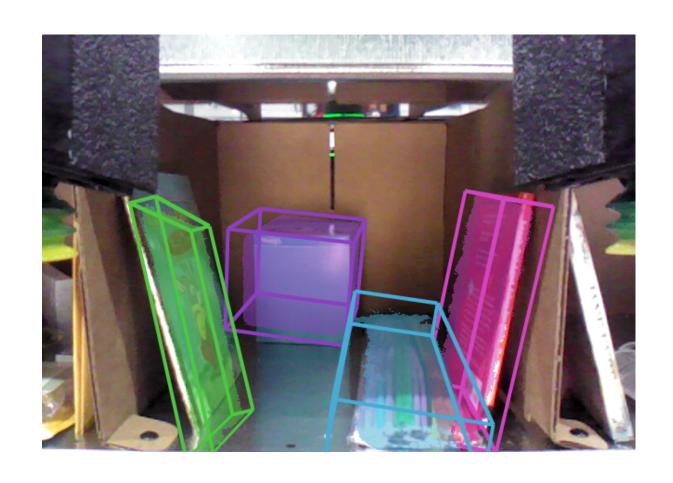
Miller and Allen 2009

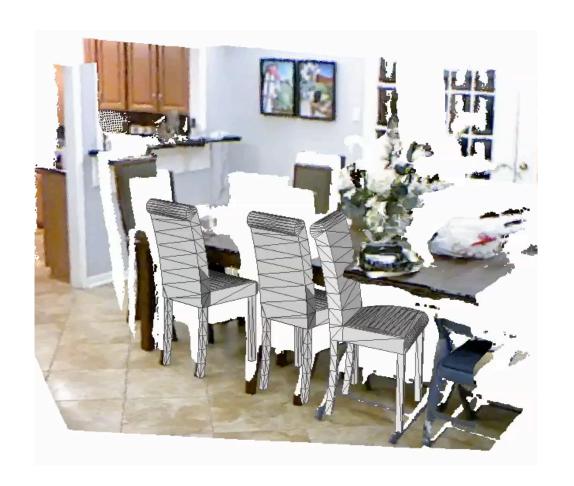


Kimm et al 2019

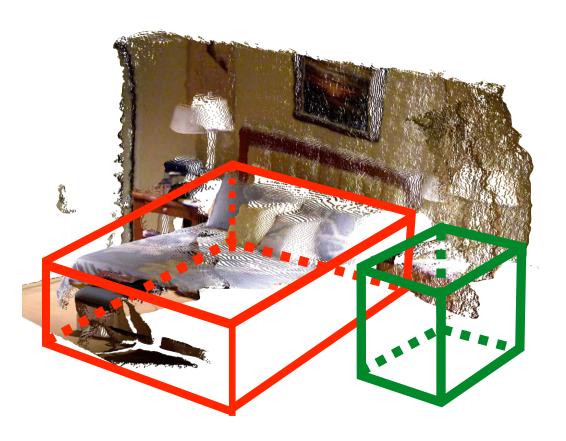
Object Detection + Pose Estimation



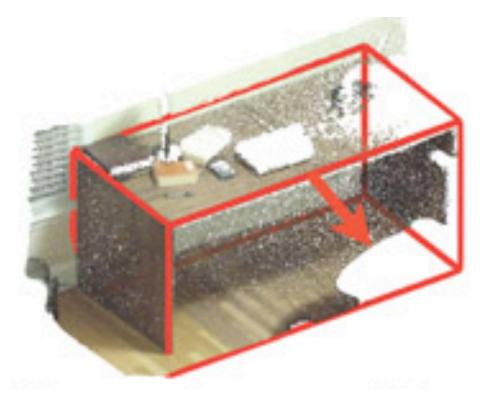




SlidingShapes
Song and Xiao
ECCV'14

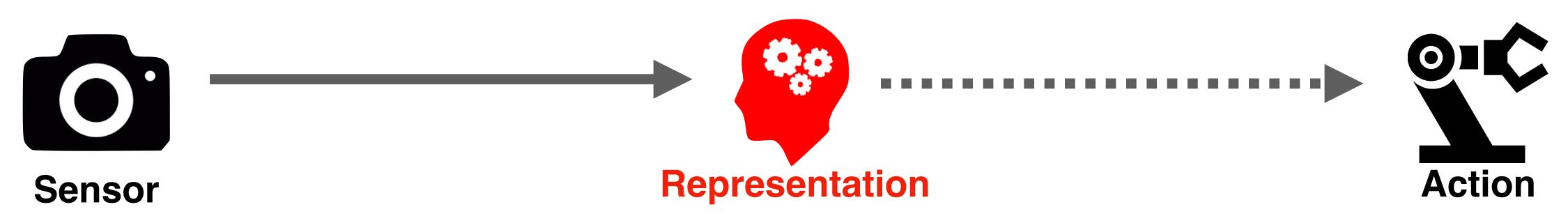


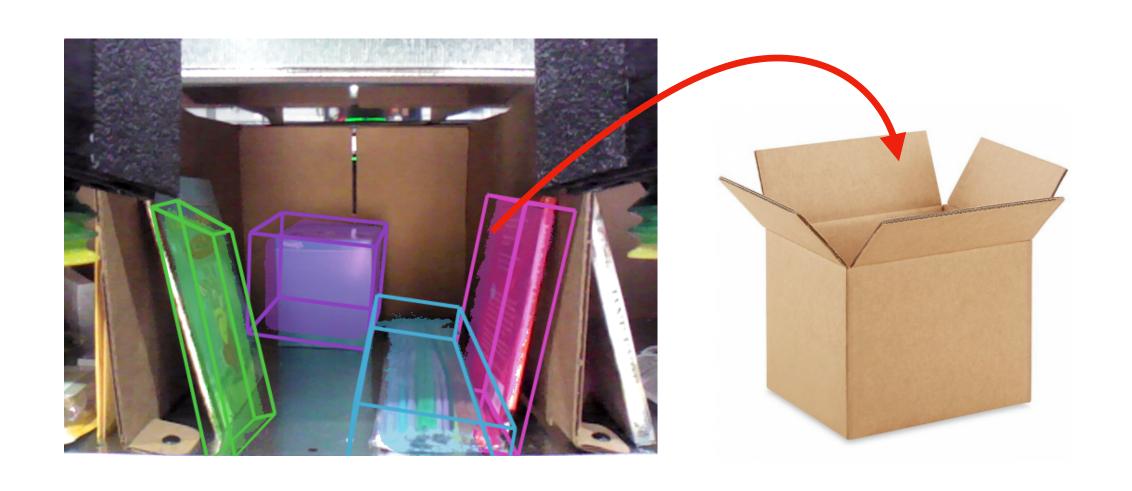
DeepSlidingShapes
Song and Xiao
CVPR'16

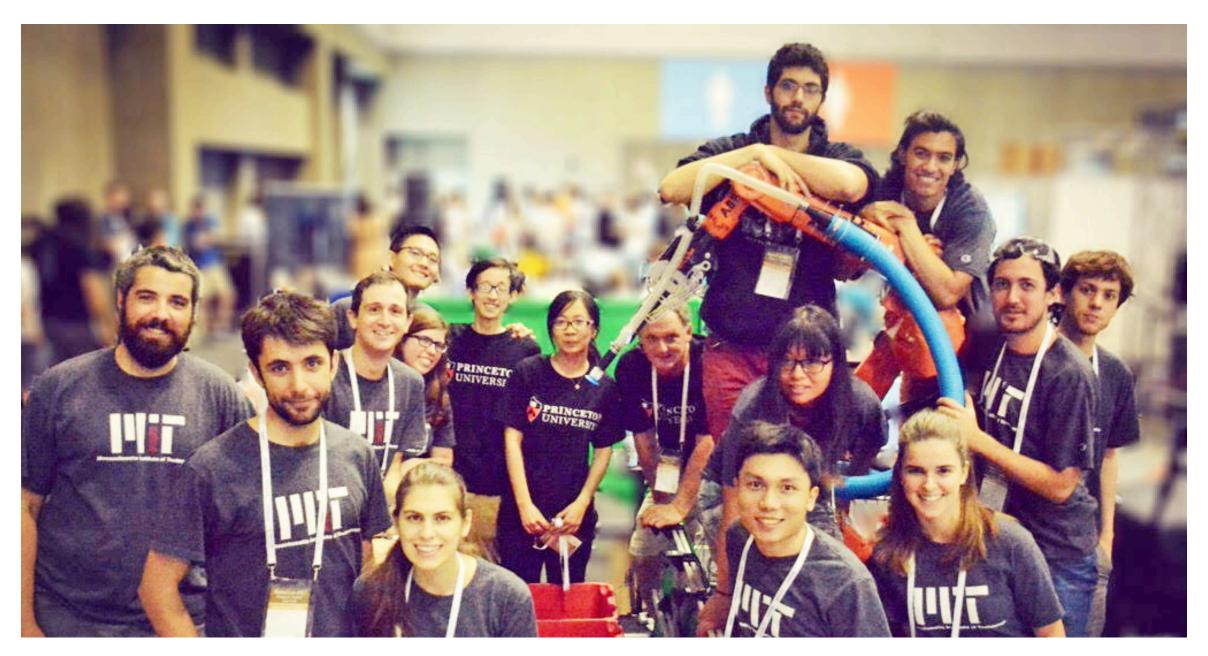


SUNRGB-D
Song et al.
CVPR'15

Object Detection + Pose Estimation

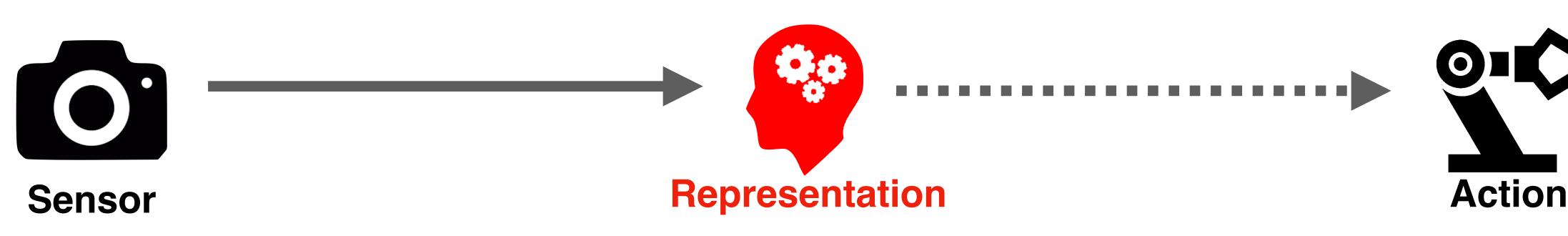


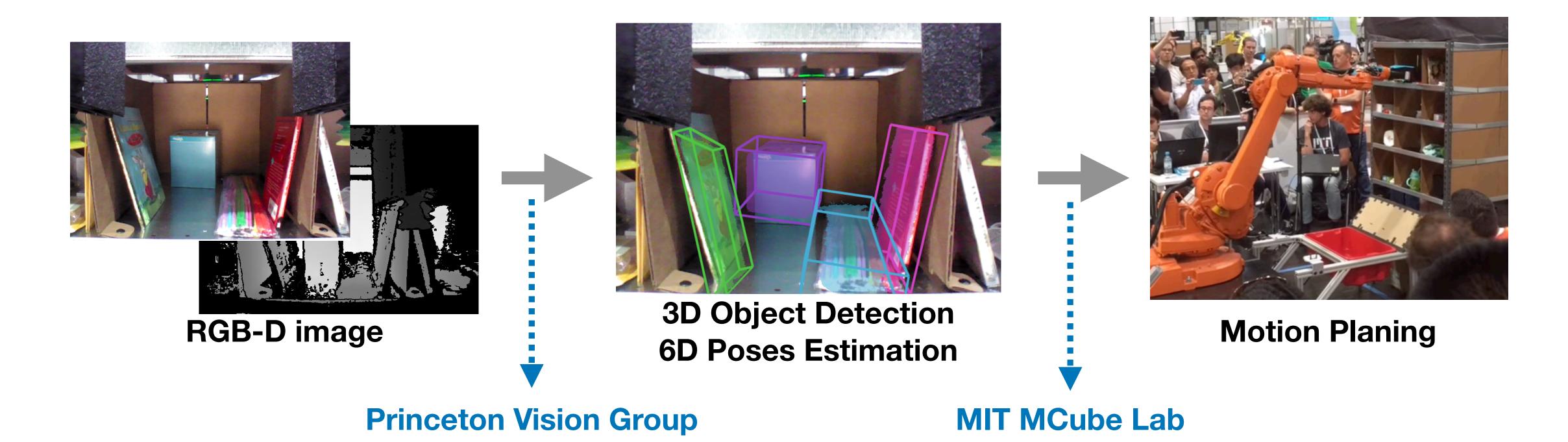




Team MIT-Princeton at Amazon Picking Challenge 2017

Amazon Picking Challenge 2016





Amazon Picking Challenge 2016

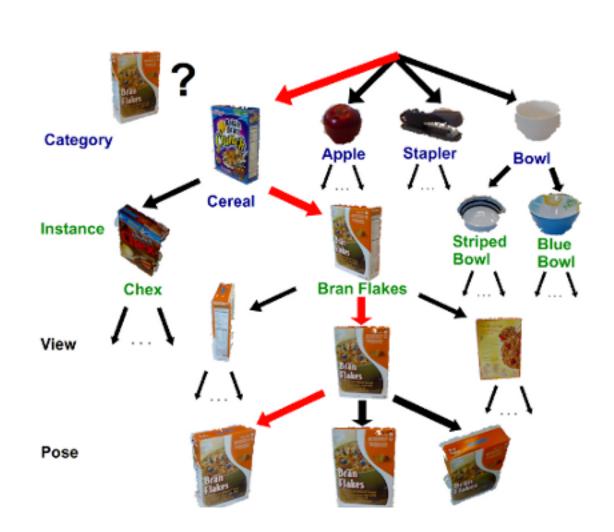
Limitations of this Approach

- Error propagation: object pose estimation under heavy cluster is still hard! Vision error will propagate to planning and result in failure execution.
- Bad generalization: Need 3D models of the objects during training, therefore hard to generalize to <u>unseen</u> objects.

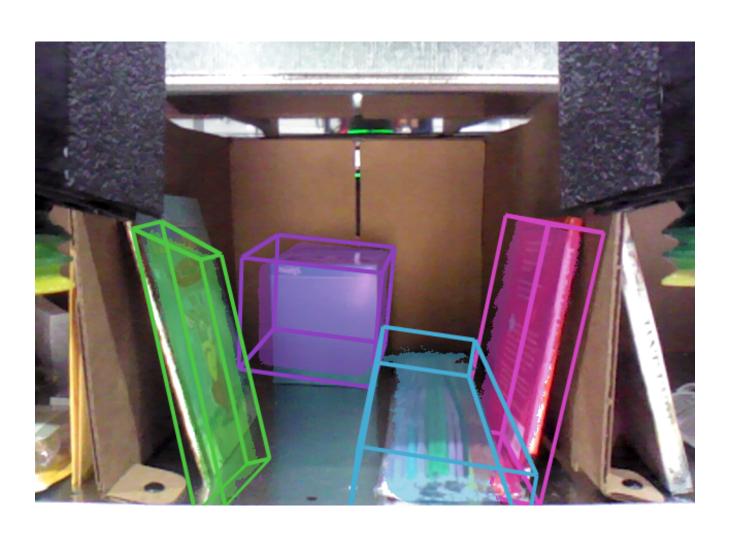
Generalizable Manipulation

Goal: Manipulation algorithm is able to generalize to new objects without the need of strong prior knowledge about the object, such as their 3D CAD model, predefined category, and poses.

CAD Model

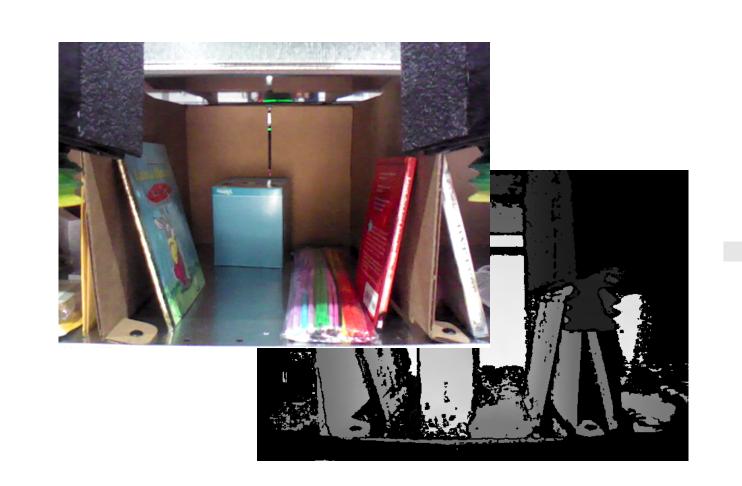


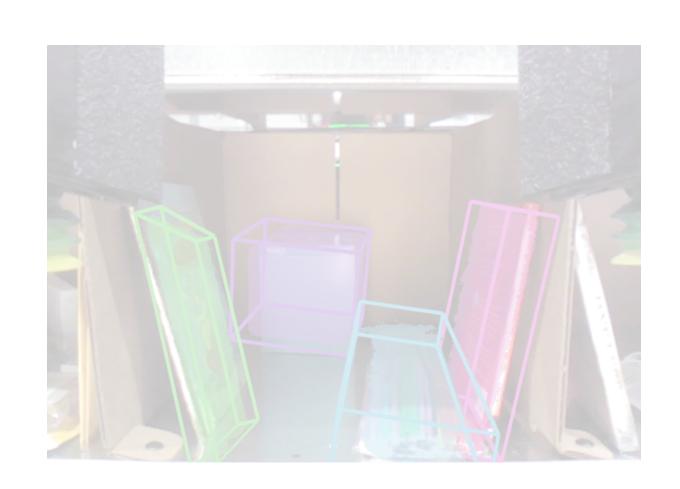
Object Category



Object Poses

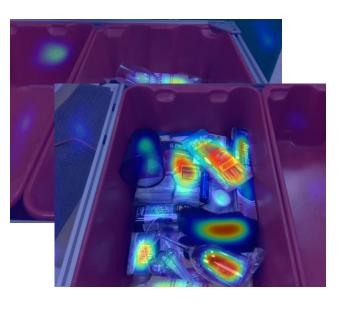
Generalizable Grasp Planning

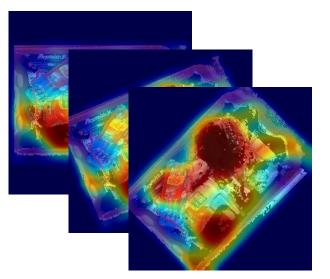


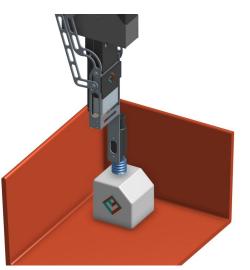


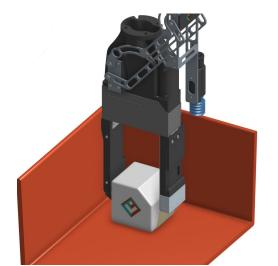
Action Affordance

Grasping





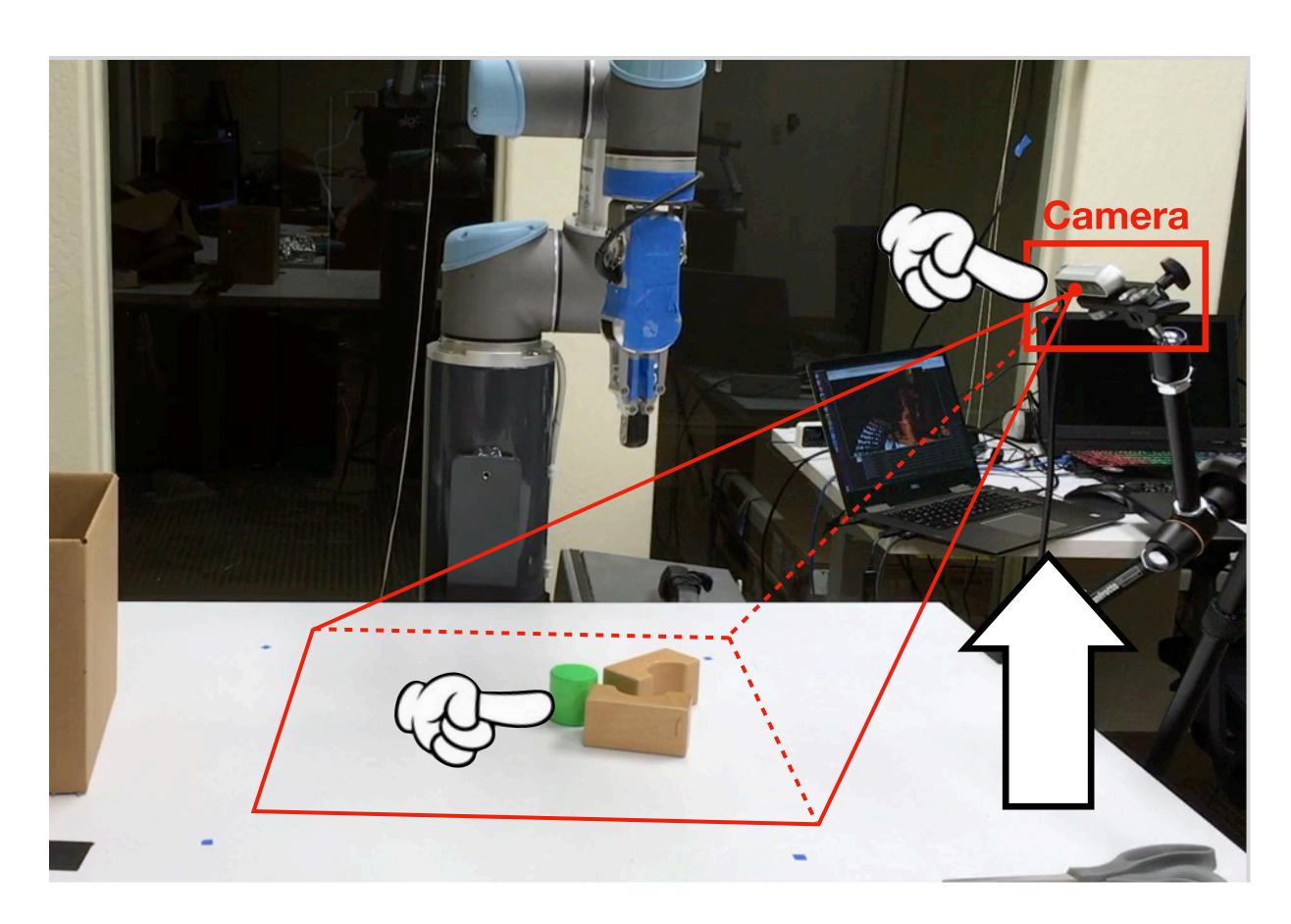




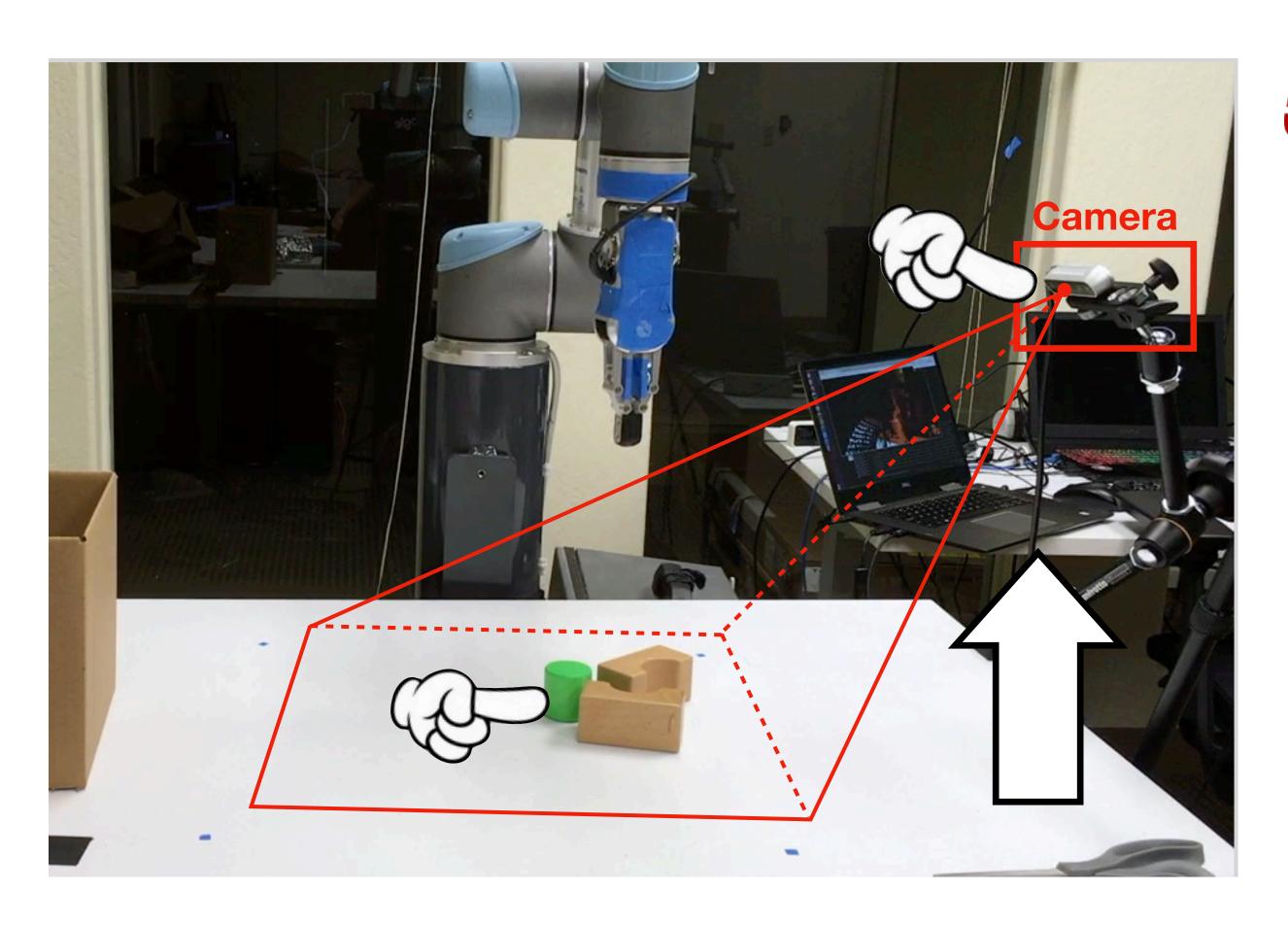
Recognize Isolated the Object

Amazon Robotics Challenge 2017

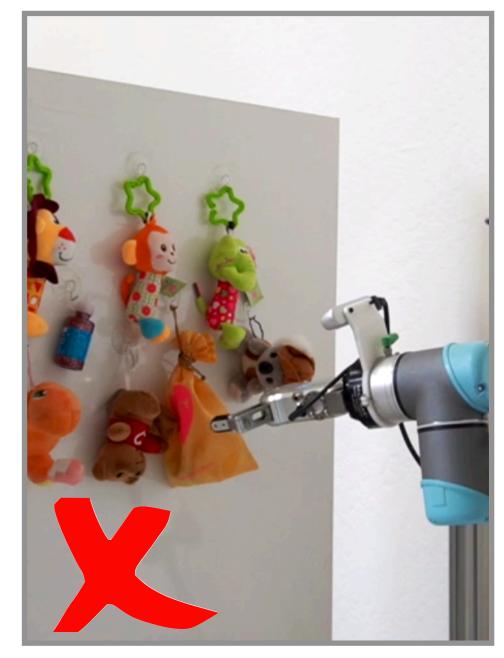
Amazon Robotics Challenge 2017



5 DIFFERENT WAYS TO BREAK IT!

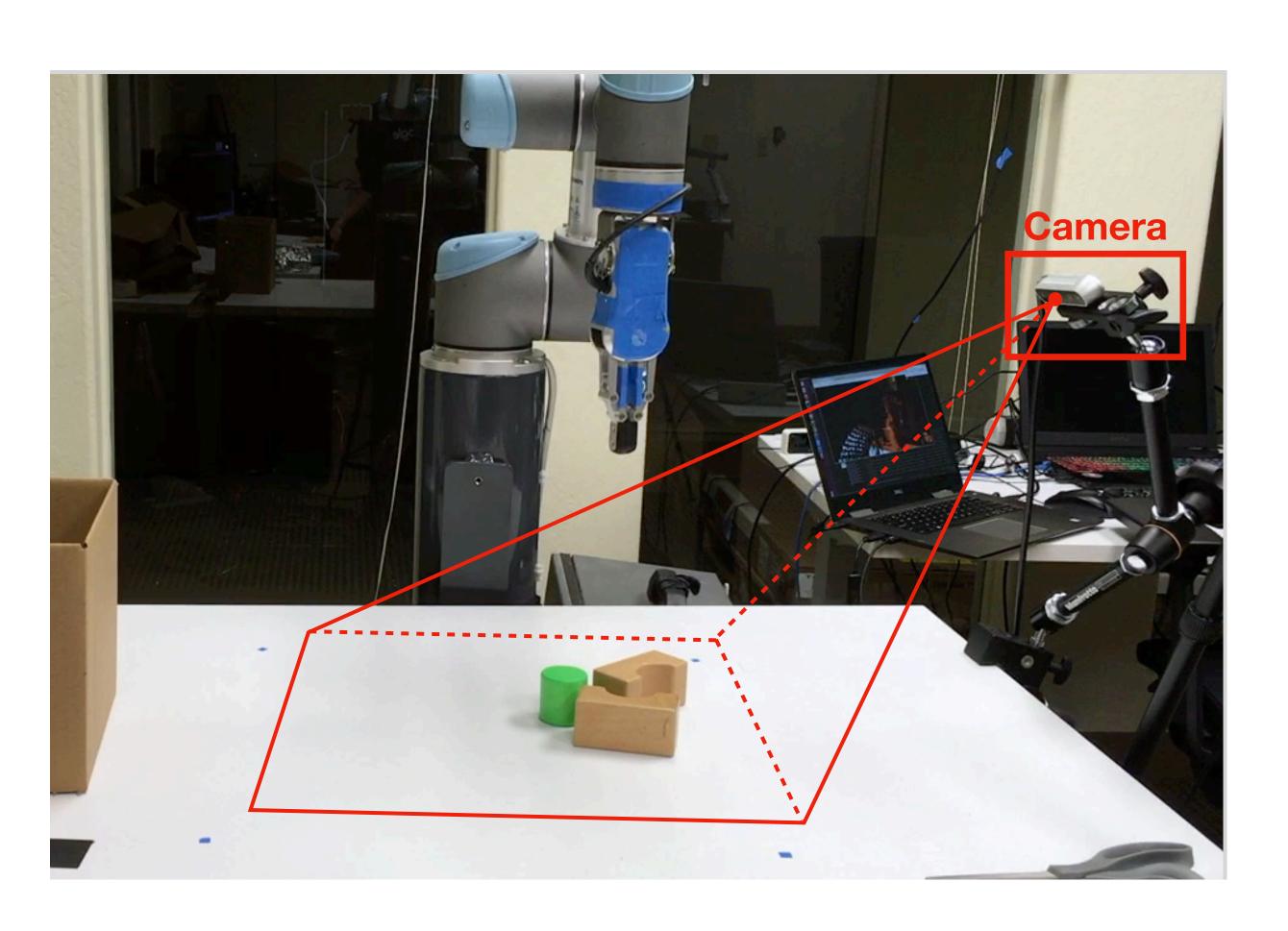


5 DIFFERENT WAYS TO BREAK IT!



X Reactive Open-loop execution

X Flexible 4-DoF grasps (static scene only) (Top-down grasp only)



Learning-based Grasping

Open-loop

Closed-loop

4 10 1 Mahler et al. ICRA. 2016 Mahler et al. RSS,2017 Pinto and Gupta, ICRA 2016 Zeng et al. IROS 2018 Zeng et al, ICRA 2018 Zeng et al ICRA 2017 Morrison et al. RSS, 2018. Kalashnikov et al, CORL 2018 Redmon and Angelova ICRA, 2015 Viereck et al CORL 2017 Levine et al IJRR 2018

OoF

Gualtieri et al IROS 2016 Goldfeder et al 2009 Gualtieri and Platt ICRA 2018 Weisz and Allen ICRA 2012

??

X Flexible

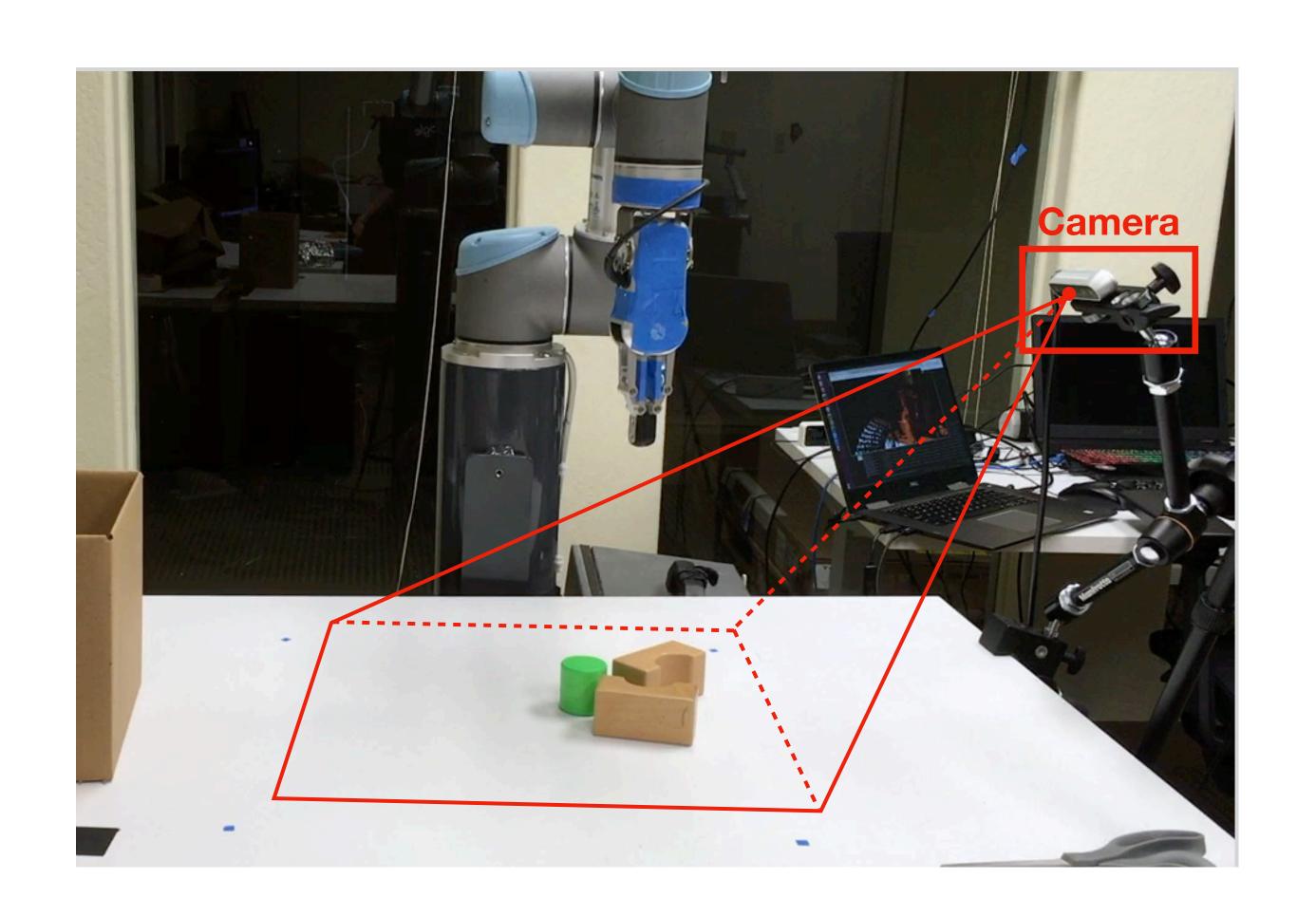
4-DoF grasps

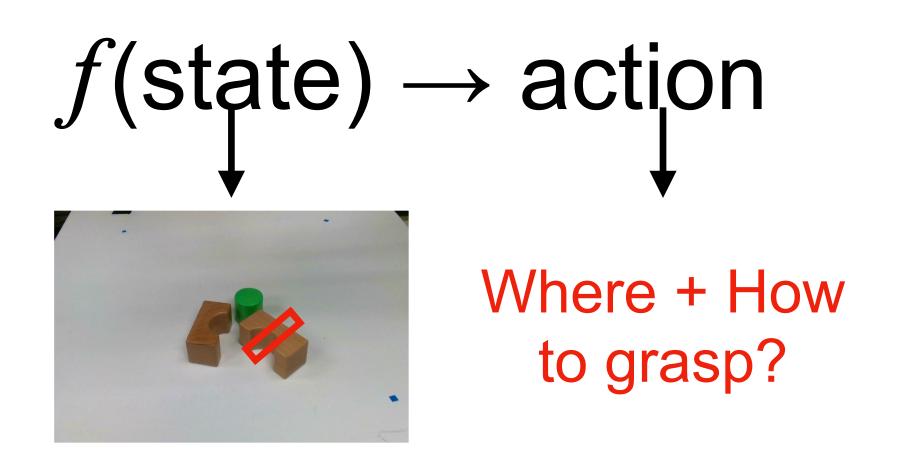
(Top-down grasp only)

X Reactive

Open-loop execution (static scene only)

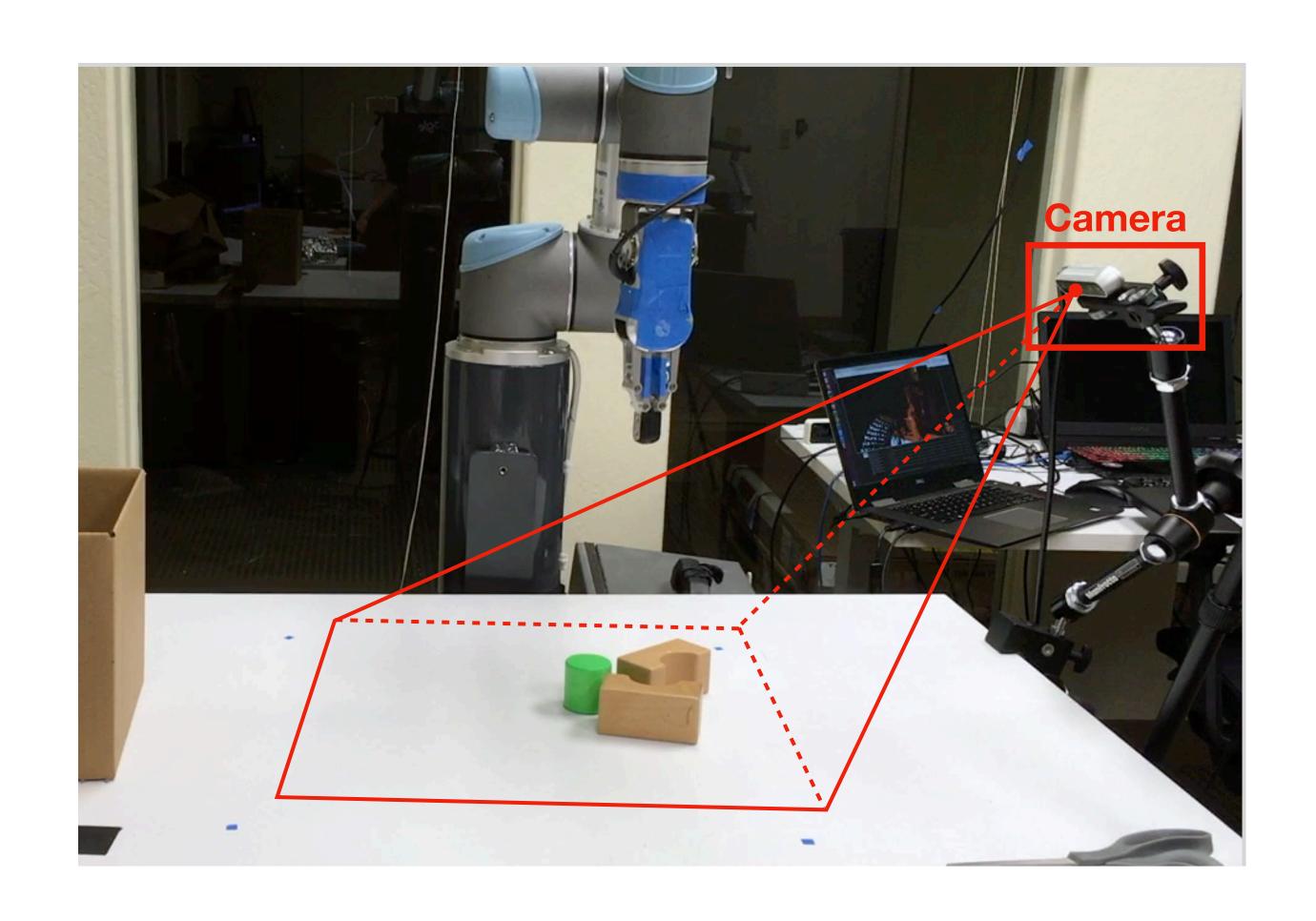
Open-loop Topdown Grasp

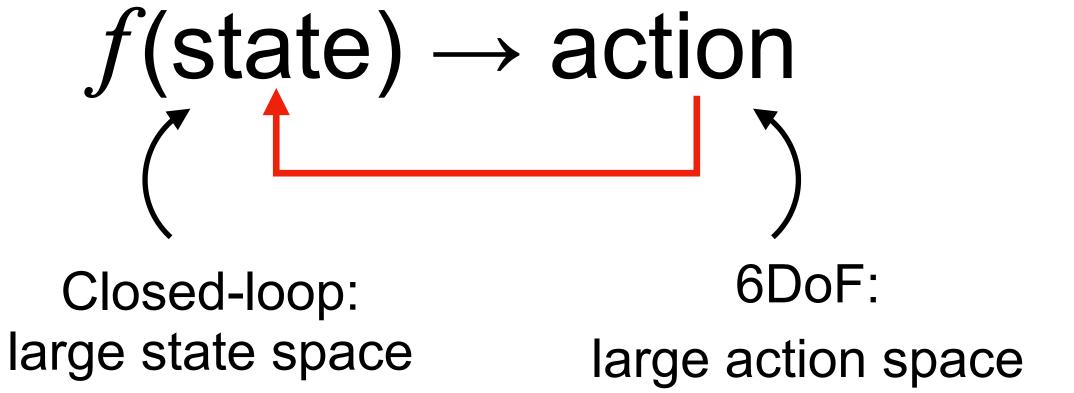




Open-loop Topdown Grasping

Closed-loop 6DoF Grasp





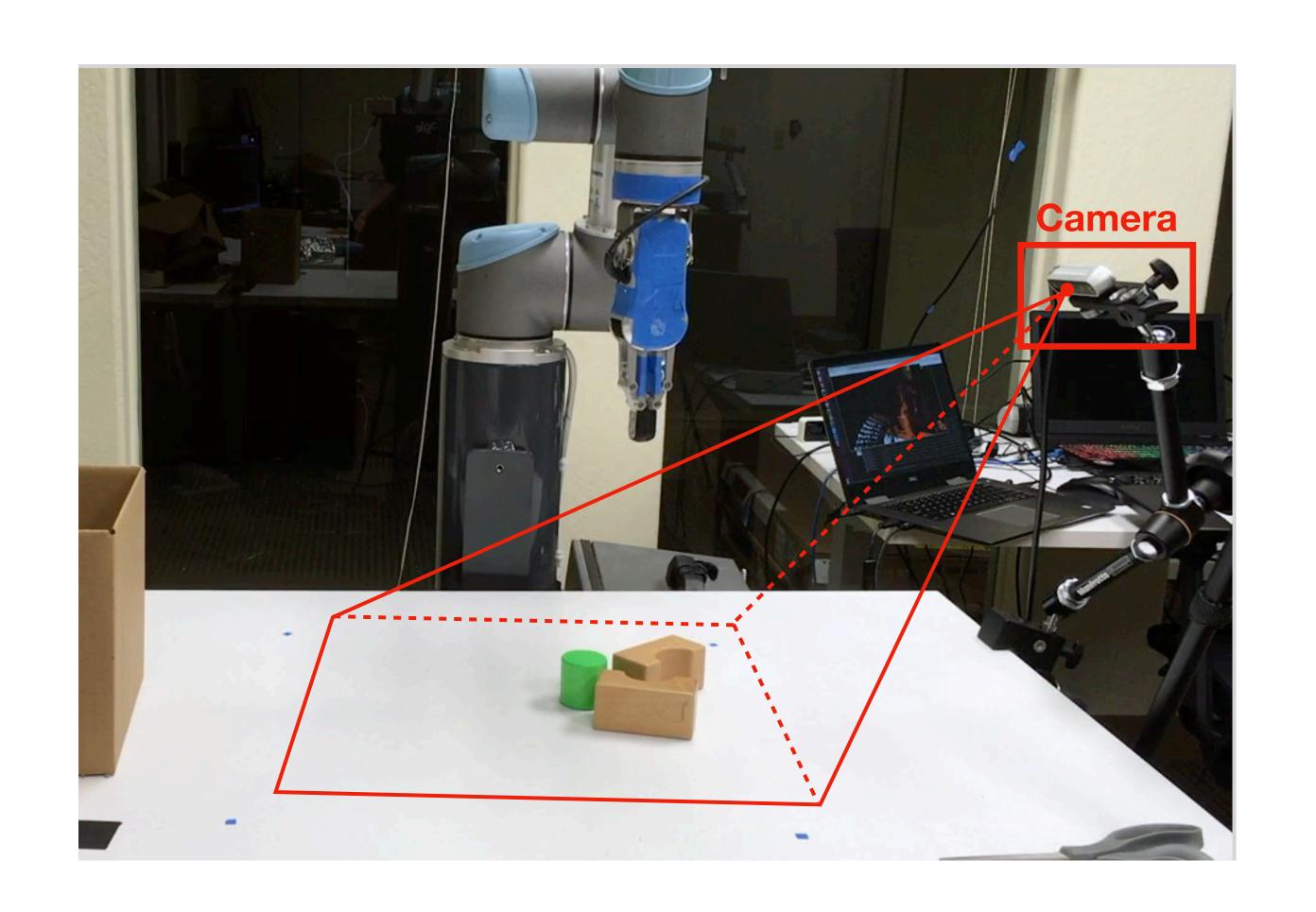
Qt-Opt: Scalable deep reinforcement learning for vision-based robotic manipulation.

Kalashnikov et al CORL, 2018.

Learning based Closed-loop (Topdown)

580,000 off policy + 28,000 on-policy robot grasping trials

Closed-loop 6DoF Grasp



```
f(\text{state}) \rightarrow \text{action}

Closed-loop:

large state space

f(\text{state}) \rightarrow \text{action}

6DoF:

large action space
```

How to get the training data?

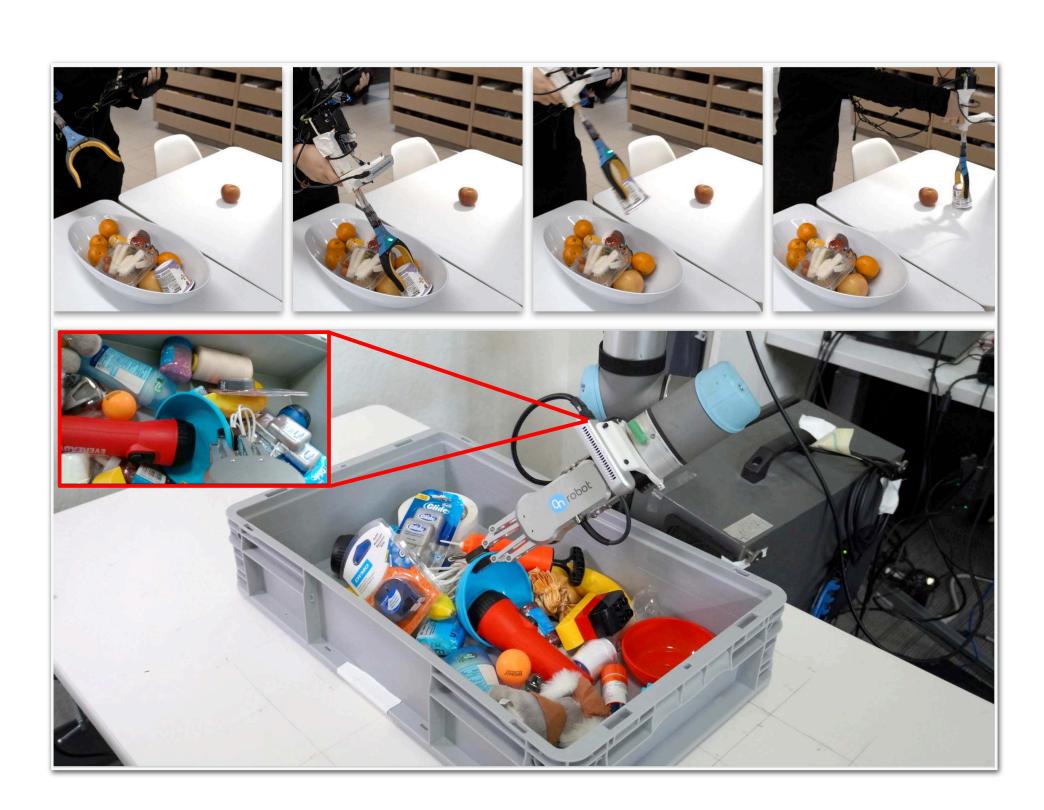
How to enable efficient learning?

Closed-loop 6DoF Grasp

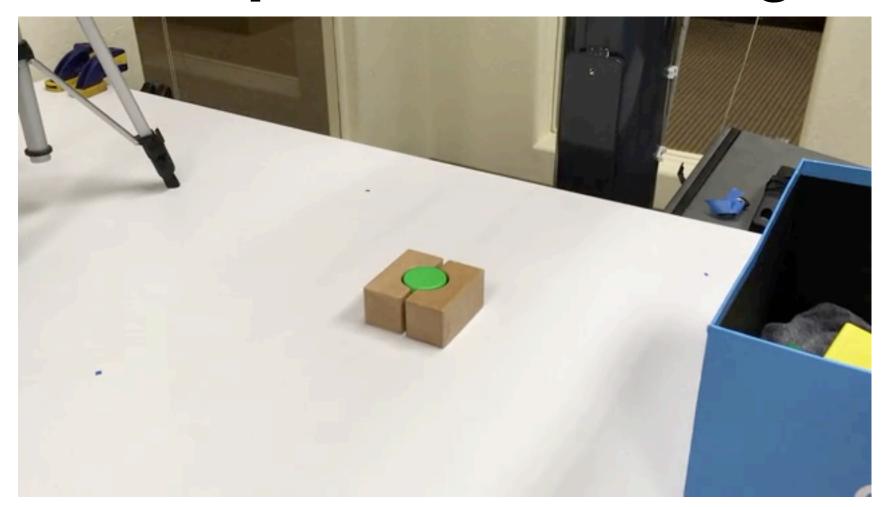
Grasping In the Wild:

Learning Flexible Grasping Policy with Low-cost Demonstration

Shuran Song, Andy Zeng, Johnny Lee, Thomas Funkhouser RA-L, IROS 2020



Self-supervised learning



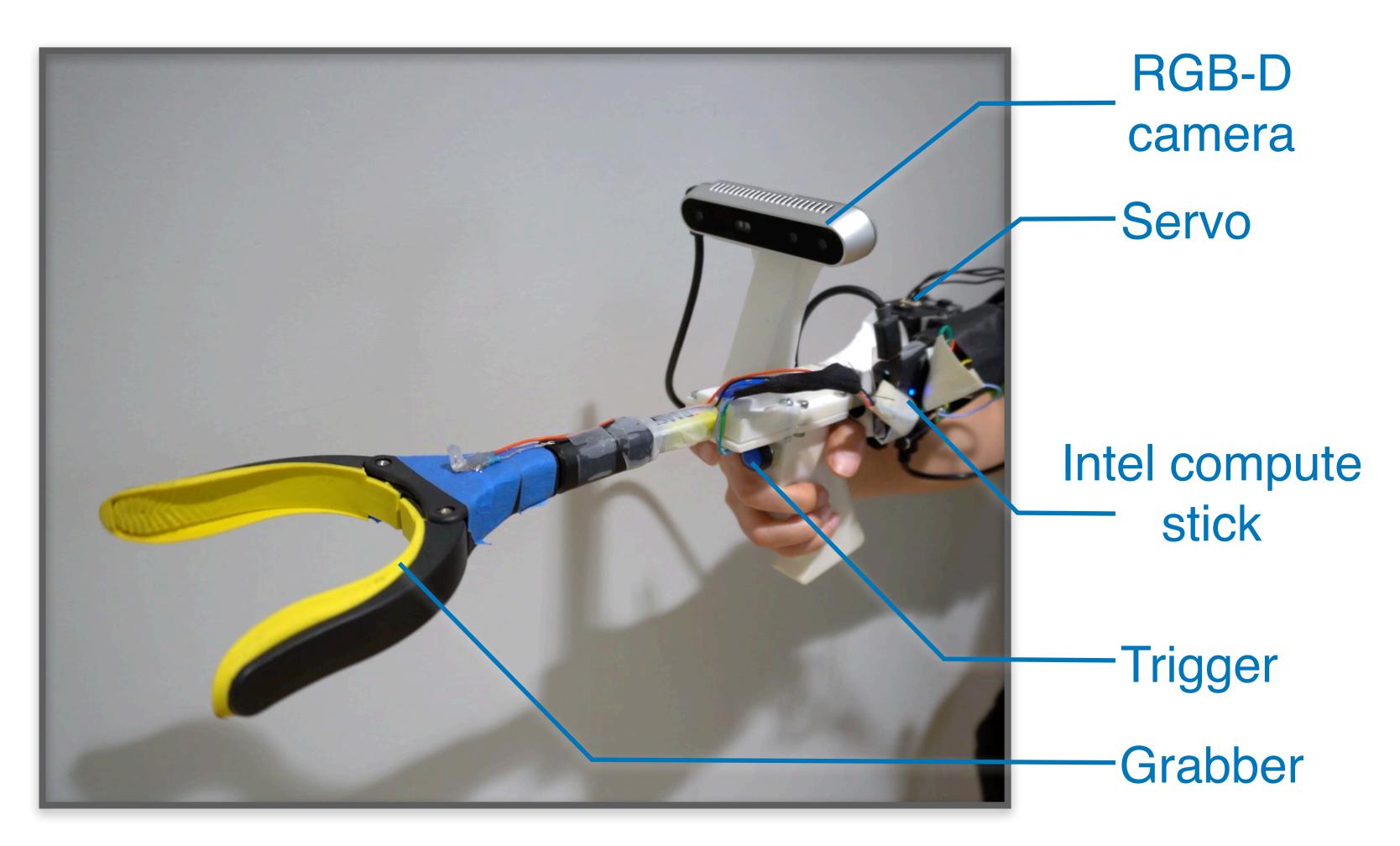
Zeng et al IROS'10

X Simple scenarios: low success rate, hard to get <u>initial positive</u> training data.

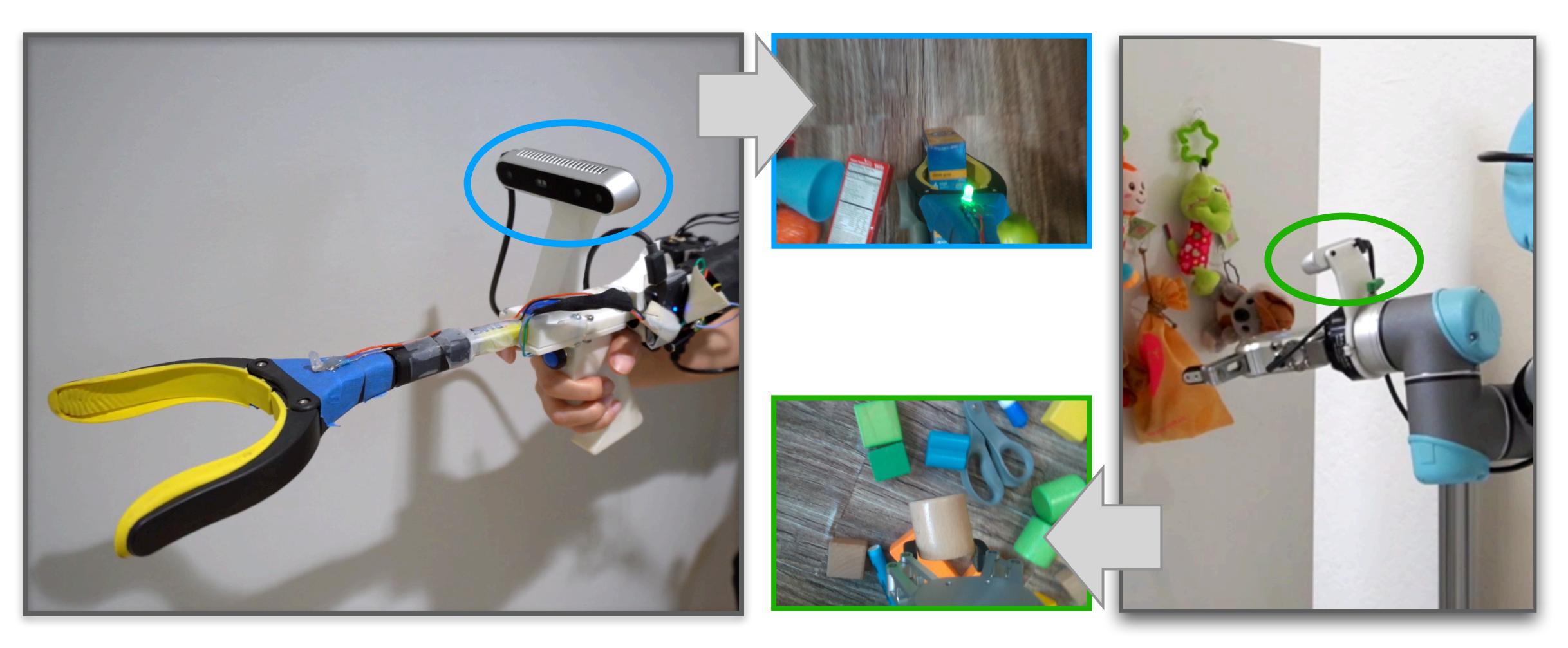
Learning from demonstration

Schneider et al IROS'10

- X Expensive setup, Limited physical access (robots)
- X Expert operator
- X Hard to scale



Data collection device



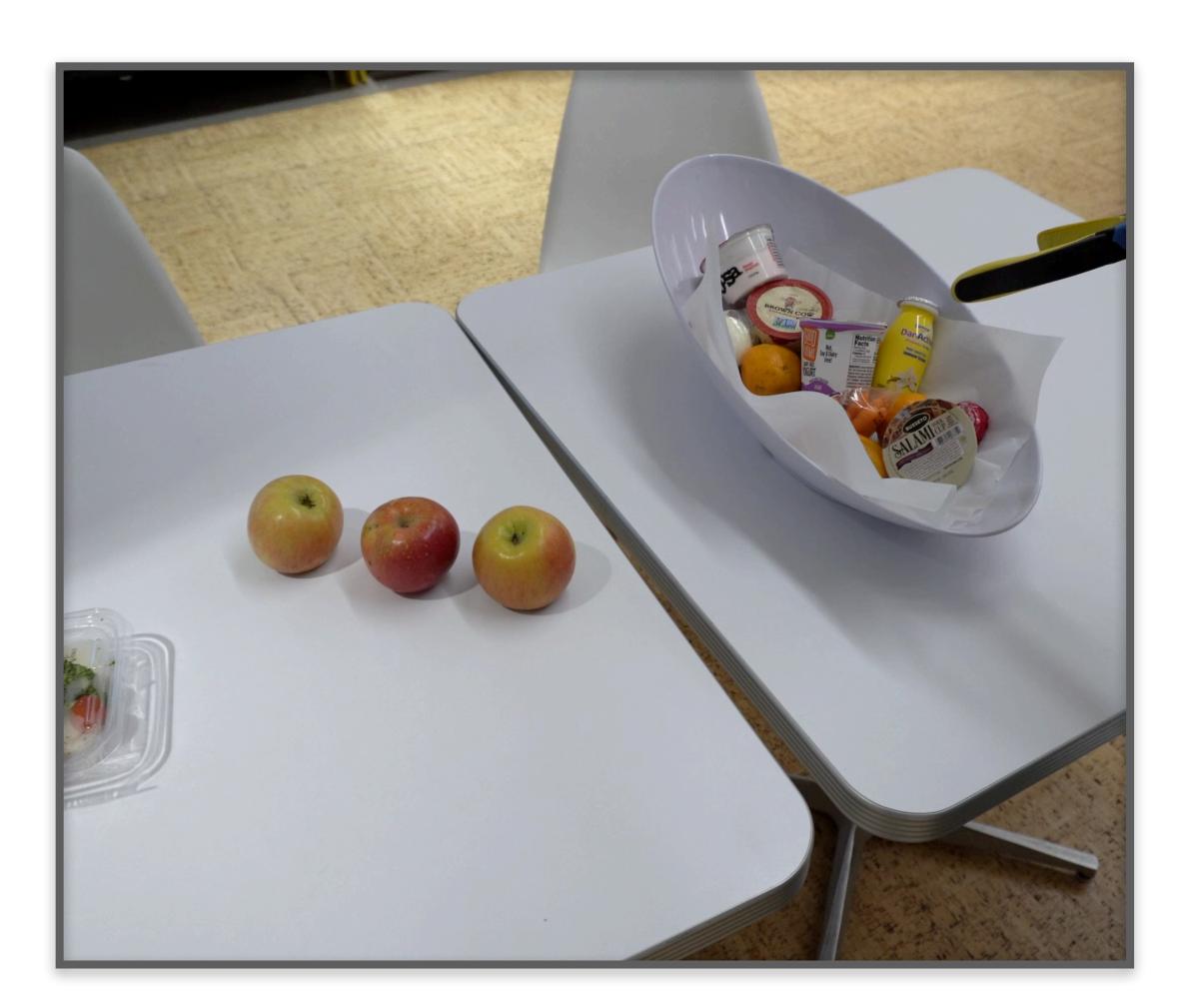
Data collection device

Robot

Low-friction interface for untrained user:

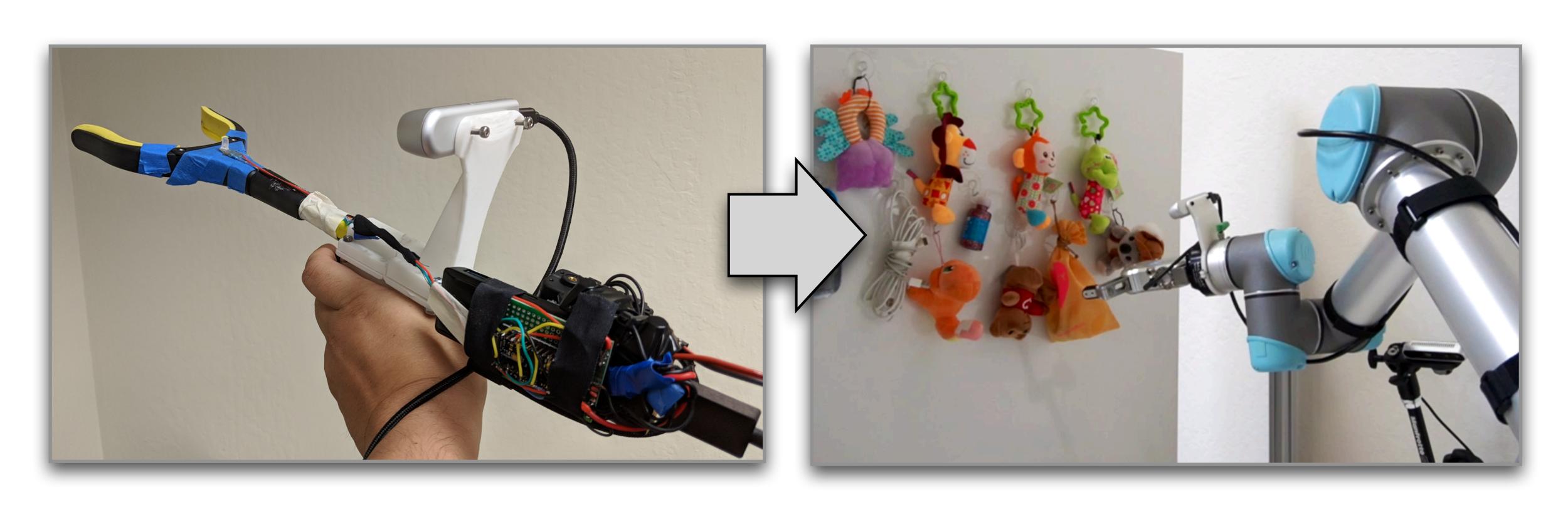
- √ Collect data everywhere.

 (not limited by robot access)
- ✓ Data for challenging tasks. (no broken dishes)
- ✓ Minimized domain gap.



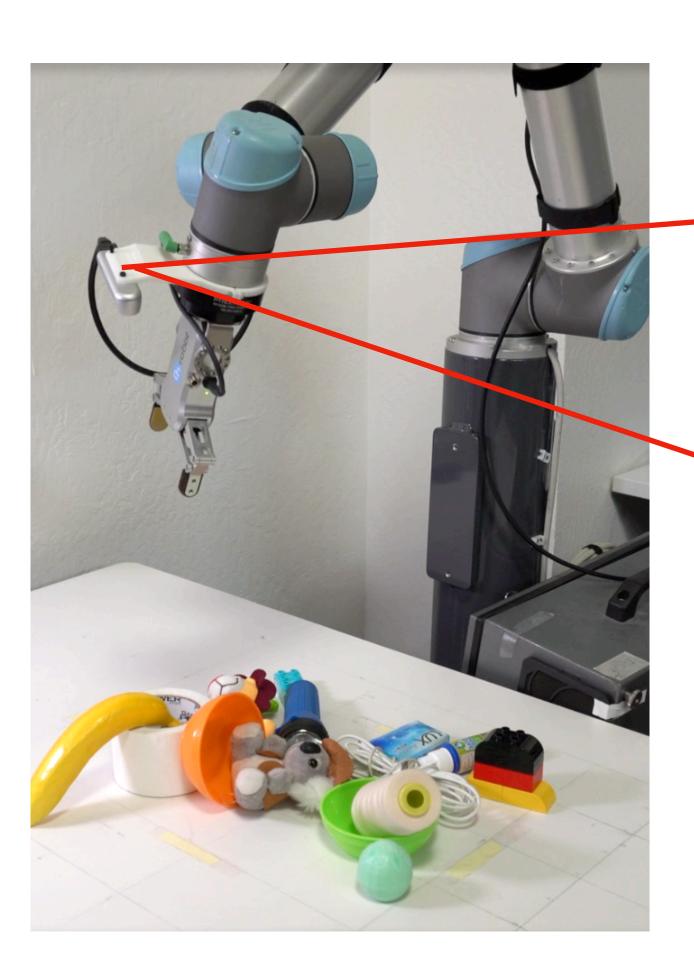
Human demonstrations

Data collection device



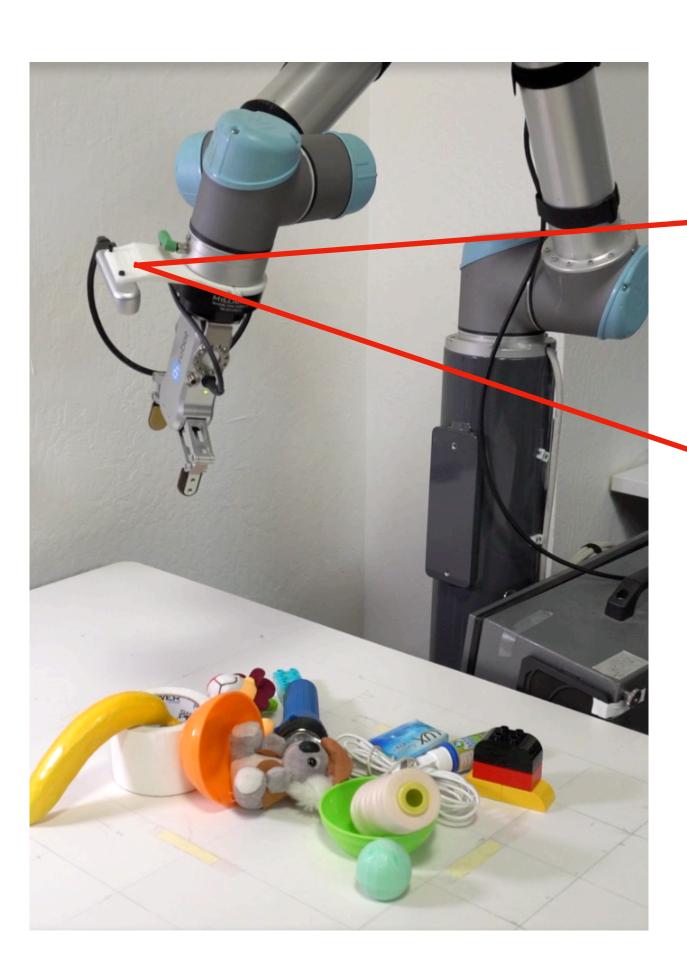
The Data Problem

The Learning Problem



 $f(state) \rightarrow action$

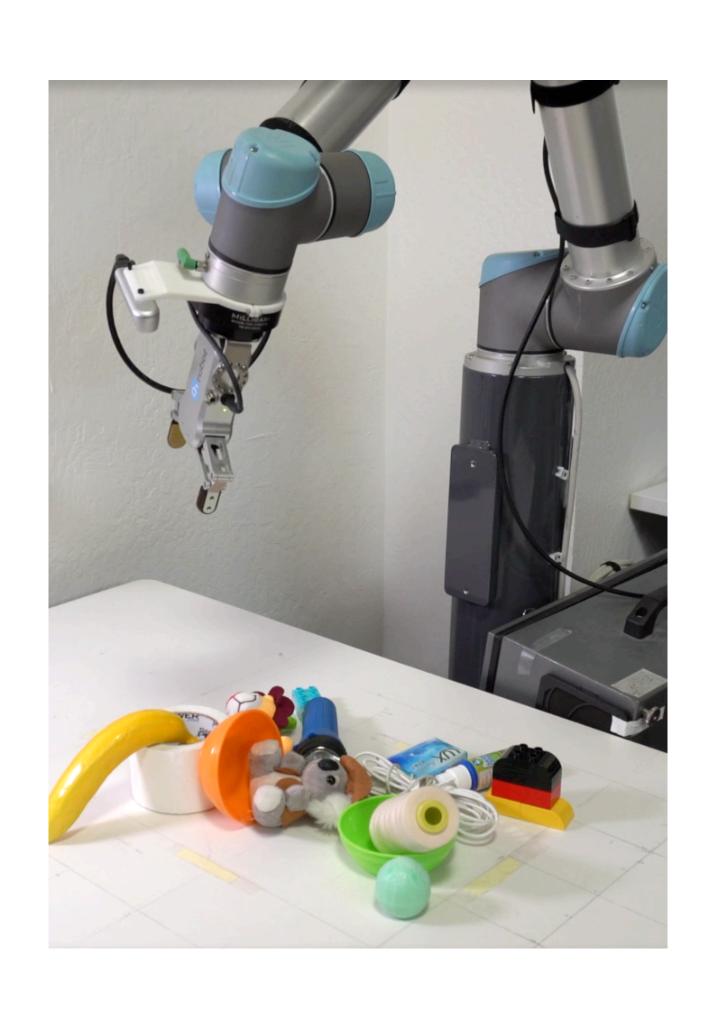
Where to move next?

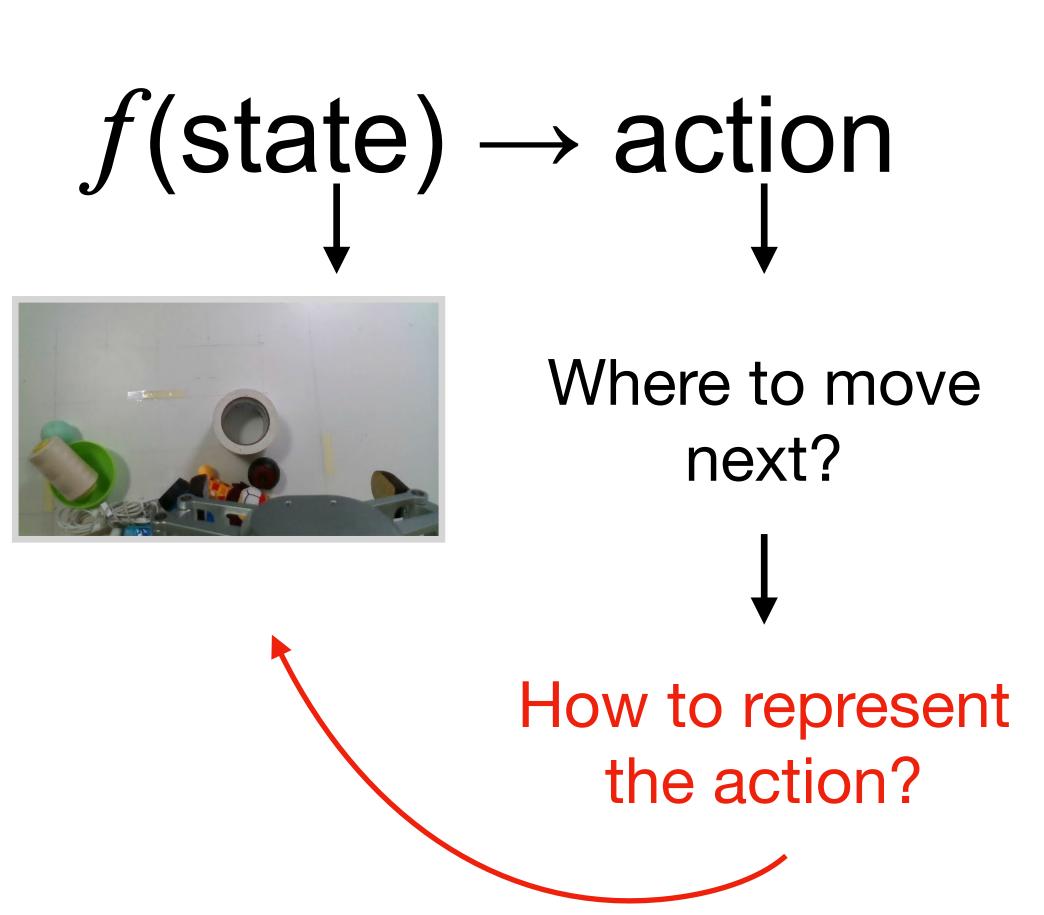


 $f(\text{state}) \rightarrow \text{action}$

Where to move next?

How to represent the action?



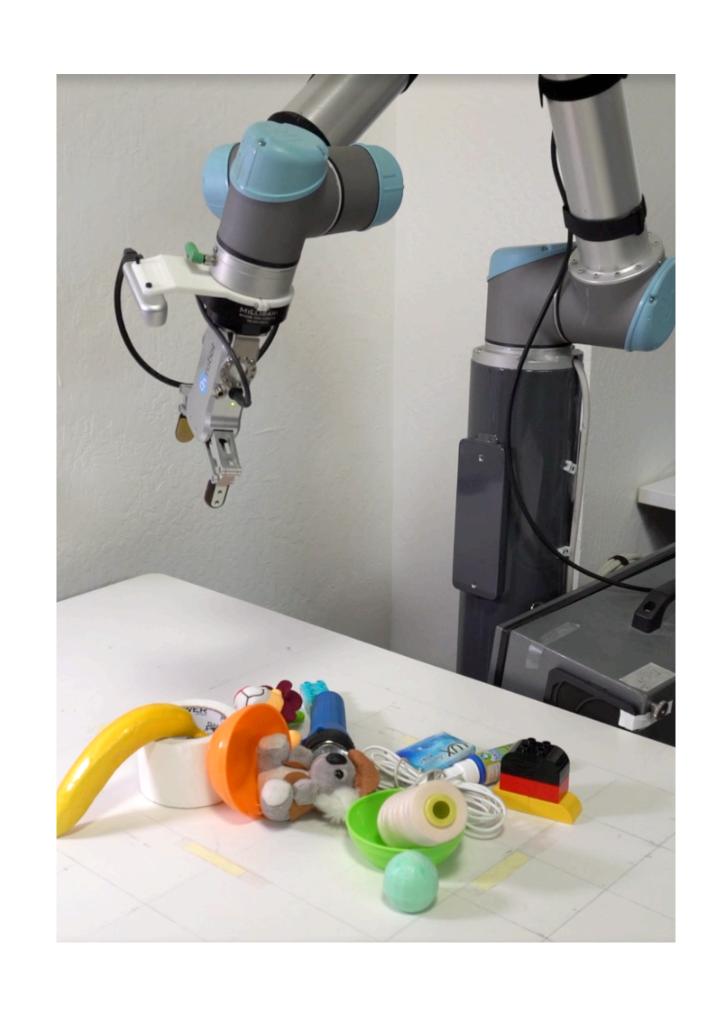


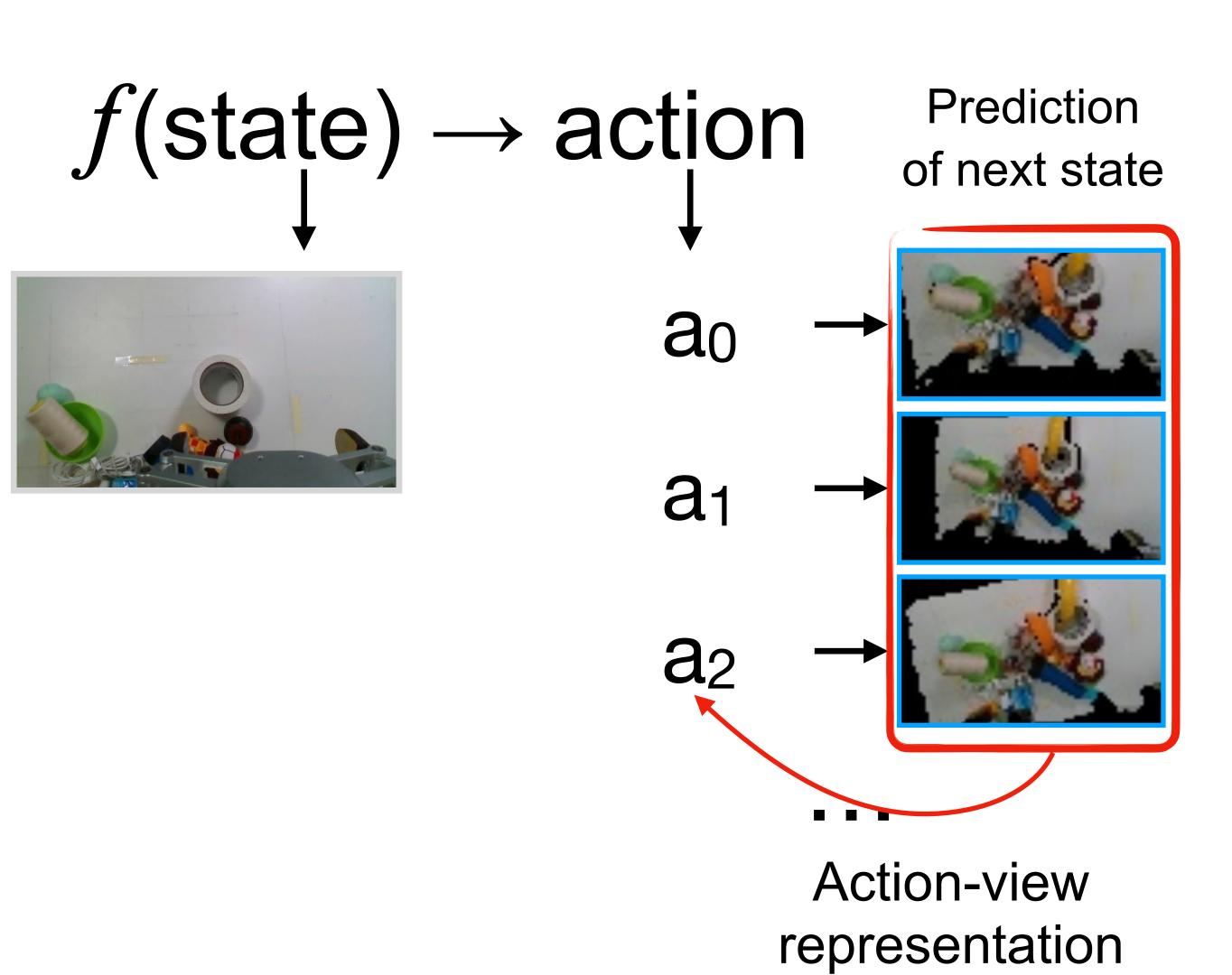
How the action will change the state?

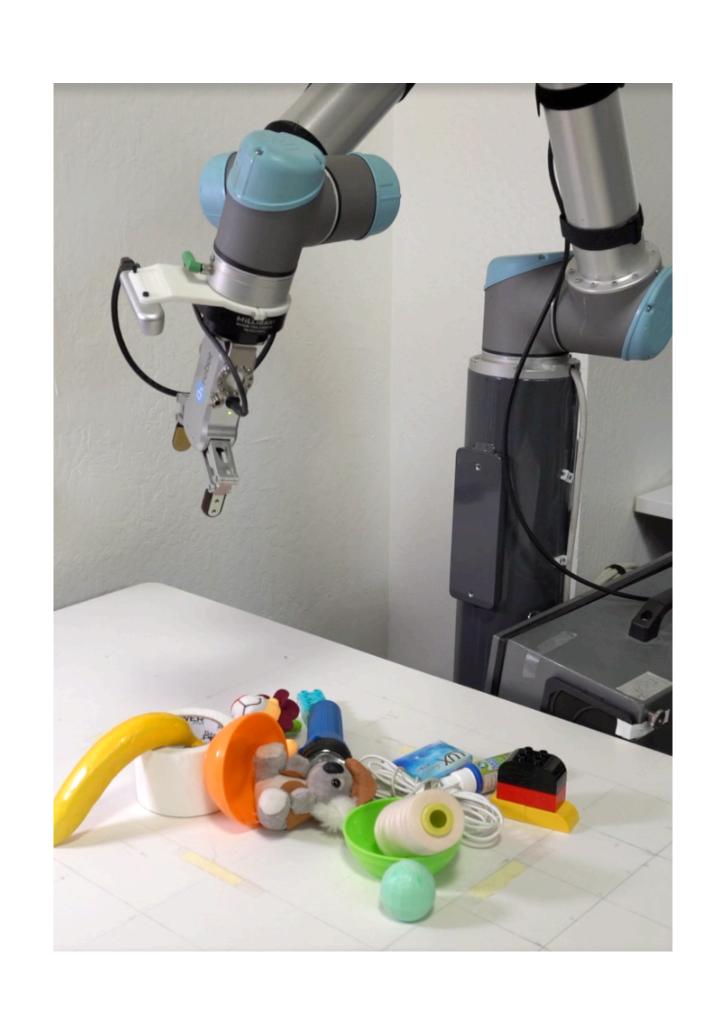
Prior works:

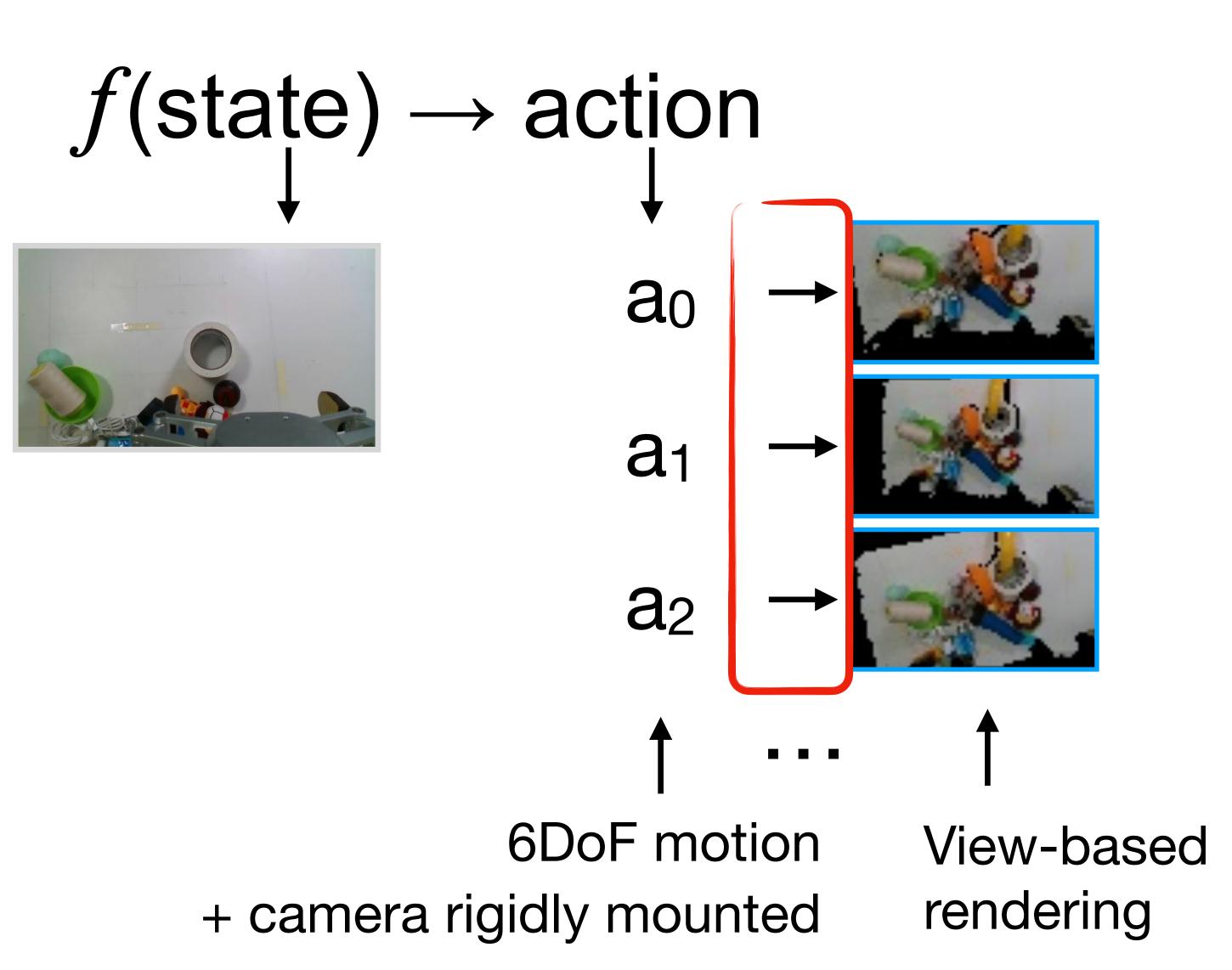
- Joint angles: $[\theta_0 \ \theta_1]$ $\theta_2 \ \theta_3 \ \theta_4 \ \theta_{51}$
- Effector offsets:
 [d_x d_y d_z]
- Motor torques

continuous values that hold abstract meaning

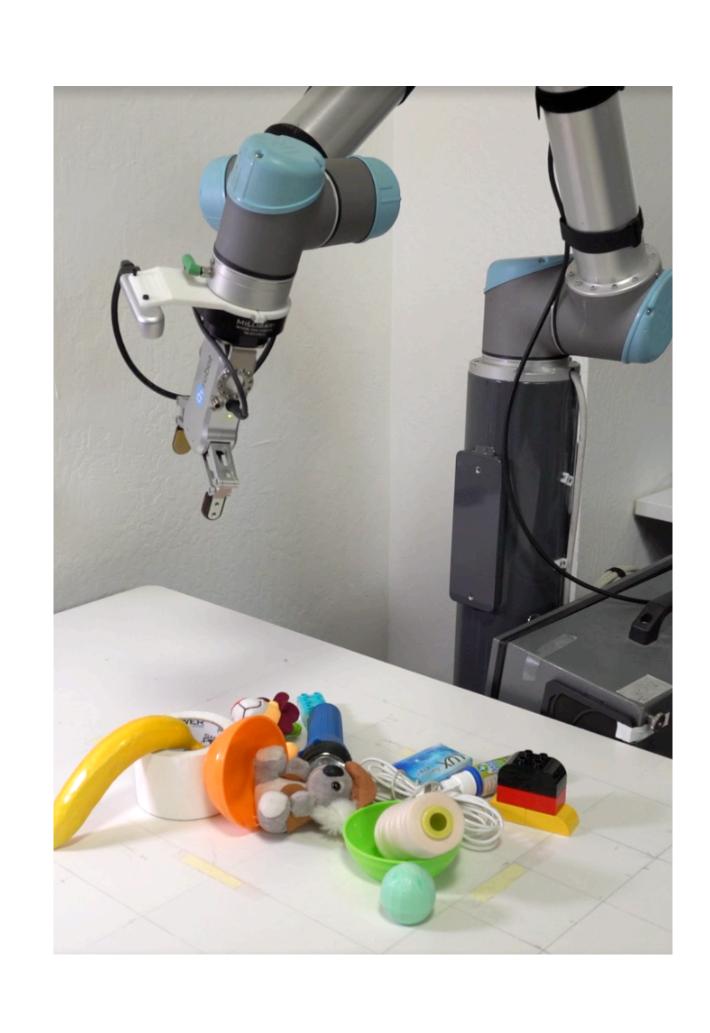


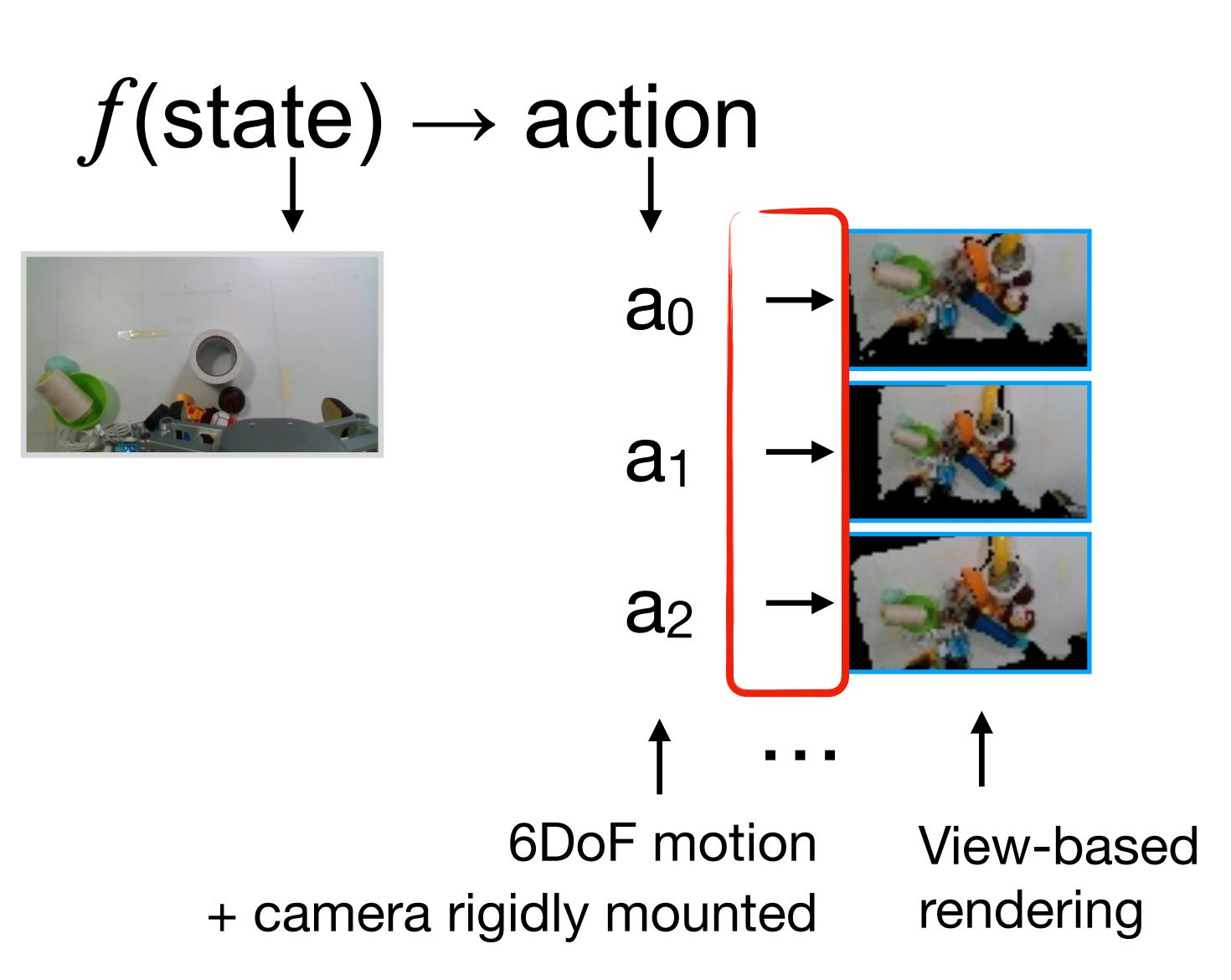




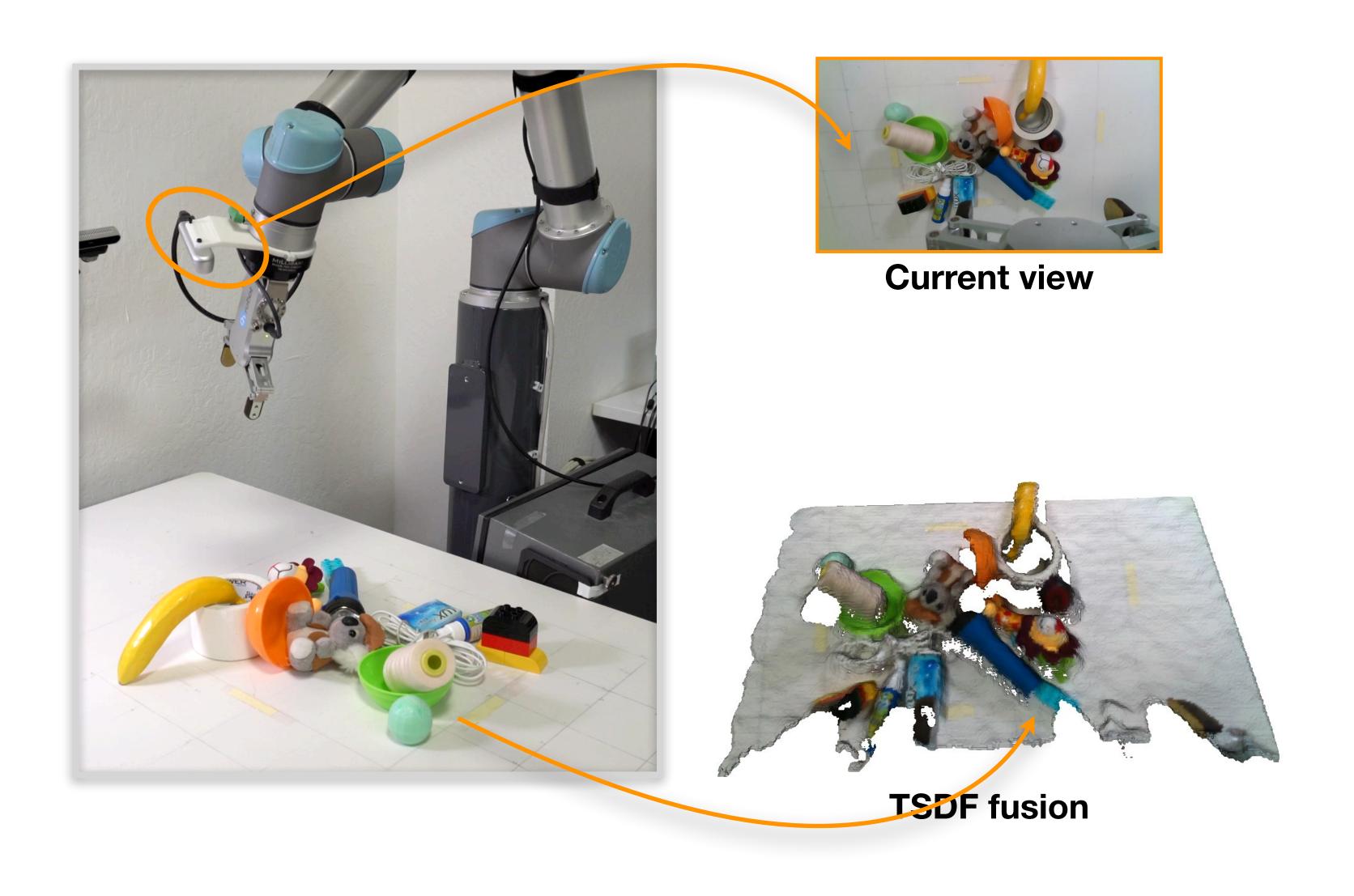


Action-view Representation

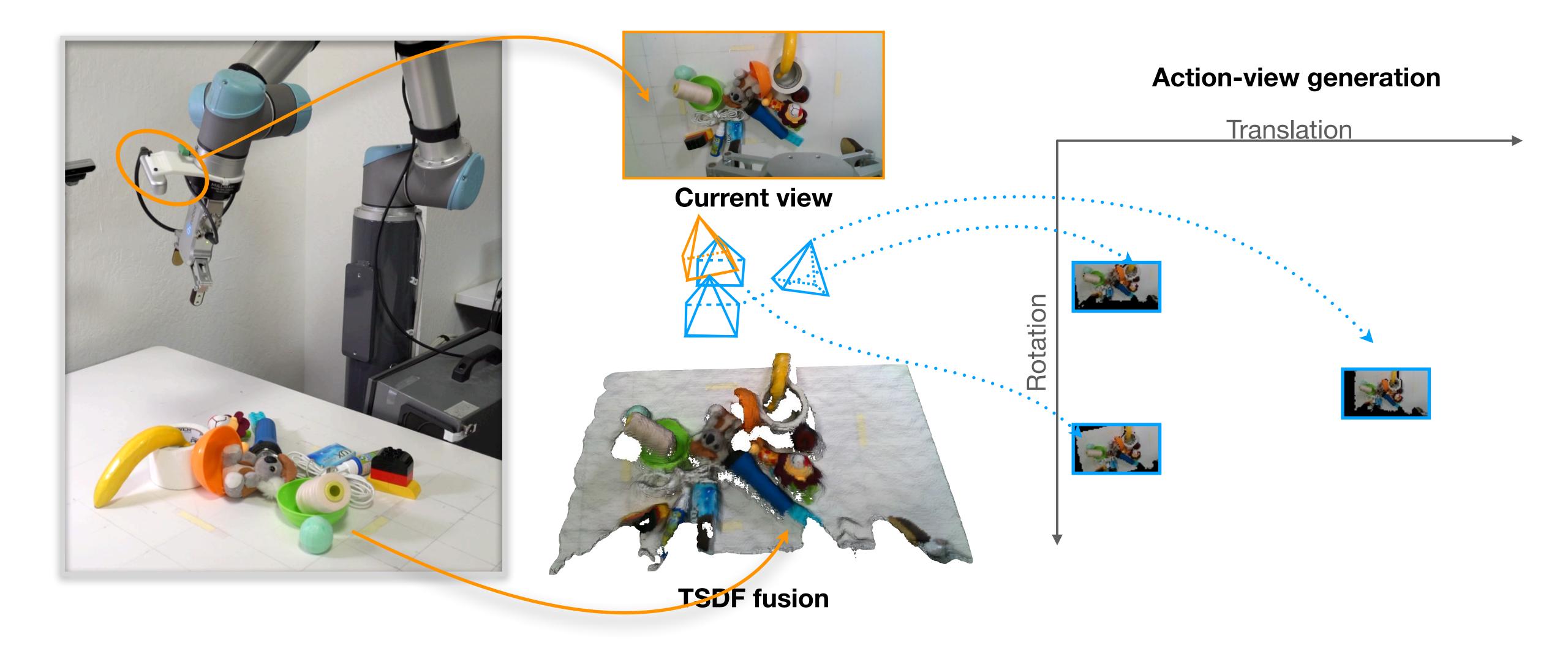




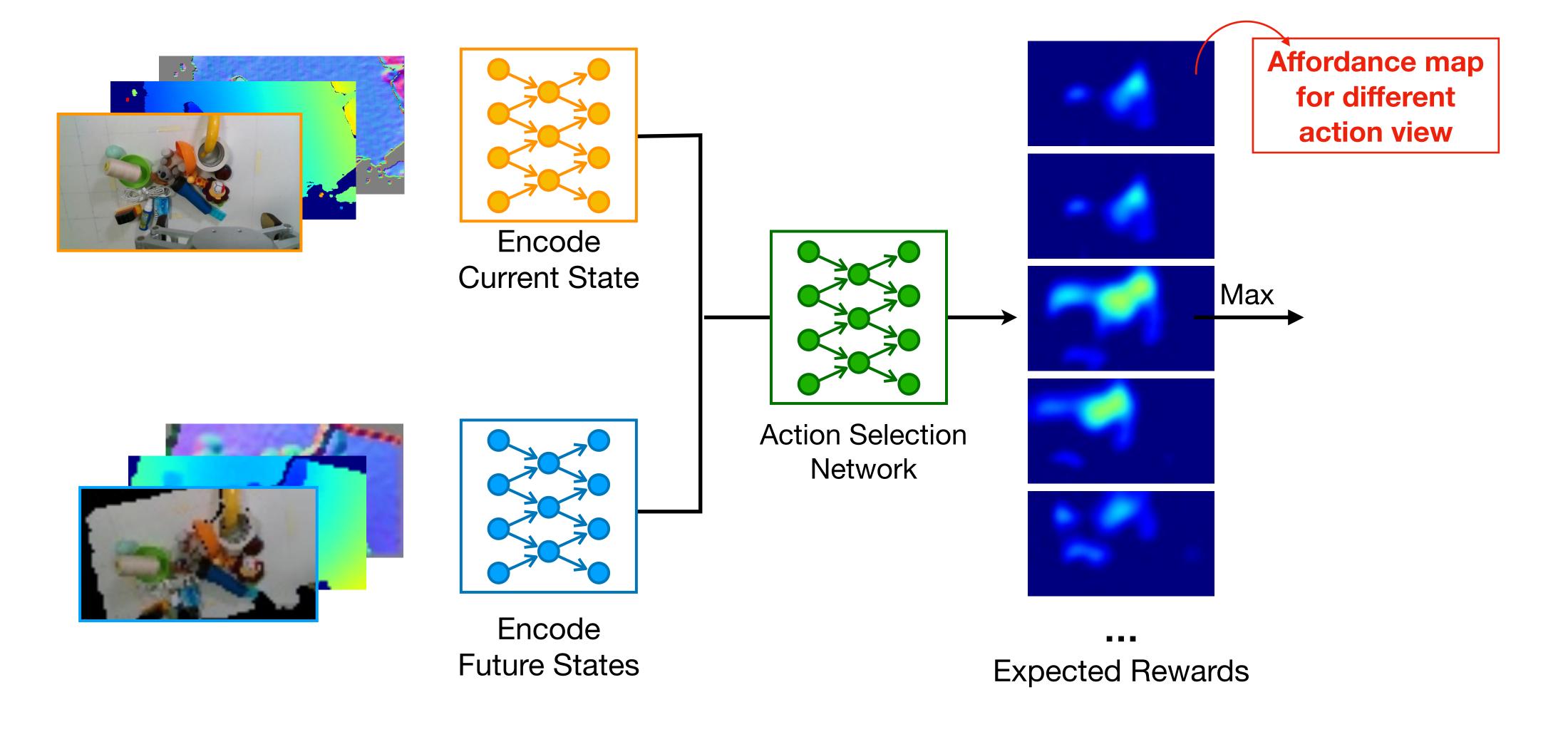
Action-view Representation



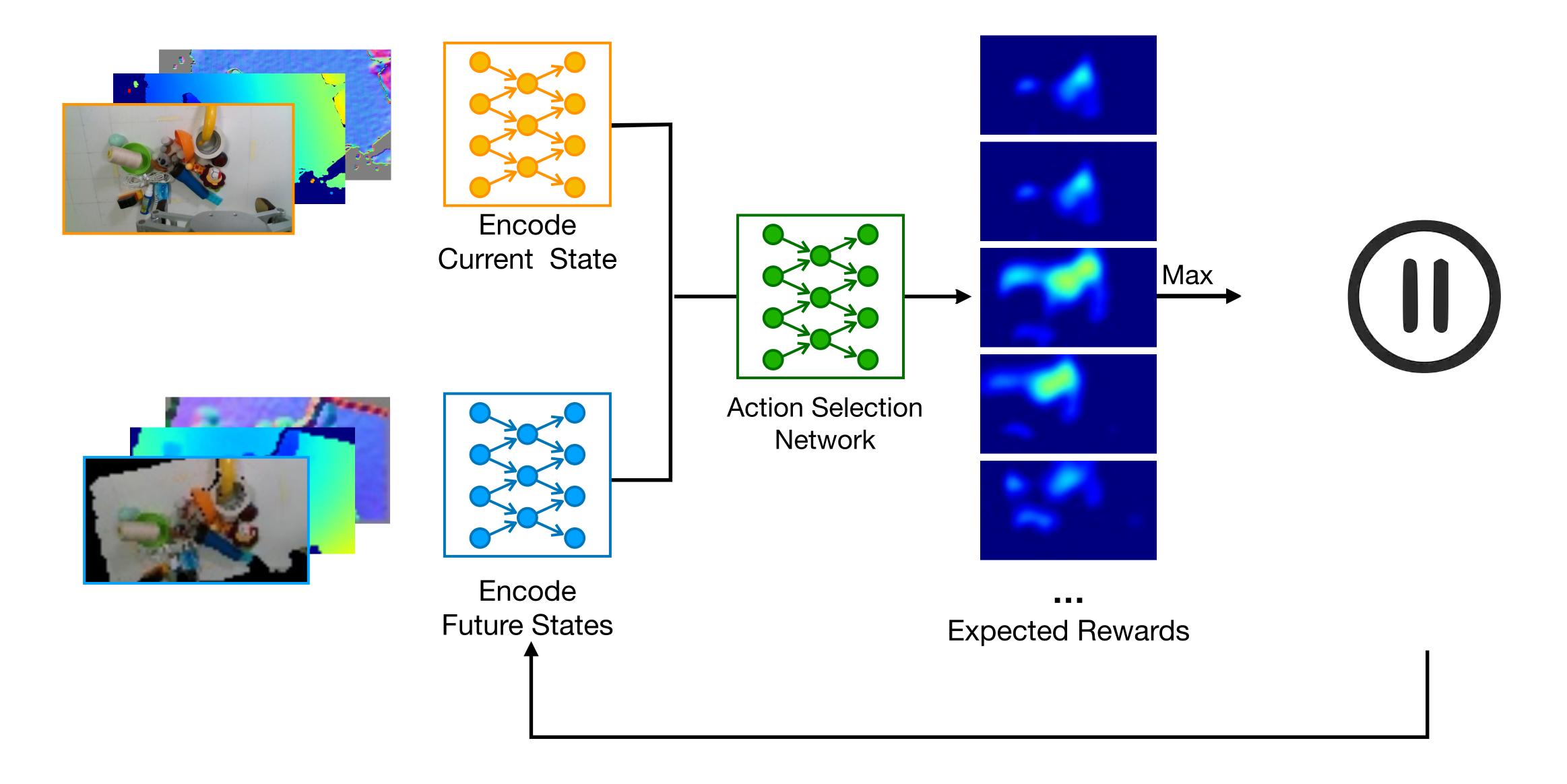
Action-view Grasp Planning



Action-view Grasp Planning



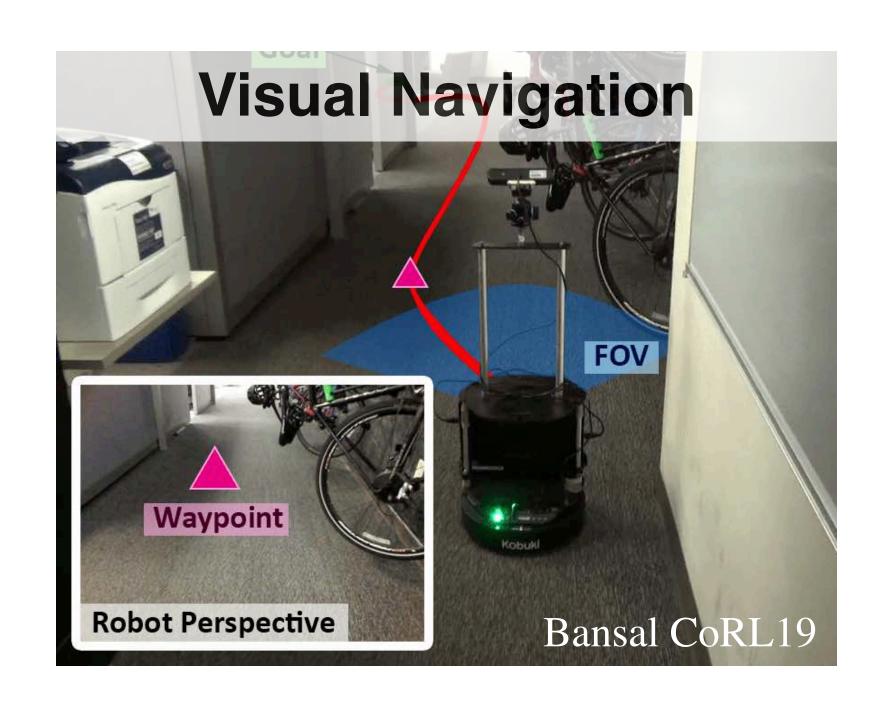
Action-view Grasp Planning



Action-view Grasp Planning

 $f(state) \rightarrow action$

View-based rendering as predictive model

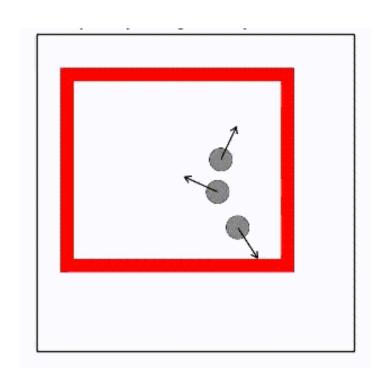


✓ Actions directly lead to ego-centric camera motion

Action-view Grasp Planning

 $f(state) \rightarrow action$

View-based rendering as predictive model



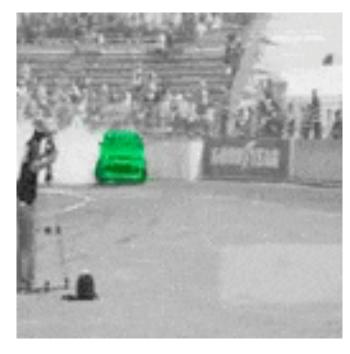
Fragkiadaki et al ICLR16

Tulyakov et al CVPR18

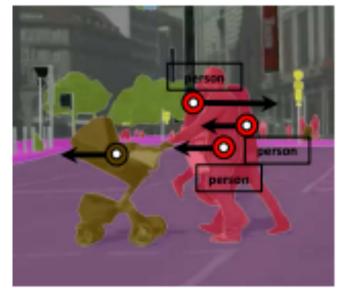
Finn et al ICRA17



Xue et al NIPS16

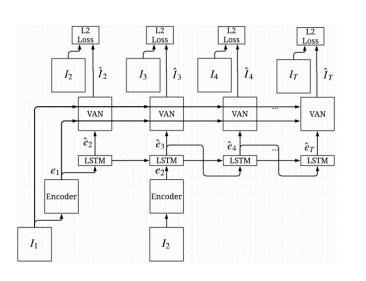


Vondrick et al ECCV18



Luc et al CVPR17

Vondrick et al NIPS18

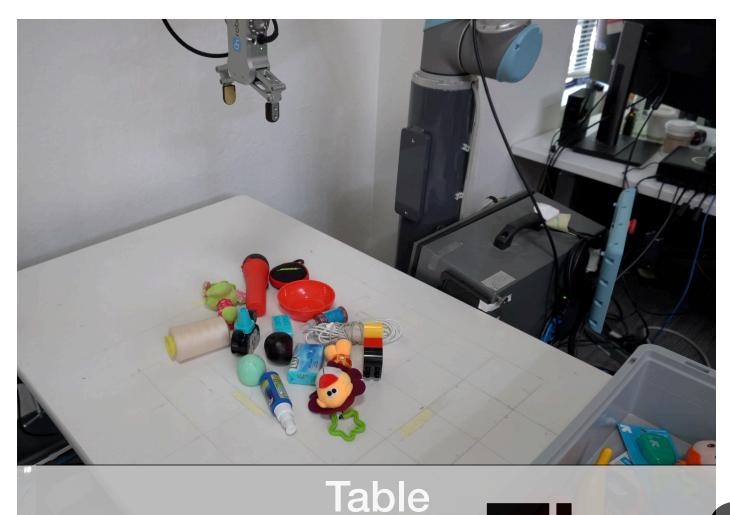


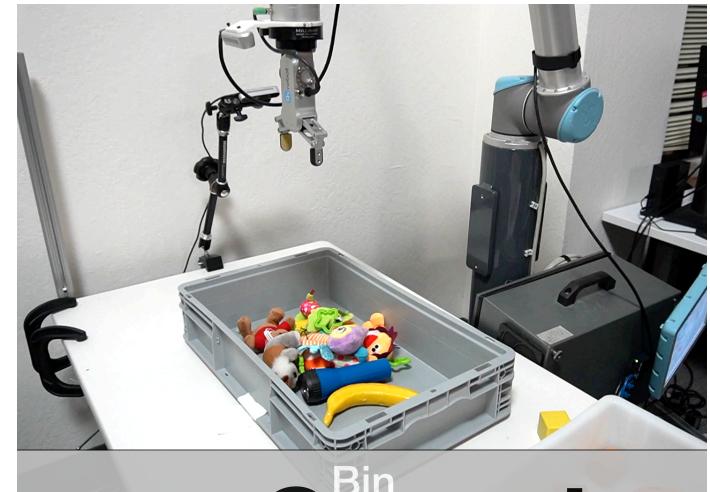
Wichers et al ICML18

- ✓ Actions directly lead to ego-centric camera motion
- X Object and contact physics learnable predictive model

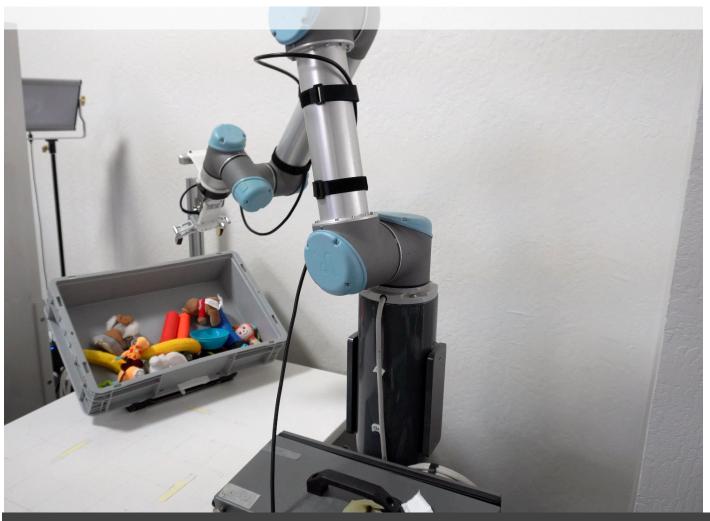
Experiments

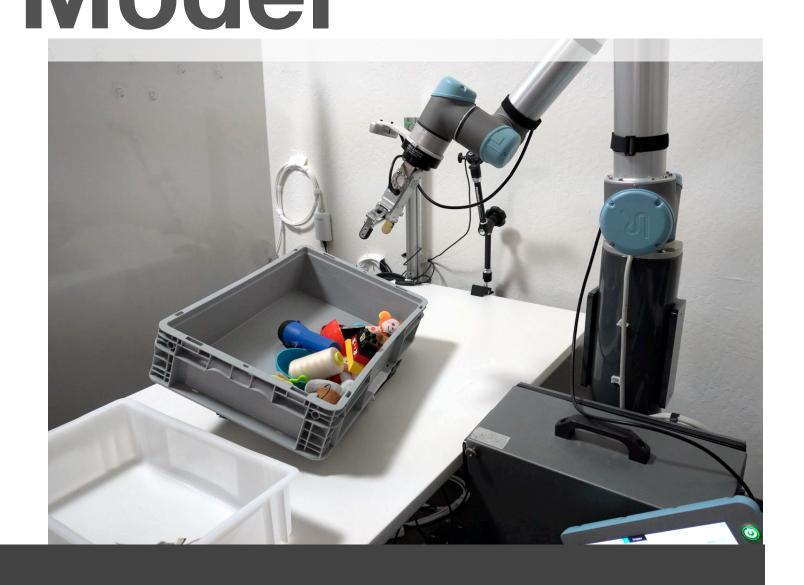
Varying Quasi-static Scenes





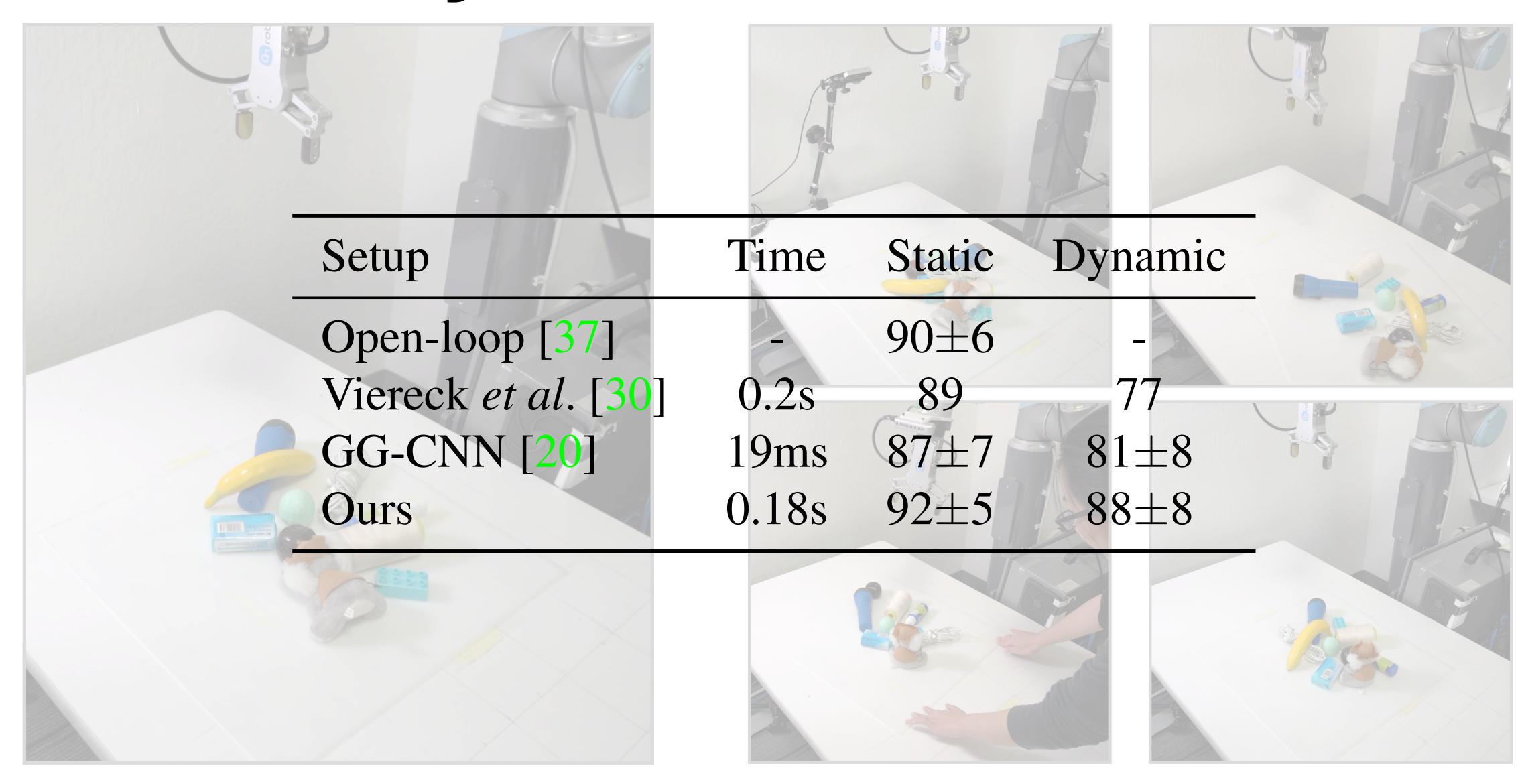
The Same Grasping Model





Random Bin Configurations

Dynamic Scenes

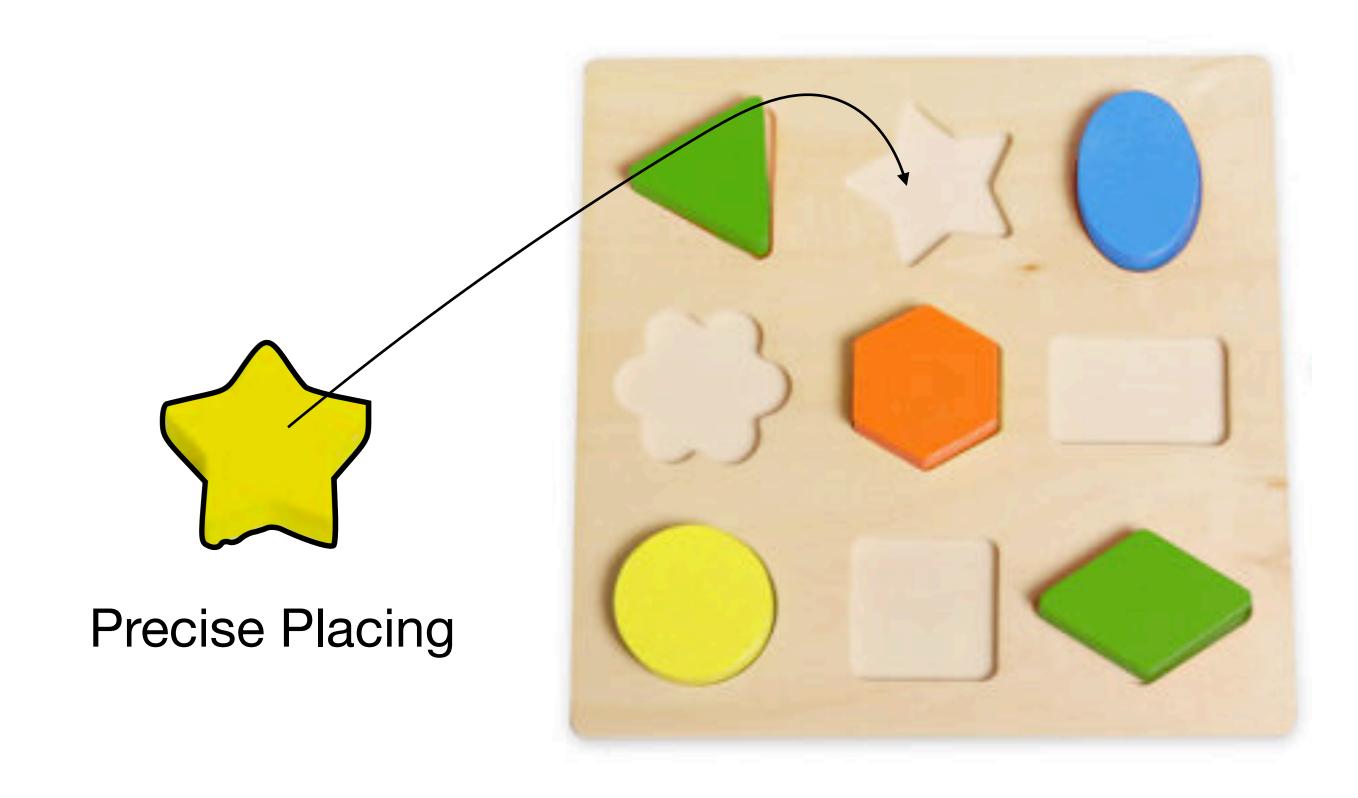


Summary

- ✓ Affordance based grasping:
 - Good for generalization (No object pose or 3D model needed)
- ✓ Action-view representation:
 - Enables efficient learning of high-degree freedom closed-loop control, by explicitly modeling the action's effect on the state.

Manipulation beyond Grasping

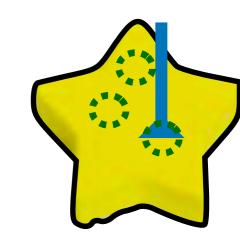
Manipulation tasks beyond grasping: precise placing, assembly ...



Manipulation beyond grasping

Manipulation tasks beyond grasping: precise placing, assembly ...

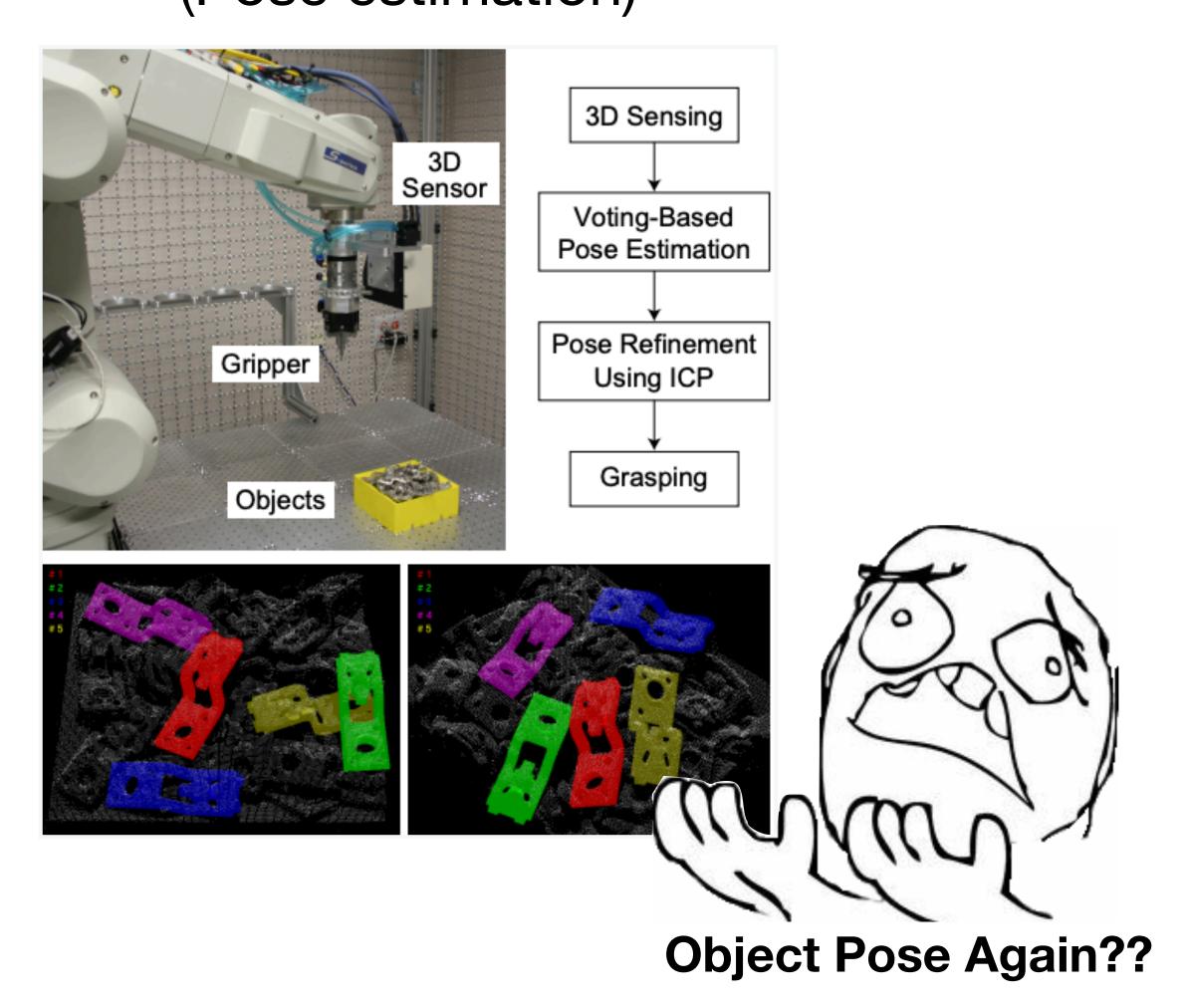
Kit assembly



Precise Placing

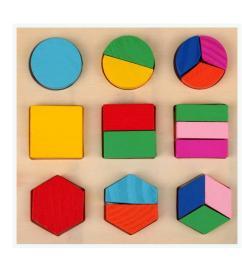
Kit Assembly

Classic Approach (Pose estimation)



Requires:

- Detailed 3D model
- Extensive Engineering For every single object

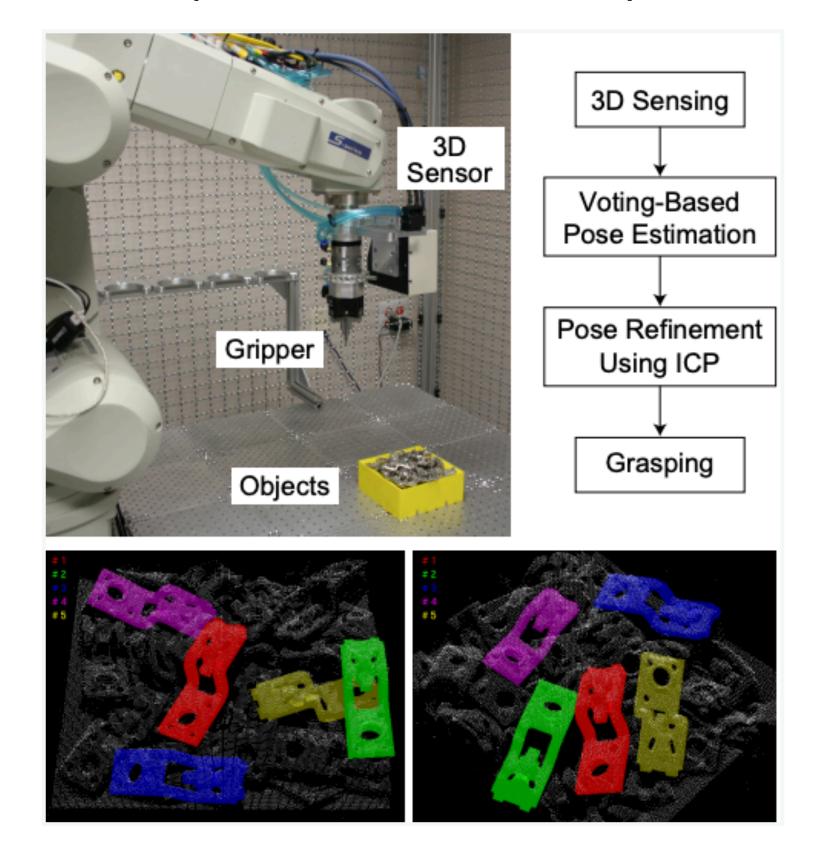


Real-world Applications:

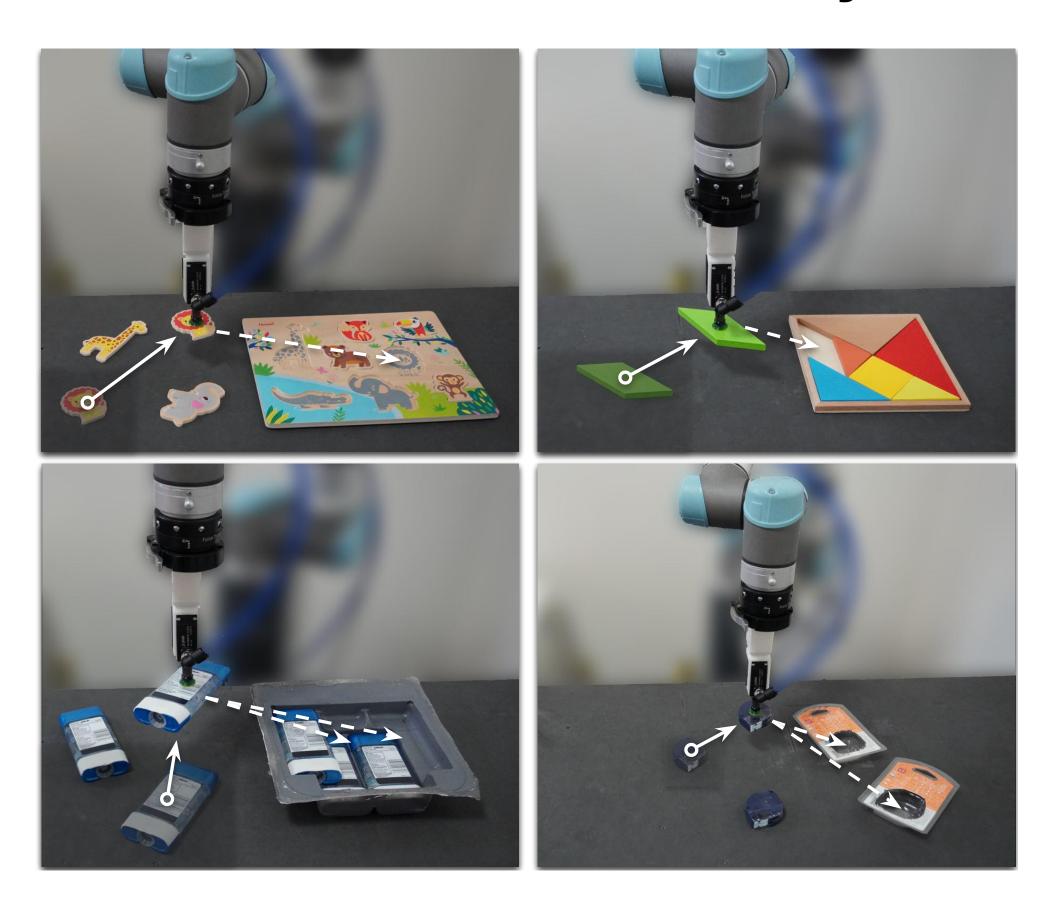
- Fast changing products (promotion/seasonal event)
- Big variation
- Not cost effective

Kit Assembly

Classic Approach (Pose estimation)



Generalizable Assembly



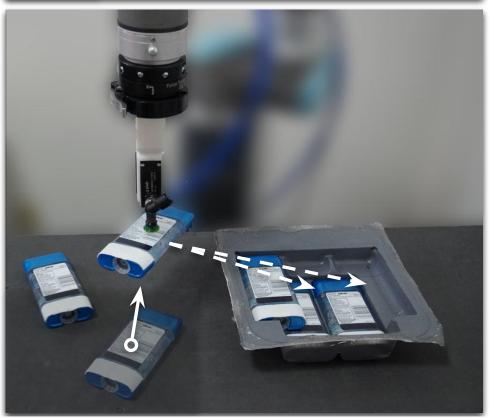
Goal: develop algorithm that can immediately generalize to new objects

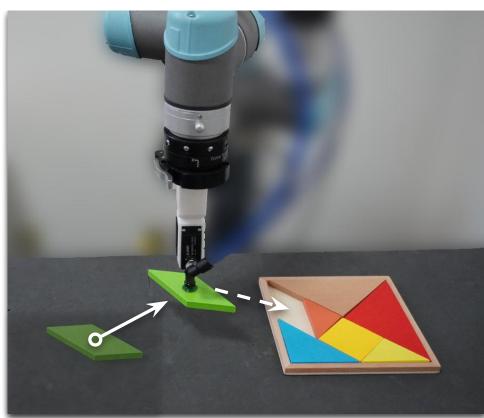
Kit Assembly

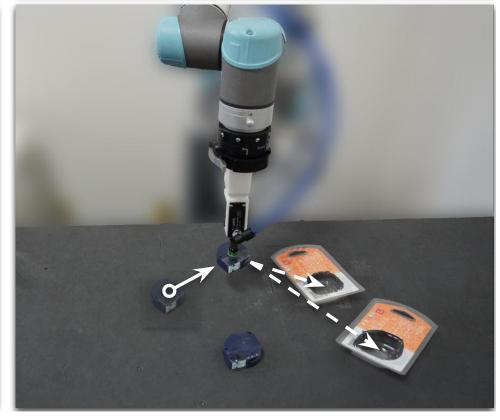
Generalizable Assembly

Form2Fit: Learning Shape Priors for Generalizable Assembly from Disassembly

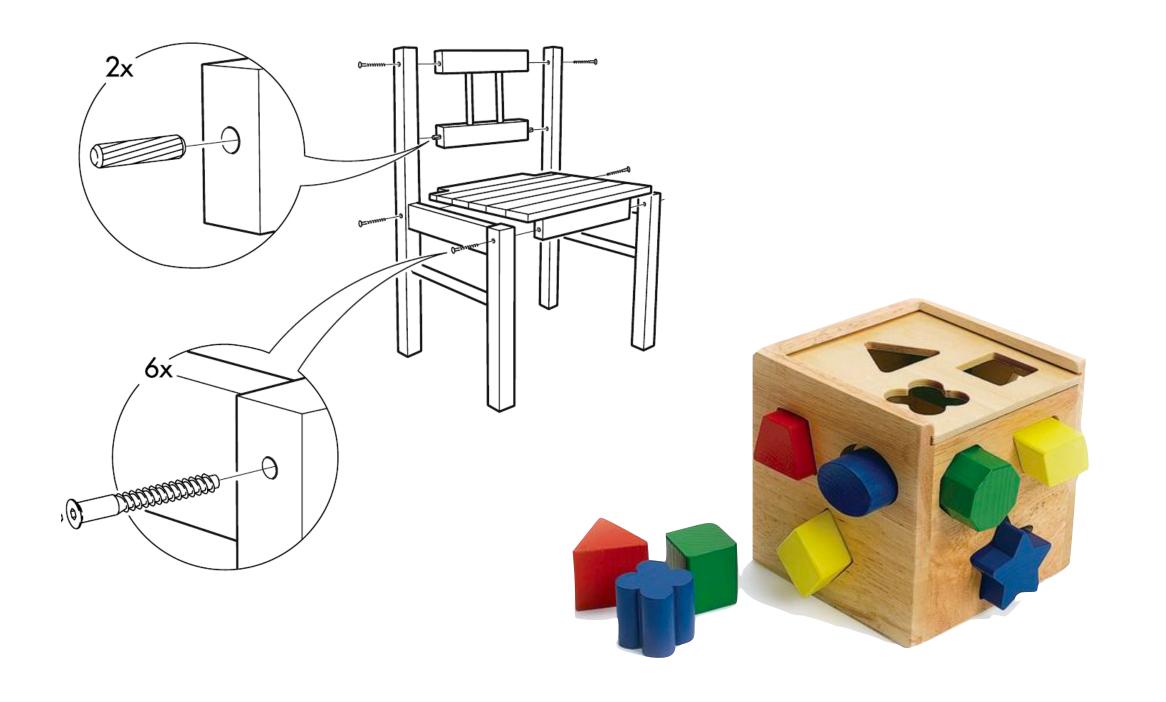
Kevin Zakka, Andy Zeng, Johnny Lee, Shuran Song ICRA 2020, Best Paper in Automation Award Finalist





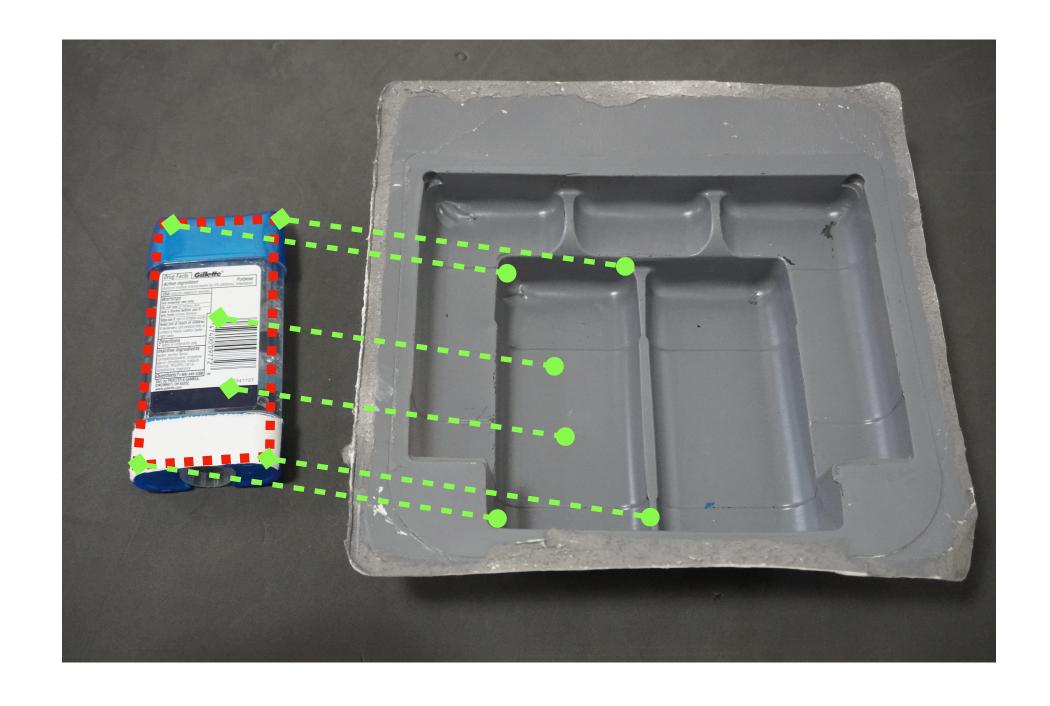


Learning Shape Prior for Assembly



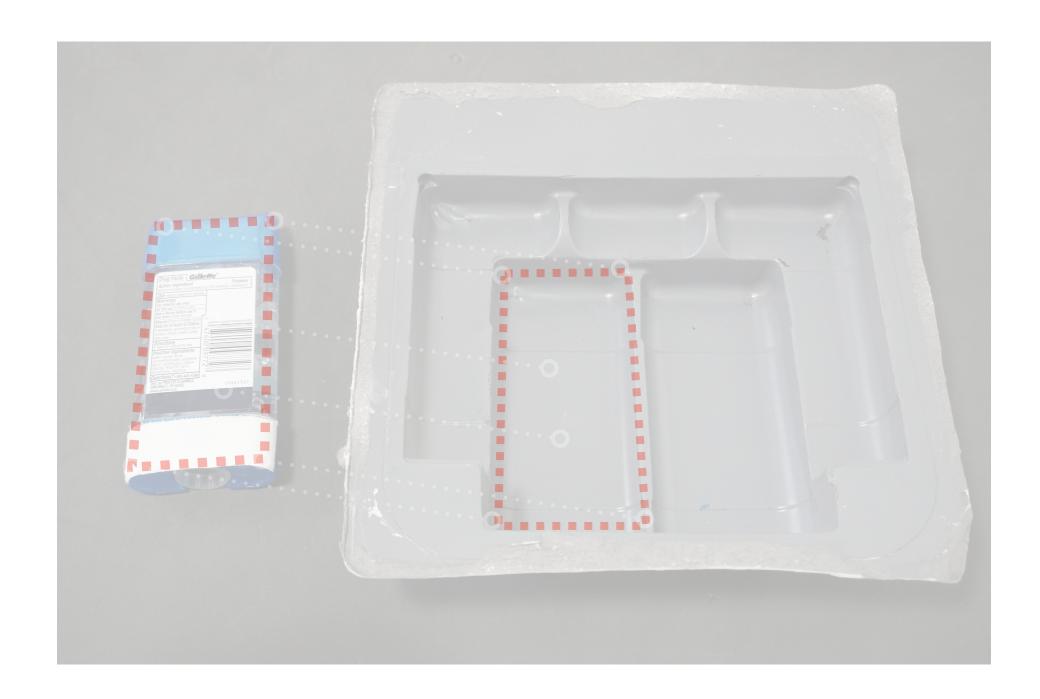
How things fit together?

Learning Shape Prior for Assembly



Learns dense shape descriptors to establishes correspondences

Learning Shape Prior for Assembly

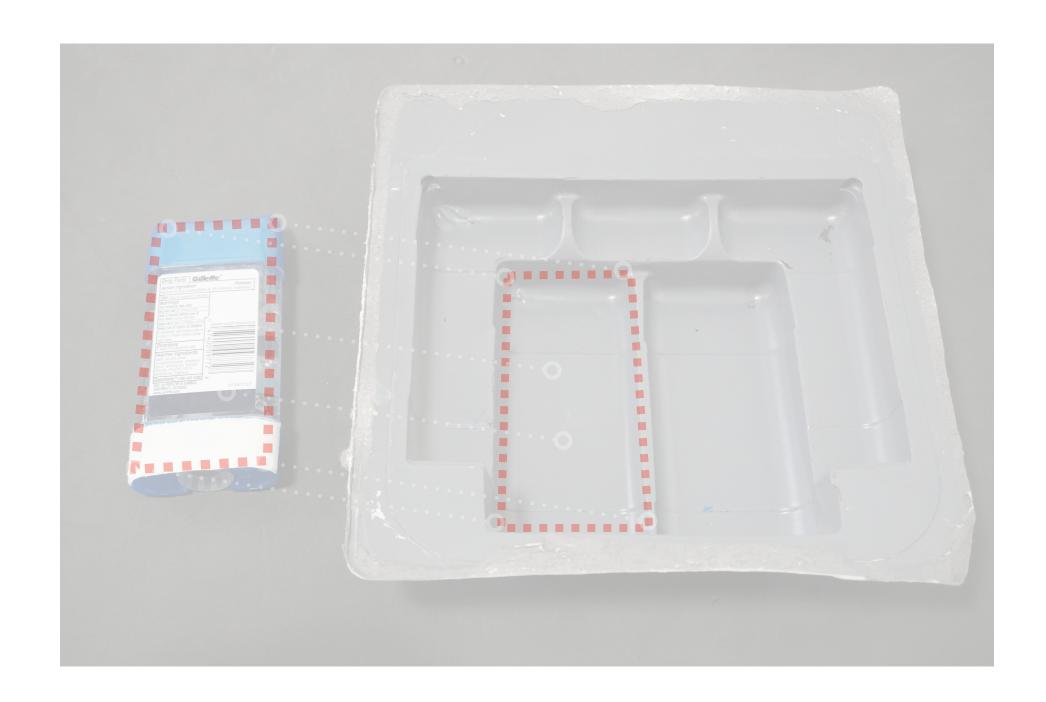


Learns dense shape descriptors to establishes correspondences

Learning Assembly from Disassembly

Training data generation

Learning Shape Prior for Assembly

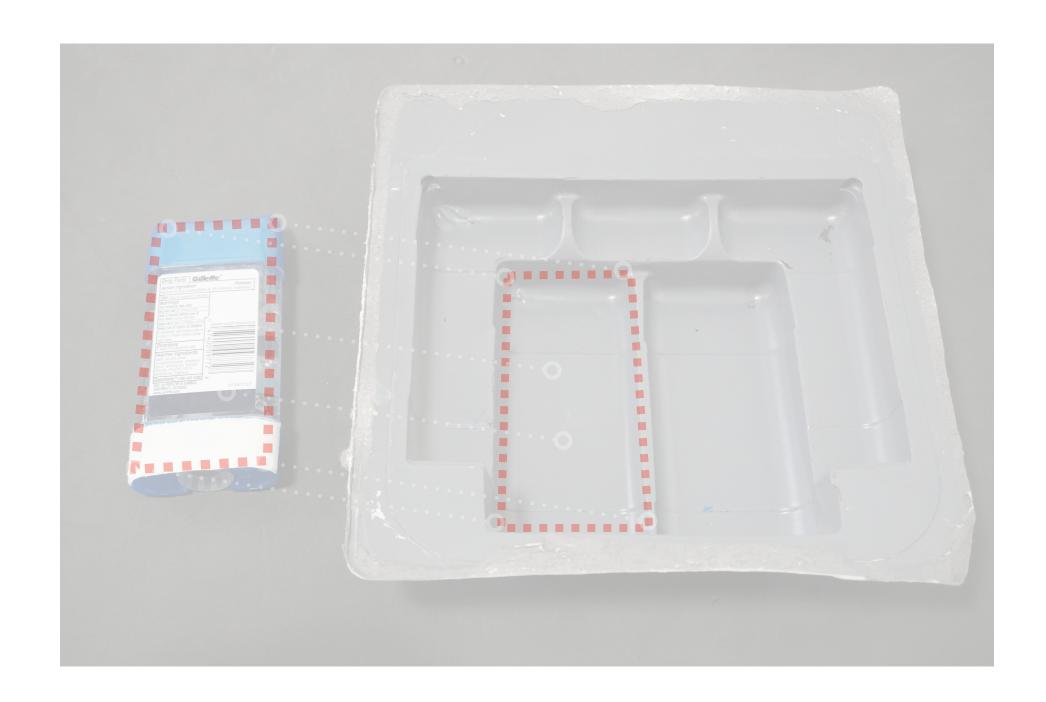


Learns dense shape descriptors to establishes correspondences

Learning Assembly from Disassembly

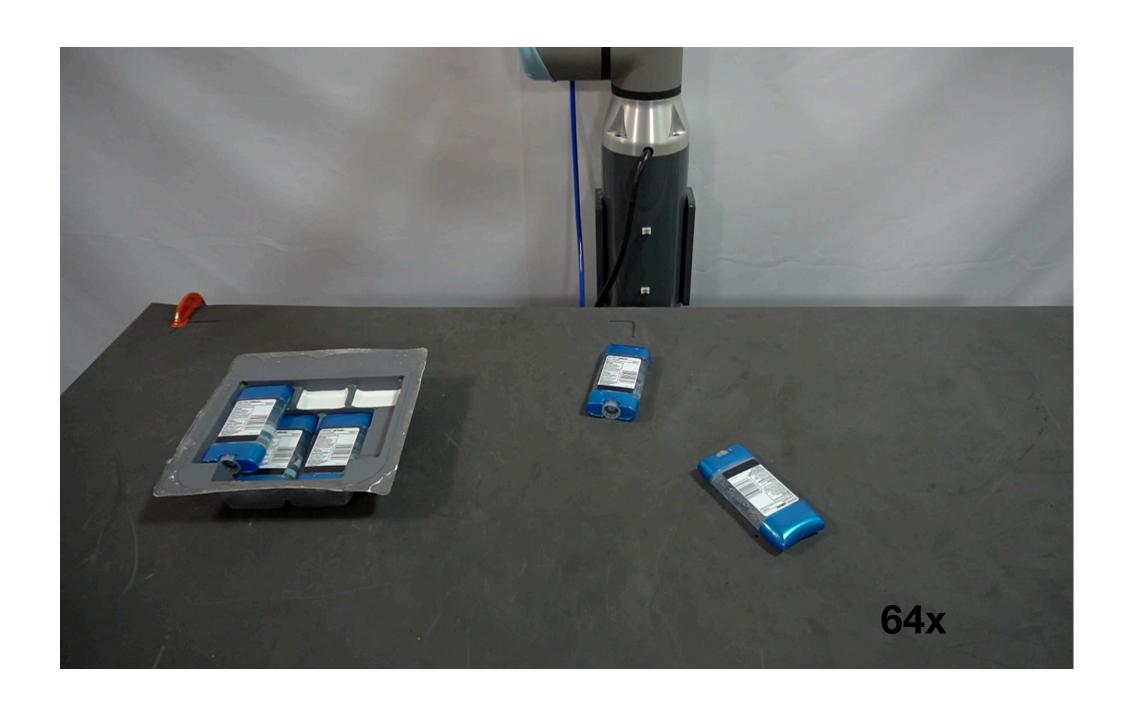
Disassembly is easier than assembly

Learning Shape Prior for Assembly



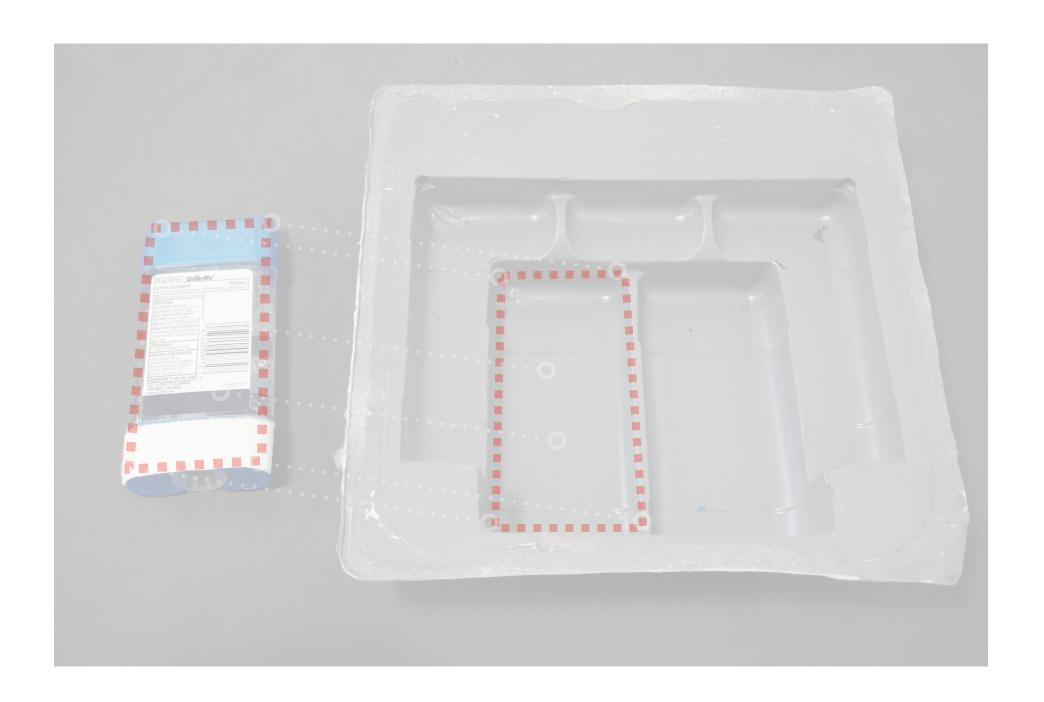
Learns dense shape descriptors to establishes correspondences

Learning Assembly from Disassembly



Fully self-supervised ground-truth label for shape correspondence

Learning Shape Prior for Assembly

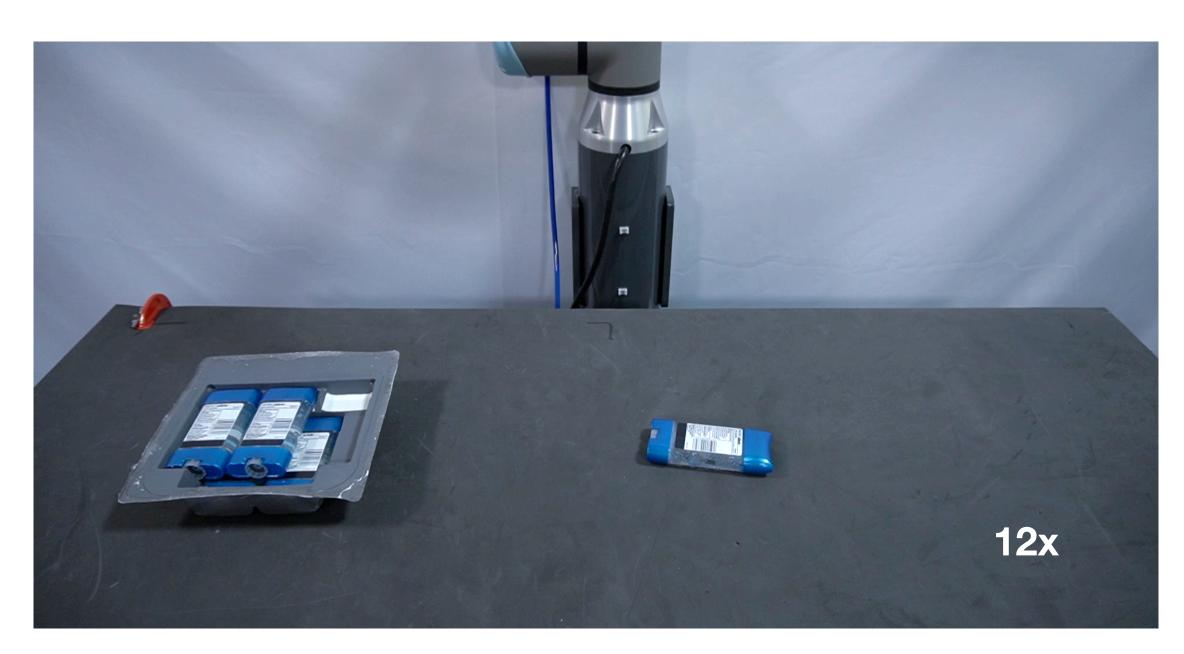


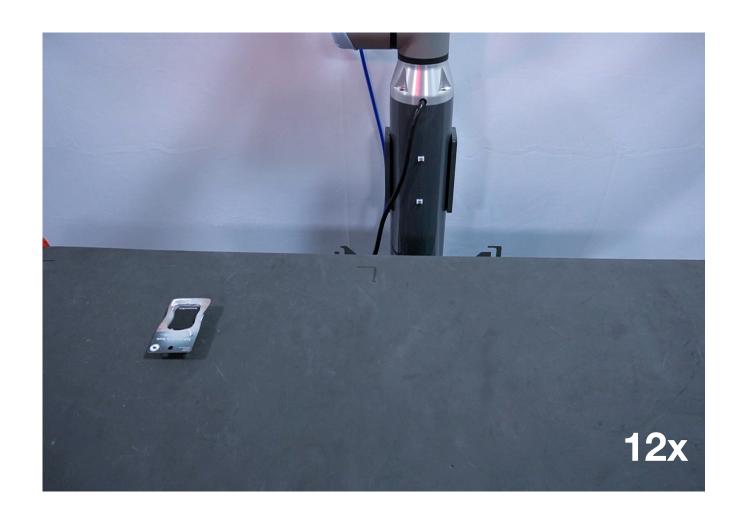
Learns dense shape descriptors to establishes correspondences

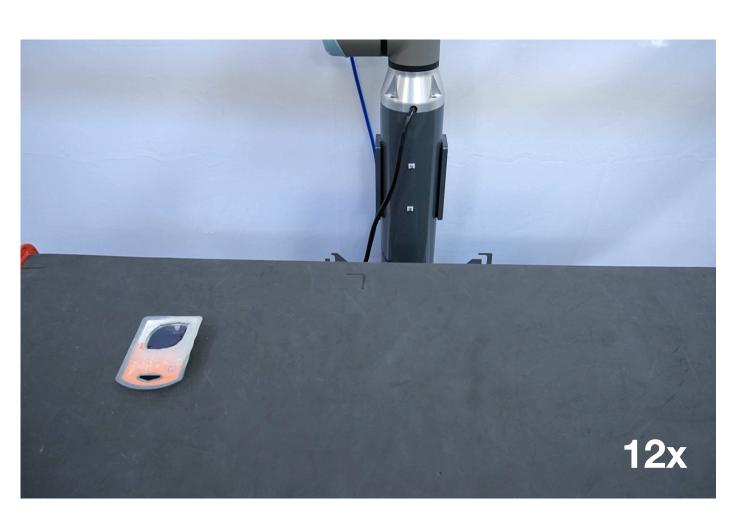
Learning Assembly from Disassembly

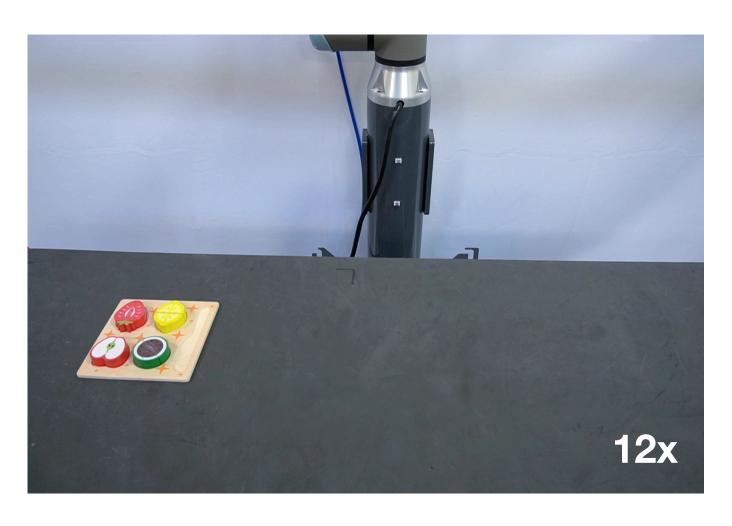
Fully self-supervised ground-truth label for shape correspondence

Data Collection from Disassembly



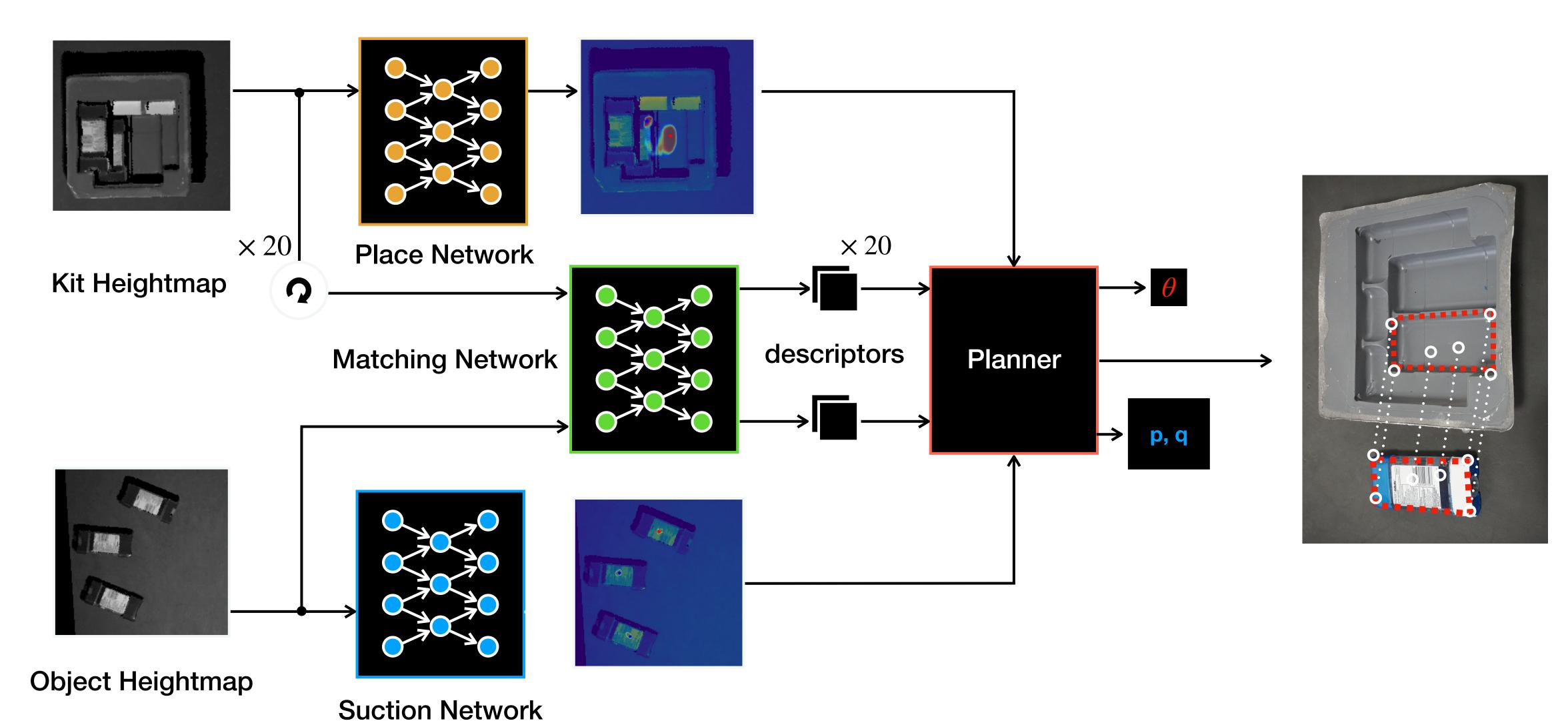






Self-supervised Disassembly

Shape Matching Network

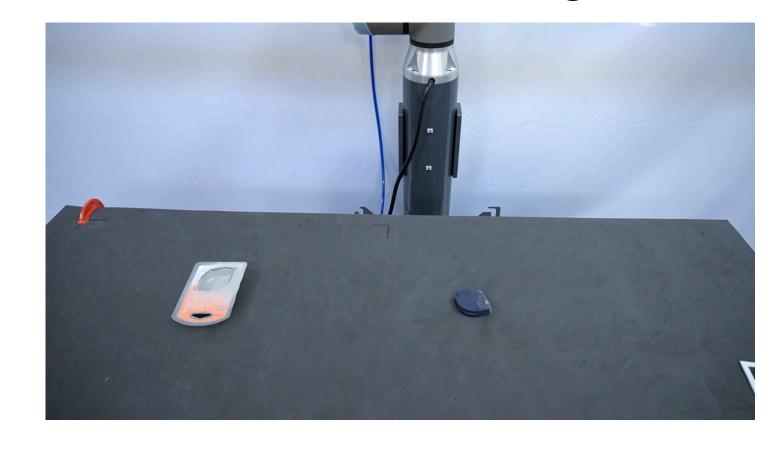


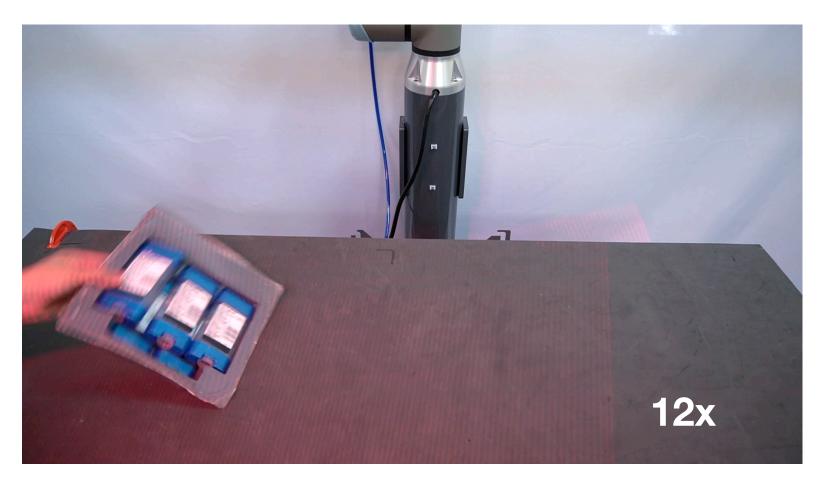
Results

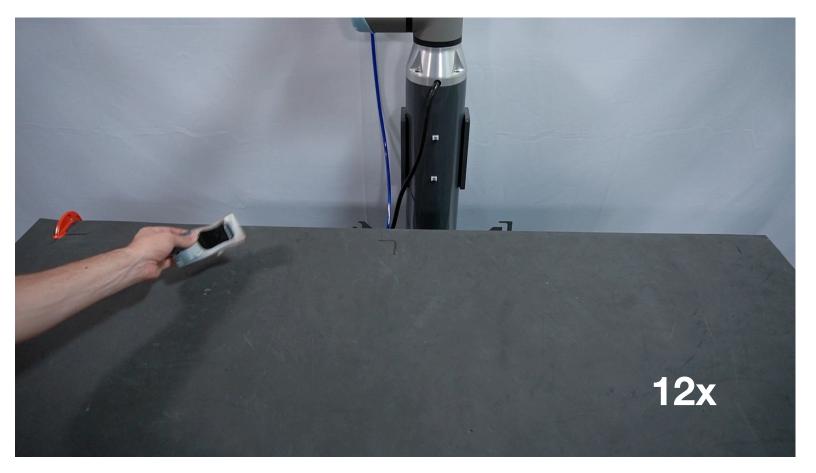
Varying Initial Position - 90%

Different kit location and orientation

Trained on fixed single kit



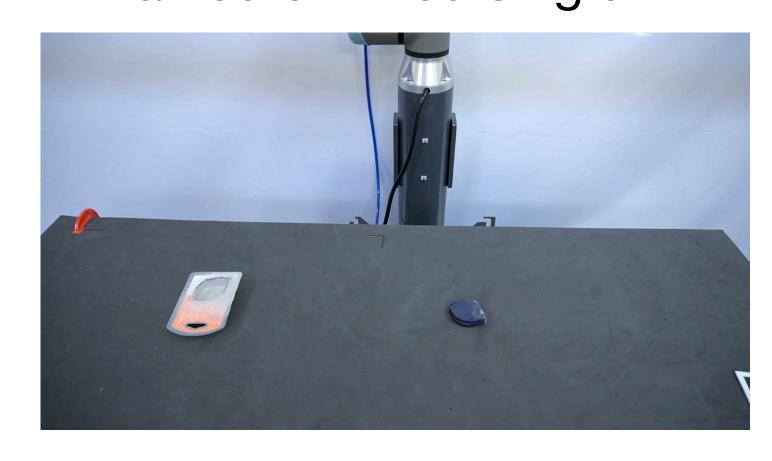




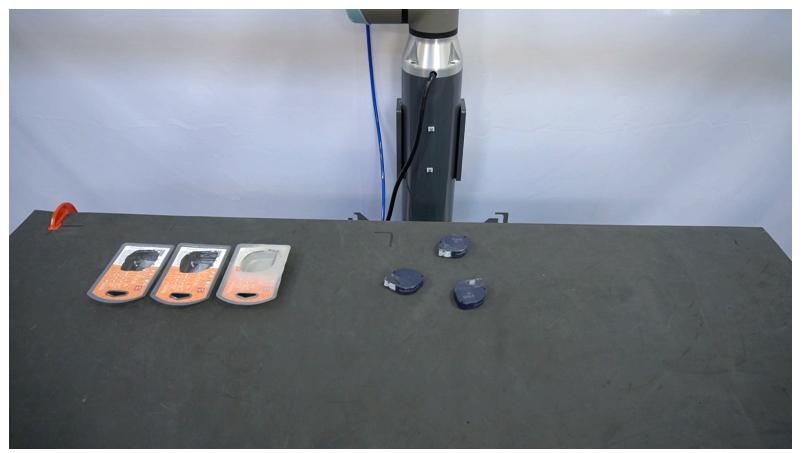


Generalization to Novel Settings - 94%

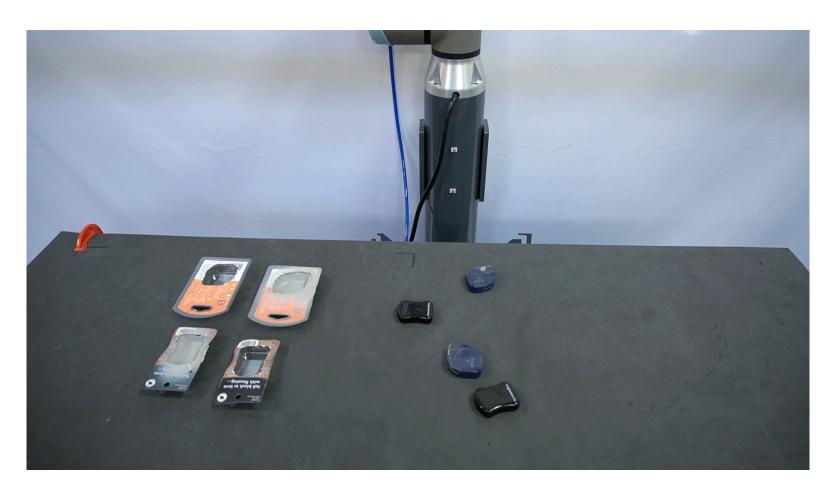
Trained on fixed single kit

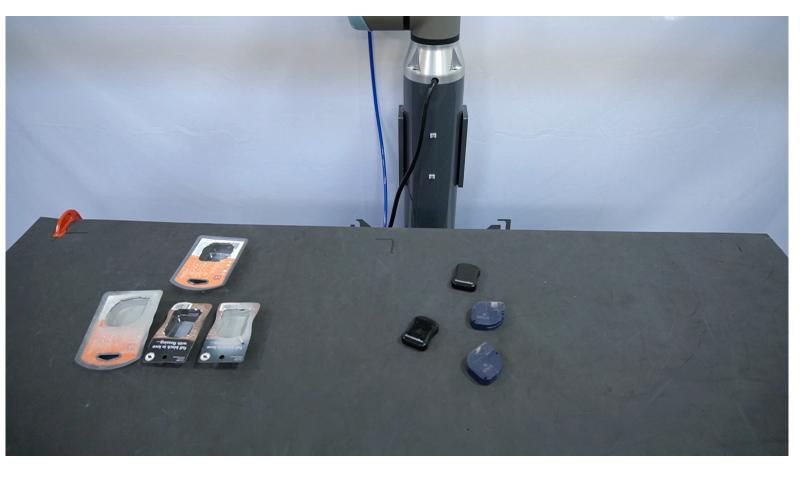


Multiple

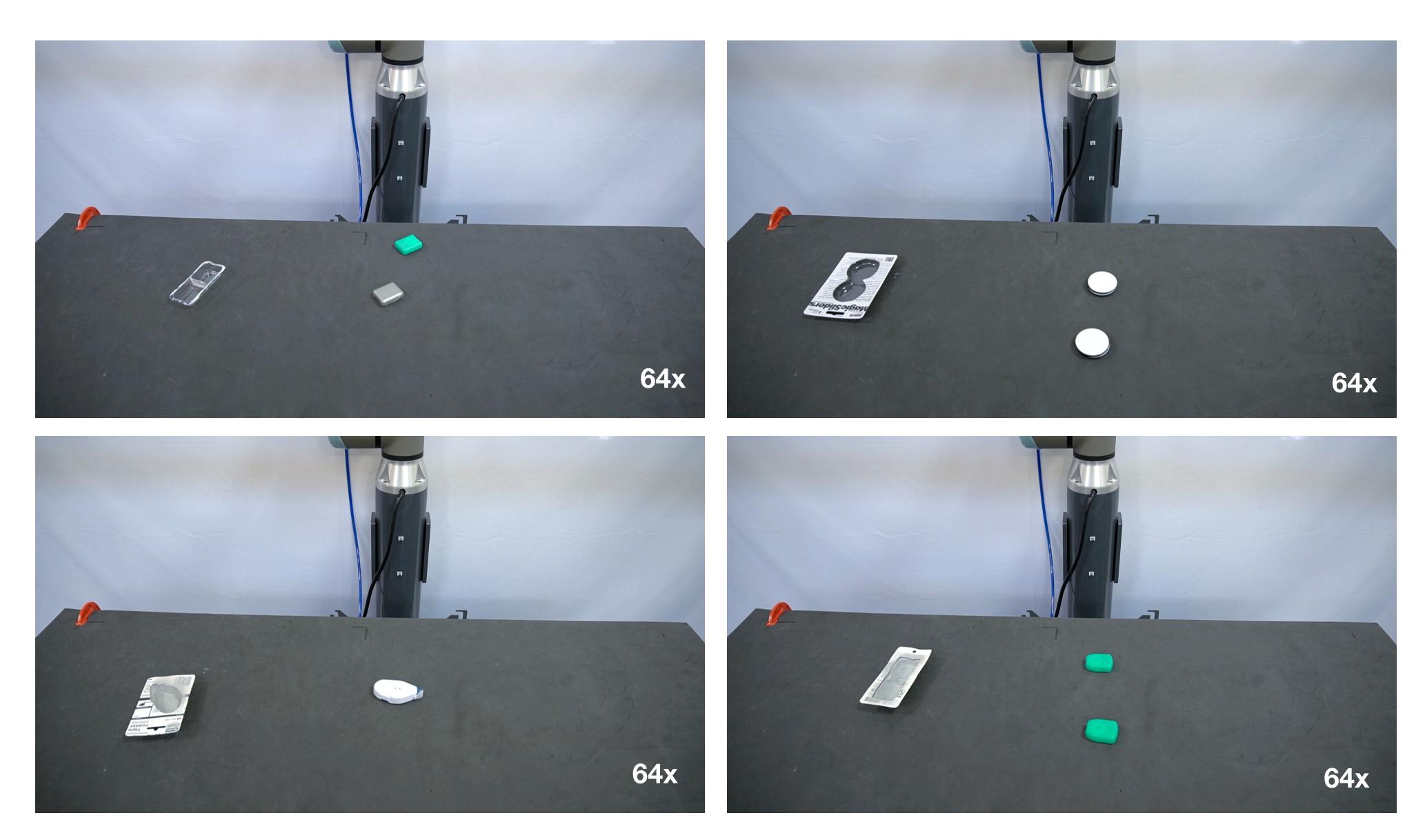


Mixture

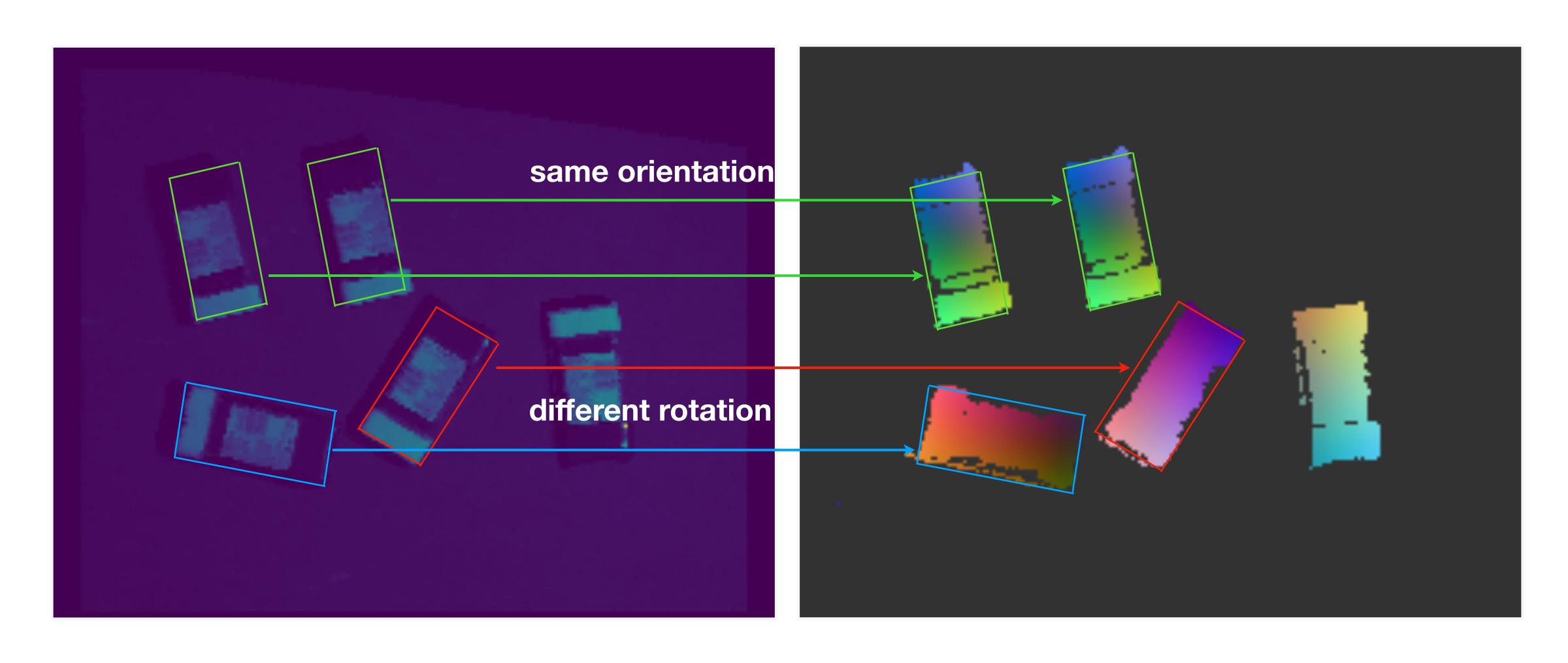




Generalization to Novel Kits - 86%

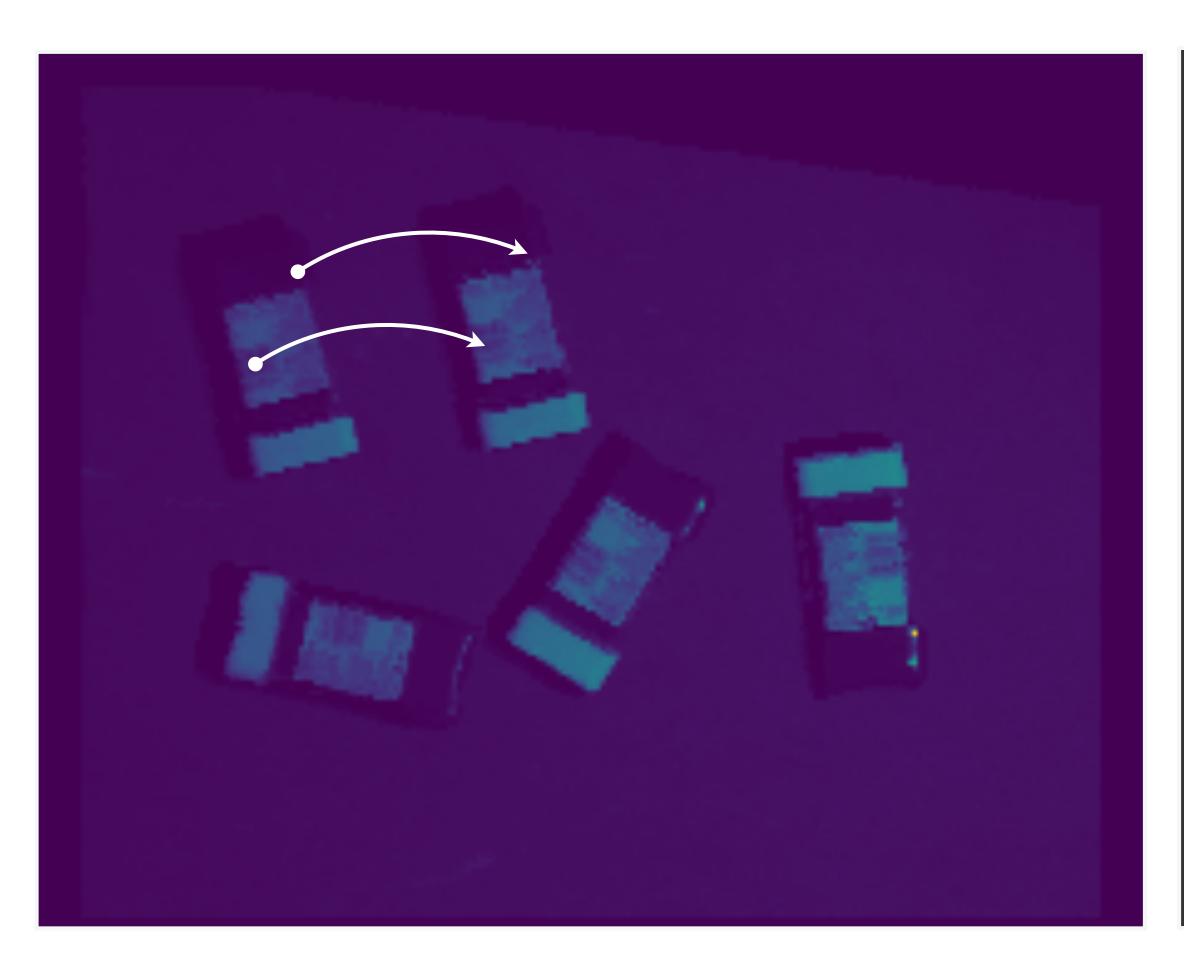


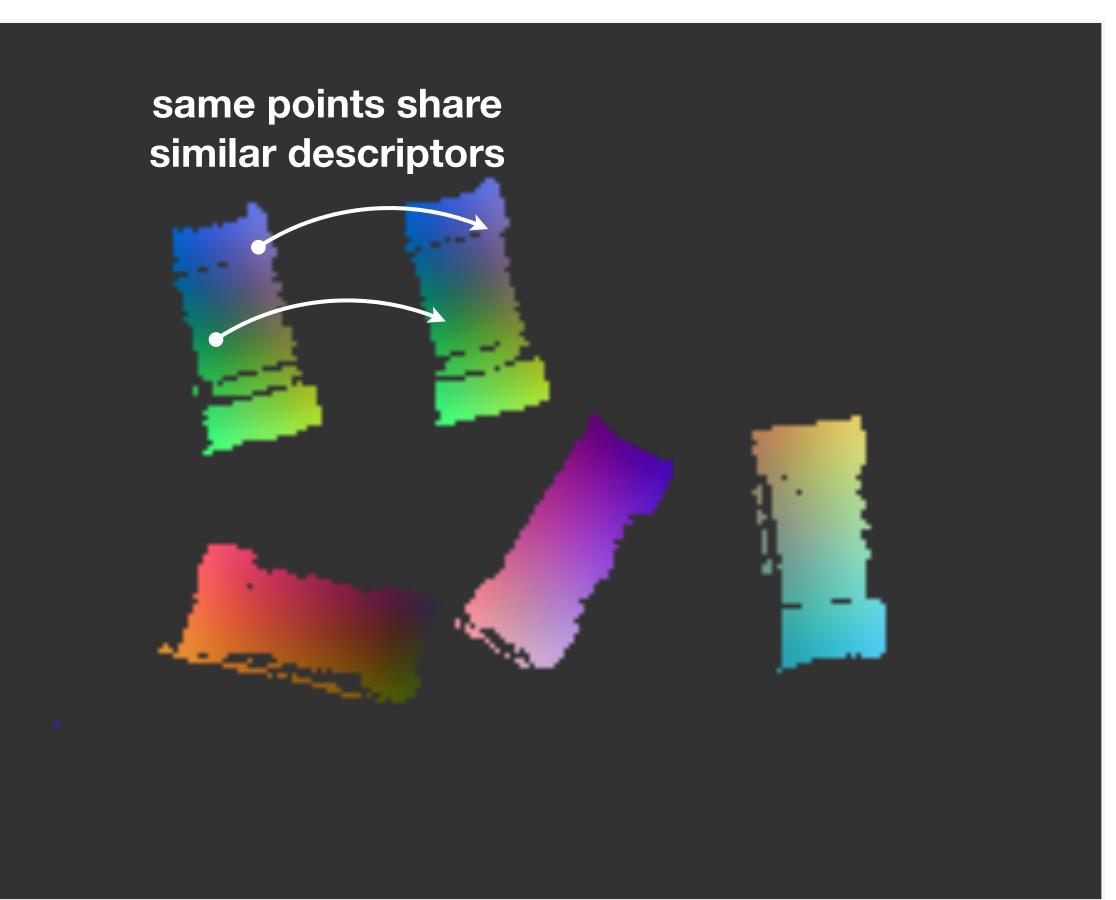
What does Form2Fit Learn?



descriptors encode object orientation

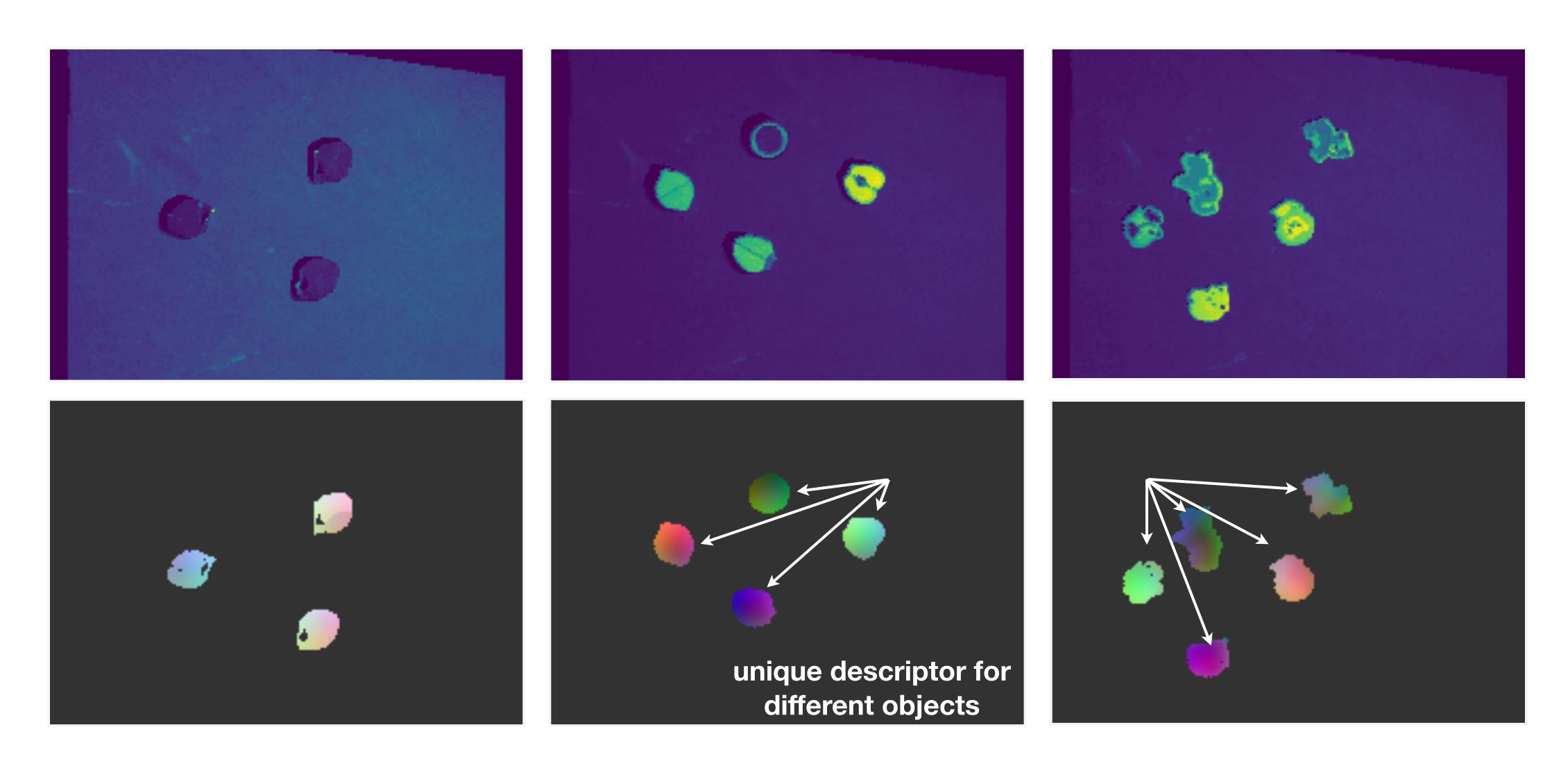
What does Form2Fit Learn?





descriptors encode spatial correspondence

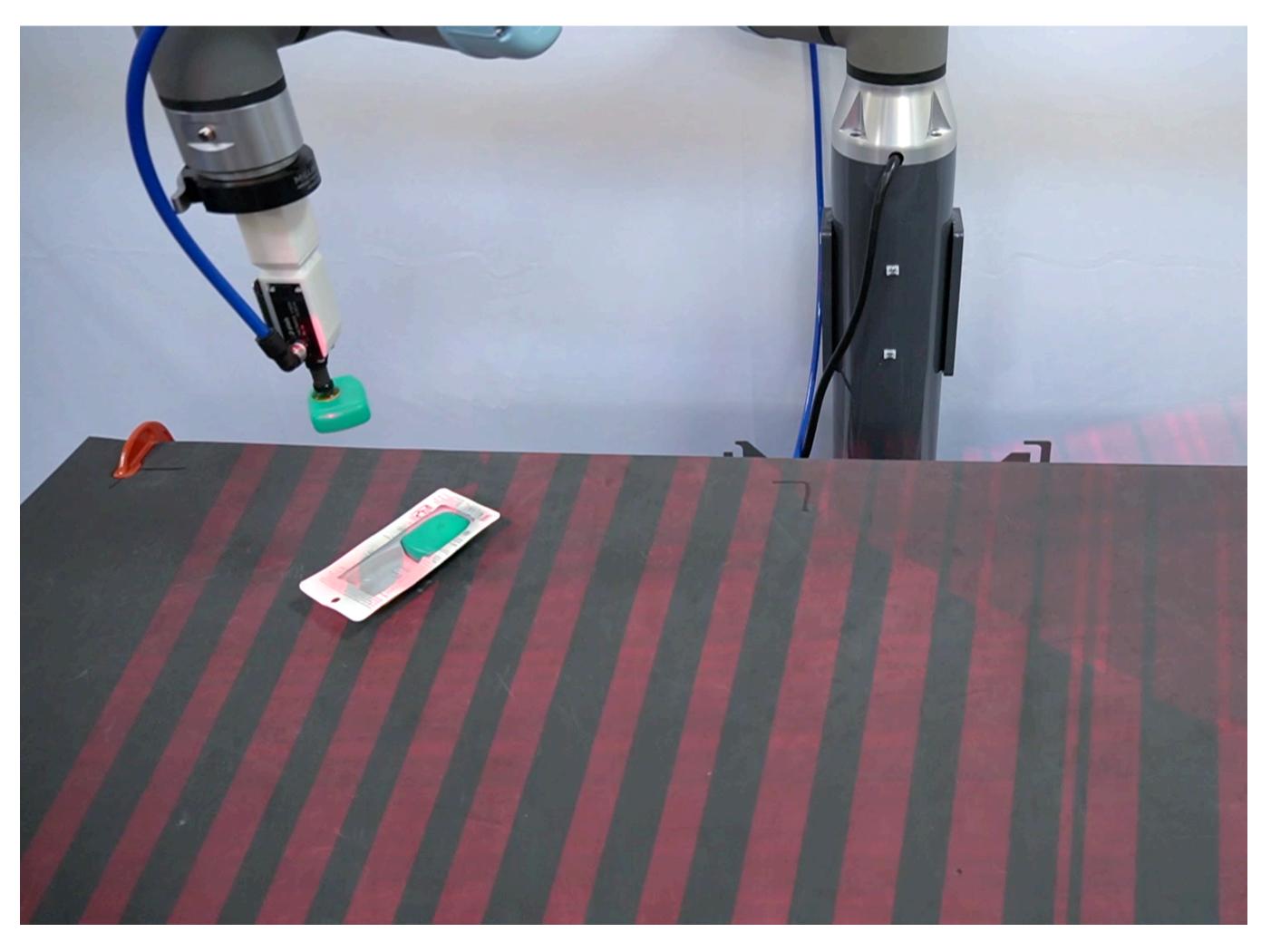
What does Form2Fit Learn?



descriptors encode object identity

Limitation and Failure Cases

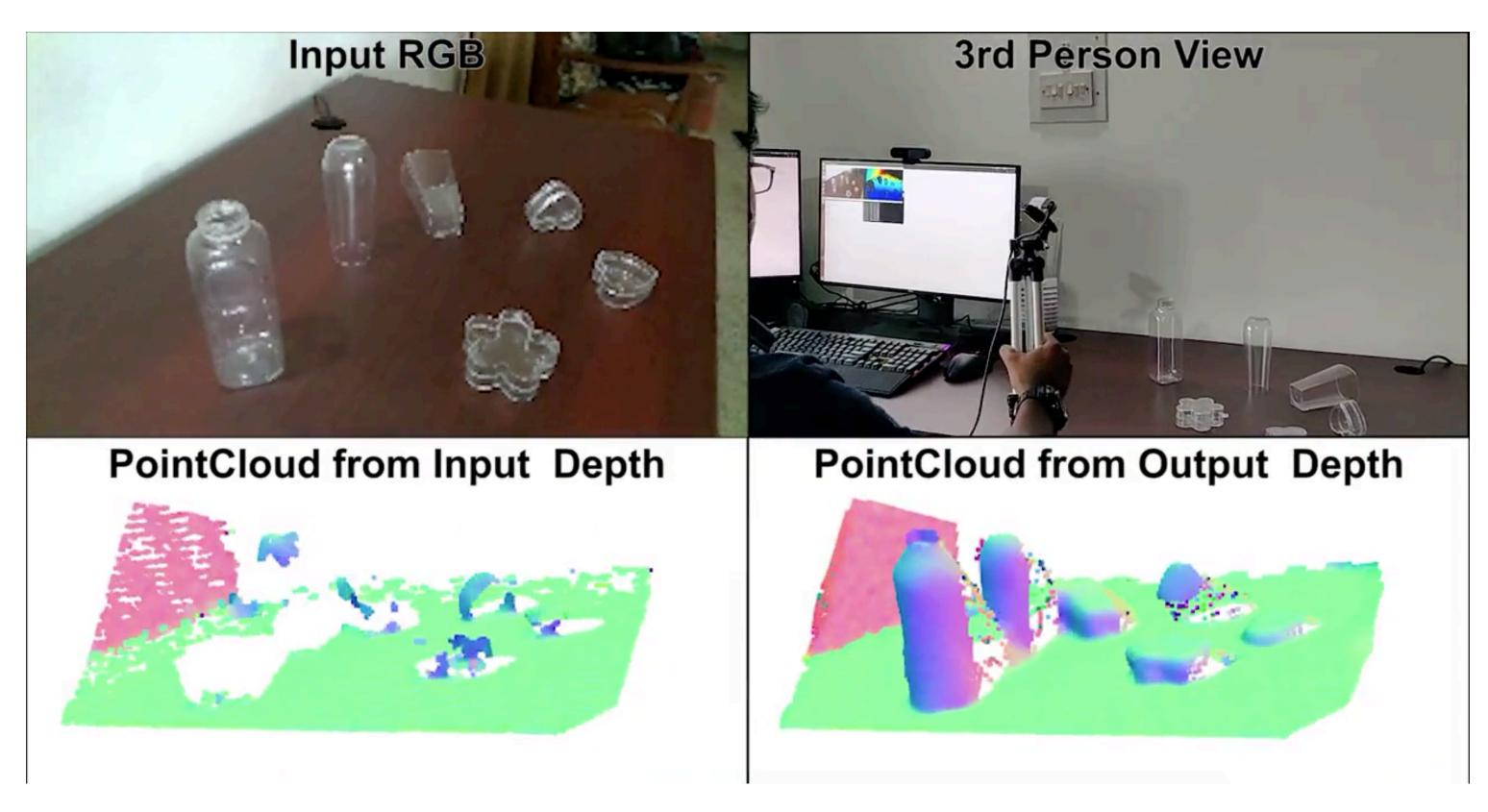
Limitation and Failure Cases



Top-down pick and place with 2D rotation

Transparent packages

Limitation and Failure Cases



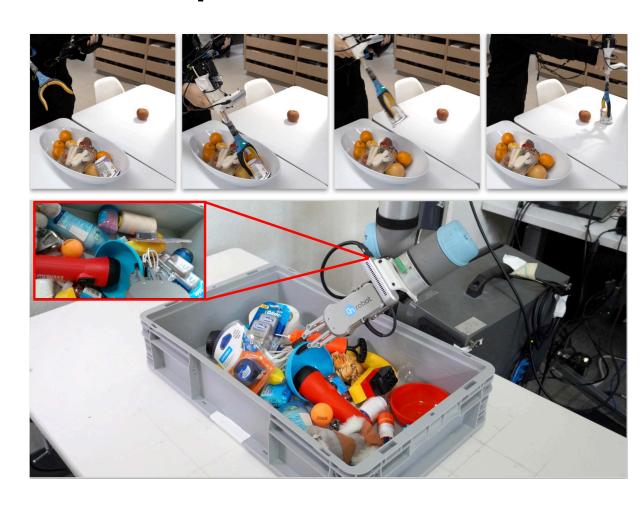
ClearGrasp: 3D Shape Estimation of Transparent Objects for Manipulation https://sites.google.com/view/cleargrasp, ICRA 2020

Transparent packages

Generalizable Manipulation

Generalizable Grasping:

Grasp In the Wild



Visual Action affordance

representation: Action-view representation

Obtaining training data:

Low-cost human demonstration

Generalizable Assembly:

Form2Fit



Shape correspondence for object assembly

Self-supervised disassembly for assembly

Acknowledgements

Reference:

- [1] Grasping in the Wild: Learning 6DoF Closed-Loop Grasping from Low-Cost Demonstrations Shuran Song, Andy Zeng, Johnny Lee, Thomas Funkhouser
- [2] Category-Level Articulated Object Pose Estimation Xiaolong Li, He Wang, Li Yi, Leonidas Guibas, A. Lynn Abbott, Shuran Song
- [3] Form2Fit: Learning Shape Priors for Generalizable Assembly from Disassembly Kevin Zakka, Andy Zeng, Johnny Lee, Shuran Song (ICRA 2020)
- [4] ClearGrasp: 3D Shape Estimation of Transparent Objects for Manipulation Shreeyak S. Sajjan, Matthew Moore, Mike Pan, Ganesh Nagaraja, Johnny Lee, Andy Zeng, Shuran Song (ICRA 2020)
- [5] DensePhysNet: Learning Dense Physical Object Representations via Multi-step Dynamic Interactions Zhenjia Xu, Jiajun Wu, Andy Zeng, Joshua Tenenbaum, Shuran Song (RSS 2019)
- [6] Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching A. Zeng, S. Song, K. Yu, E. Donlon, F. R. Hogan, M. Bauza, D. Ma, O. Taylor, M. Liu, E. Romo, N. Fazeli, F. Alet, N. C. Dafle, R. Holladay, I. Morona, P. Q. Nair, D. Green, I. Taylor, W. Liu, T. Funkhouser, A. Rodriguez (ICRA2018)
- [7] Multi-view Self-supervised Deep Learning for 6D Pose Estimation in the Amazon Picking Challenge A. Zeng, K.T. Yu, S. Song, D. Suo, E. Walker Jr., A. Rodriguez, and J. Xiao (ICRA2017)

Thank You!