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What's Visual Representations?

Sensor Representation



What's Visual Representations?

Sensor Representation Action

Berenson et al., 2009a
Berenson and Srinivasa, 2010

3D Object Detection
6D Poses Estimation

Kimm et al 2019

Miller and Allen 2009



Object Detection + Pose Estimation
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Object Detection + Pose Estimation

Sensor Representation
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Team MIT-Princeton at Amazon Picking Challenge 2017

3D Object Detection
6D Poses Estimation



Amazon Picking Challenge 2016
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Sensor Representation

' 3D Object baetion
6D Poses Estimation
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Princeton Vision Group MIT MCube Lab

Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching
A. Zeng, S. Song, K. Yu, E. Donlon, F. R. Hogan, M. Bauza, D. Ma, O. Taylor, M. Liu, E. Romo, N. Fazeli, F. Alet, N. C. Dafle, R. Holladay, I. Morona, P. Q. Nair, D. Green, |. Taylor, W. Liu, T. Funkhouser, A. Rodriguez (ICRA2018)



Limitations of this Approach

* Error propagation: object pose estimation under heavy
cluster is still hard! Vision error will propagate to planning
and result in failure execution.

*Bad generalization: Need 3D models of the objects during
L training, therefore hard to generalize to unseen objects.




Generalizable Manipulation

Goal: Manipulation algorithm is able to generalize to new objects without the need of
strong prior knowledge about the object, such as their 3D CAD model, predefined
category, and poses.
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Generalizable Grasp Planning
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Amazon Robotics Challenge 2017
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Is Grasping Problem Solved?



Is Grasping Problem Solved?
o DIFFERENT WAYS TO EREAK IT!




Is Grasping Problem Solved?
o DIFFERENT WAYS TO EREAK IT!

X Reactive X Flexible
Open-loop execution 4-DoF grasps
(static scene only) (Top-down grasp only)



Is Grasping Problem Solved?

Learning-based Grasping

Open-loop Closed-loop

4DoF
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\ X Flexible X Reactive
4-DoF grasps Open-loop execution

(Top-down grasp only) (static scene only)



Open loop Topdown Grasp

f(stfte) —> actllon

m Where + How
g to grasp?

Open-loop Topdown Grasping
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Closed-loop 6DoF Grasp

f(state) — action
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Closed-loop: 6DoF:
large state space large action space

Qt-Opt: Scalable deep reinforcement learning

for vision-based robotic manipulation.
Kalashnikov et al CORL, 2018.

Learning based Closed-loop (Topdown)

580,000 off policy + 28,000 on-policy
robot grasping trials




Closed-loop 6DoF Grasp

f(state) — action
(—)

Closed-loop: 6DoF:
large state space large action space
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How to get the training data?

How to enable efficient learning?




Closed-loop 6DoF Grasp

Grasping In the Wild:
Learning Flexible Grasping Policy
with Low-cost Demonstration

Shuran Song, Andy Zeng, Johnny Lee, Thomas Funkhouser
RA-L, IROS 2020




The Data Problem



The Data Problem

Self-supervised learning Learning from demonstration

o m L

Zeng et al IROS’10 Schneider et al IROS’10

X Simple scenarios: low success rate,
hard to get initial positive training
data.

X Expensive setup, Limited physical access (robots)

X Expert operator

X Hard to scale



The Data Problem

RGB-D
camera

Servo

Intel compute

M”/\\ | stick
\ Trigger
Grabber

Data collection device



The Data Problem

Data collection device Robot



The Data Problem

Low-friction interface for
untrained user:

v Collect data everywhere.
(not limited by robot access)

v Data for challenging tasks.
(no broken dishes)

v Minimized domain gap.

Human demonstrations
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The Learning Problem

The Data Problem The Learning Problem



The Learning Problem
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The Learning Problem

state) — action

Where to move
next?

How to represent
the action?




The Learning Problem
il

state) — action

x x

Where to move
next?

!

How to represent
the action?

How the action will
change the state?

Prior works:

e Joint angles: [Bo 61
02 03 04 05

o Effector offsets:
[dx dy d]

 Motor torgques

continuous values
that hold abstract
meaning




The Learning Problem
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Action-view
representation



The Learning Problem

f(state) — action

x x

6DoF motion View-based
+ camera rigidly mounted rendering



Action-view Representation

f(state) — action

x x

6DoF motion View-based
+ camera rigidly mounted rendering



Action-view Representation

Current view

fusion




fusion

-'.Rotation

Action-view Grasp Planning

Action-view generation

ranslation




Action-view Grasp Planning

Affordance map
for different
action view
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Action-view Grasp Planning
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Action-view Grasp Planning

f(state) — action

|

View-based rendering as predictive model

v Actions directly lead
to ego-centric
camera motion

Visual Navigation
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Tulyakov et al CVPR18

Action-view Grasp Planning

f(state) — action

|

View-based rendering as predictive model

v Actions directly lead
to ego-centric
camera motion

Vondrick et al ECCV18 4 Vondrick et al NIPS1'8 X ObJeCt and COntaCt
A A5 physics— learnable
predictive model

Conditional Distribution
of Future Frame
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Xue et al NIPS16 Luc et al CVPR17 Wichers et al ICML18



Experiments




Varying Quasi-static Scenes

2 A

Randm Bin Configurations




Dynamic Scenes

Setup Time Static Dynamic
Open-loop [ ] - 90+6 -
Viereck etal. [ 1] 0.2s 39 77
GG-CNN [ 1] 19ms 87L7 31+L8
Ours 0.18s 9245 3813




Summary

v Affordance based grasping:
> Good for generalization (No object pose or 3D model needed)

v Action-view representation:
> Enables efficient learning of high-degree freedom closed-loop
control, by explicitly modeling the action’s effect on the state.




Manipulation beyond Grasping

Manipulation tasks beyond grasping: precise placing, assembly ...

}
Precise Placing ( | </"




Manipulation beyond grasping

anipulation tasks beyond grasping: precise placing, assembly ...
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Kit Assembly

Classic Approach Requires:
(Pose estimation) - Detailed 3D model

- Extensive Engineering

3D Sensing . .
o — | 3D l For every single object
BERERBAER. . Sensor
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Real-world Applications:

- Fast changing products
(promotion/seasonal event)

- Big variation

- Not cost effective
Object Pose Again??



Kit Assembly

Classic Approach Generalizable Assembly
(Pose estimation)

3D Sensing

l

Voting-Based
Pose Estimation

l

Pose Refinement
Using ICP

l

Grasping

Goal: develop algorithm that can immediately generalize to new objects



Kit Assembly

Generalizable Assembly

Form2Fit: Learning Shape Priors for
Generalizable Assembly from Disassembly

Kevin Zakka, Andy Zeng, Johnny Lee, Shuran Song
ICRA 2020, Best Paper in Automation Award Finalist




Form2Fit

Learning Shape Prior for Assembly

How things fit together?



Form2Fit

Learning Shape Prior for Assembly

Learns dense shape descriptors to
establishes correspondences



Form2Fit

Learning Shape Prior for Assembly Learning Assembly from Disassembly

Training data generation



Form2Fit

Learning Shape Prior for Assembly earning Assembly from Disassembly
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Learns dense shape descriptors to Disassembly is easier than assembly

establishes correspondences



Form2Fit

Learning Shape Prior for Assembly Learning Assembly from Disassembly

JIEEEEEE®

Fully self-supervised ground-truth

label for shape correspondence



Form2Fit

Learning Shape Prior for Assembly Learning Assembly from Disassembly

JIEEEEEE®

<< rewind

Fully self-supervised ground-truth
label for shape correspondence



Data Collection from Disassembly




Self-supervised Disassembly

klt IS secured t0 table to prevent accidental dlsplacement from bad suction grasps



Shape Matching Network

X 20
Kit Heightmap N

descriptors

—

Object Heightmap

Suction Network



Results




Varying Initial Position - 90%

Different kit location and orientation

Trained on fixed single kit



Generalization to Novel Settings - 94%

Multiple Mixture

Trained on fixed single kit




Generalization to Novel Kits - 86%




What does Form2Fit Learn?

T\ same orientationl ——

:

descriptors encode object orientation

different rotation




What does Form2Fit Learn?

same points share
similar descriptors

-

descriptors encode spatial correspondence




What does Form2Fit Learn?

unique descriptor for
different objects

descriptors encode object identity




Limitation and Failure Cases




Limitation and Failure Cases
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Limitation and Failure Cases

earGrasp: 3D Shape Estimation of Transparent Objects for Manipulation

https://sites.google.com/view/cleargrasp, ICRA 2020
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https://sites.google.com/view/cleargrasp
https://sites.google.com/view/cleargrasp

Generalizable Manipulation

Generalizable Grasping: Generalizable Assembly:
Grasp |In the Wild Form2Fit

Shape correspondence for
object assembly

Visual Action affordance
representation:  Action-view representation

Obtainin Self- | | |
J Low-cost human demonstration eli-supervised disassembly

training data: for assembly
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