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Representation ActionSensor

3D Object Detection  
6D Poses Estimation 
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Kimm et al 2019


Miller and Allen 2009
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Representation ActionSensor

Object Detection + Pose Estimation

3D Object Detection  
6D Poses Estimation 
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Representation ActionSensor

Object Detection + Pose Estimation

3D Object Detection  
6D Poses Estimation 

Team MIT-Princeton at Amazon Picking Challenge 2017



Representation ActionSensor

Motion Planing

Amazon Picking Challenge 2016

Princeton Vision Group MIT MCube Lab

RGB-D image 3D Object Detection  
6D Poses Estimation 

Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching 
A. Zeng, S. Song, K. Yu, E. Donlon, F. R. Hogan, M. Bauza, D. Ma, O. Taylor, M. Liu, E. Romo, N. Fazeli, F. Alet, N. C. Dafle, R. Holladay, I. Morona, P. Q. Nair, D. Green, I. Taylor, W. Liu, T. Funkhouser, A. Rodriguez (ICRA2018)



Amazon Picking Challenge 2016

Limitations of this Approach

•Error propagation: object pose estimation under heavy 
cluster is still hard! Vision error will propagate to planning 
and result in failure execution.


•Bad generalization: Need 3D models of the objects during 
training, therefore hard to generalize to unseen objects.



Generalizable Manipulation  

Object Poses CAD Model

Goal: Manipulation algorithm is able to generalize to new objects without the need of 
strong prior knowledge about the object, such as their 3D CAD model, predefined 
category, and poses. 

Object Category



Generalizable Grasp Planning
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Amazon Robotics Challenge 2017



Is Grasping Problem Solved?



✗ Reactive 
Open-loop execution  

(static scene only)

Is Grasping Problem Solved?

Camera



Camera

Is Grasping Problem Solved?

✗ Reactive 
Open-loop execution  

(static scene only)

✗ Flexible 
4-DoF grasps 

(Top-down grasp only)



Open-loop Closed-loop 

4D
oF

6D
oF
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Pinto and Gupta, ICRA 2016
Zeng et al. IROS 2018
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Zeng et al ICRA 2017 

Gualtieri et al IROS 2016 
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?? 

Learning-based Grasping

Camera

Is Grasping Problem Solved?

✗ Reactive 
Open-loop execution  

(static scene only)

✗ Flexible 
4-DoF grasps 

(Top-down grasp only)



𝑓(state) → action 
Camera

Where + How 
to grasp? 

Open-loop Topdown Grasp

Open-loop Topdown Grasping



𝑓(state) → action 

Closed-loop: 
large state space

6DoF:  
large action space

Learning based Closed-loop (Topdown)

580,000 off policy + 28,000 on-policy 
 robot grasping trials  

Qt-Opt: Scalable deep reinforcement learning 
for vision-based robotic manipulation. 

Kalashnikov et al CORL, 2018.

Closed-loop 6DoF Grasp

Camera



𝑓(state) → action 

Closed-loop: 
large state space

6DoF:  
large action space

How to get the training data? 
How to enable efficient learning?

Camera

Closed-loop 6DoF Grasp



Grasping In the Wild: 
Learning Flexible Grasping Policy 

with Low-cost Demonstration
Shuran Song, Andy Zeng, Johnny Lee, Thomas Funkhouser

Closed-loop 6DoF Grasp

RA-L, IROS 2020
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The Data Problem
Learning from demonstration 

Schneider et al IROS’10

Self-supervised learning

Zeng et al IROS’10

✗ Simple scenarios: low success rate, 
hard to get initial positive training 
data. 

✗ Expensive setup, Limited physical access (robots)


✗ Expert operator 


✗ Hard to scale



RGB-D 
camera

Intel compute 
stick
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Trigger

Grabber

Data collection device

The Data Problem



The Data Problem

Data collection device Robot



Data collection device Human demonstrations

The Data Problem
Low-friction interface for 
untrained user: 

✓Collect data everywhere. 
(not limited by robot access)


✓Data for challenging tasks.    
(no broken dishes)


✓Minimized domain gap.



Grasping In-the-Wild 
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The Learning Problem



The Learning Problem
𝑓(state) → action

Where to move 
next?



The Learning Problem
𝑓(state) → action

Where to move 
next?

How to represent 
the action?



The Learning Problem
𝑓(state) → action

Where to move 
next?

How to represent 
the action?

Prior works: 

• Joint angles: [θ0 θ1 
θ2 θ3 θ4 θ5]


• Effector offsets: 
[dx dy dz]


• Motor torques


continuous values 
that hold abstract 
meaning

How the action will 
change the state? 



The Learning Problem
𝑓(state) → action

…

a1

a2

a0

Prediction  
of next state

Action-view 
representation



The Learning Problem
𝑓(state) → action

a1

a2

6DoF motion 

+ camera rigidly mounted

View-based 

rendering

…

a0



Action-view Representation
𝑓(state) → action

a1

a2

6DoF motion 

+ camera rigidly mounted

View-based 

rendering

…

a0



Action-view Representation

TSDF fusion

Current view



Action-view Grasp Planning

TSDF fusion

Current view

Action-view generation

Translation

Ro
ta

tio
n



…

Action-view Grasp Planning

Encode 

Current State

Encode 

Future States

Action Selection 
Network

Expected Rewards

Max

Affordance map 
for different 
action view



Scores

Action-view Grasp Planning

…

Encode 

Current  State
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Expected Rewards



𝑓(state) → action 
View-based rendering as predictive model 

Autonomous Driving

 Bansal CoRL19

Visual Navigation 

Action-view Grasp Planning

✓Actions directly lead 
to ego-centric 
camera motion



𝑓(state) → action 
View-based rendering as predictive model 

Autonomous DrivingVisual Navigation 

 Bansal CoRL19

Fragkiadaki et al ICLR16 Finn et al ICRA17 Vondrick et al  ECCV18 Vondrick et al  NIPS18

Tulyakov et al CVPR18 Xue et al NIPS16 Luc et al CVPR17 Wichers et al ICML18

Action-view Grasp Planning

✓Actions directly lead 
to ego-centric 
camera motion

✗ Object and contact 
physics— learnable 
predictive model



Experiments



Varying Quasi-static Scenes

Table WallBin

Random Bin Configurations

The Same Grasping Model 



Figure 5. The objects (left) used to reproduce the dynamic grasp-
ing in clutter experiments of [30] and [20] (right).

Figure 6. In dynamic scene experiments, the entire pile of objects
is randomly shifted around while the gripper approaches an object.

across different scene configurations, due to the diversity
of the demonstrations. Fine-tuning under each specific set-
ting further improves the algorithm’s performance around
18% on average ([+finetune] in Tab. 2).

Grasping in dynamic settings. We also test our algo-
rithm’s grasping performance in dynamic settings using the
same experimental setup as Morrison et al. [20]. During
each test run, we arrange a pile of 10 objects (Fig. 5) on a
movable sheet on a tabletop. The robot attempts multiple
grasps – any objects that are grasped are removed. During
each grasping attempt (i.e. episode), the pile is moved once
by hand randomly (using the movable sheet). The move-
ments have translations > 0.1m and rotations > 25� (Fig.
6). This continues until all objects in the pile are grasped,
or at least three consecutive grasps fail. We execute 10
test runs and average the grasping performance across the
runs. Tab. 3 column [Dynamic] reports these result and
their comparisons to alternative approaches in the same dy-
namic setting. These results show that our algorithm is able
to achieve higher grasping success rates compared to alter-
native approaches for both static and dynamic settings.

Setup Time Static Dynamic

Open-loop [37] - 90±6 -
Viereck et al. [30] 0.2s 89 77
GG-CNN [20] 19ms 87±7 81±8
Ours 0.18s 92±5 88±8

Table 3. Experiment on dynamic scenes (mean %).

Effect of pretaining with demonstration data. To evalu-
ate the benefits of pretraining on human demonstration data,
we compare the our algorithm’s performance with a model
directly trained from on-robot self-supervised trial and er-
ror (described in Sec. 5). Fig. 7 plots grasping success vs.
training iterations, where each iteration consists of one trial

Figure 7. Grasping performance of our algorithm with and without
pretaining on the demonstration data in the “Tabletop” setting

and error grasping episode. The diverse training data col-
lected from human demonstrations not only helps the algo-
rithm learn faster (higher performance in the early training
stage), but also helps the algorithm learn better (higher per-
formance after fine-tuning). This experiment shows that hu-
man demonstration data is more effective than trial and er-
ror data since the demonstration data contains significantly
more positive and more diverse grasping examples than the
trial and error data collected on the robot. This diversity is
important for pretraining grasping policies that can general-
ize to different grasping scenarios.

7. Conclusions and Future Work

We introduce a new low-cost hardware interface for col-
lecting grasping demonstrations in diverse environments,
and a visual 6DoF closed-loop grasping algorithm that uses
action-view based rendering. Our experiments demonstrate
that training on the demonstration data improves both grasp-
ing performance and learning efficiency, and the capacity to
move in 6DoF and adaptive closed-loop control enabled the
algorithm to handle a variety of environments.

Our system is not without limitations. First, our ap-
proach uses simple view-based rendering as a forward pre-
dictive model. While this approach is fast and accurate in
modeling possible motions and passive observations, it does
not model the physics of objects, which may be important
during in-contact manipulation. As future work, it would
be interesting to extend our predictive model with a learn-
able function that considers object and contact physics [33].
More broadly, view-based rendering may also be applicable
for other tasks with ego-centric visual states and locomotive
action spaces – investigating its benefits for other applica-
tions (e.g. in navigation [29, 2]) would be interesting future
work. Second, we only use pre-grasping trajectories from
the demonstration data to learn a 6DoF closed-loop grasp-
ing model. It would be interesting to investigate how to
make use of the other information captured in this dataset,
such as picking order and placing trajectories [34].

Dynamic Scenes



Summary 
✓Affordance based grasping: 


‣ Good for generalization (No object pose or 3D model needed)

✓Action-view representation: 


‣ Enables efficient learning of high-degree freedom closed-loop 
control, by explicitly modeling the action’s effect on the state. 



Precise Placing 

Manipulation tasks beyond grasping: precise placing, assembly …

Manipulation beyond Grasping



Precise Placing 
Kit assembly

Manipulation tasks beyond grasping: precise placing, assembly …

Manipulation beyond grasping



Kit Assembly
Classic Approach  
(Pose estimation)

Object Pose Again??

Requires: 
- Detailed 3D model 

- Extensive Engineering

For every single object

Real-world Applications: 
- Fast changing products 

(promotion/seasonal event) 

- Big variation

- Not cost effective



Generalizable Assembly

Goal: develop algorithm that can immediately generalize to new objects

Classic Approach  
(Pose estimation)

Kit Assembly



Generalizable Assembly

Kit Assembly

Kevin Zakka, Andy Zeng, Johnny Lee, Shuran Song

Form2Fit: Learning Shape Priors for 
Generalizable Assembly from Disassembly

ICRA 2020,  Best Paper in Automation Award Finalist



How things fit together?  

Form2Fit
Learning Shape Prior for Assembly



Form2Fit

Learns dense shape descriptors to 
establishes correspondences

Learning Shape Prior for Assembly



Learns dense shape descriptors to 
establishes correspondences

Learning Shape Prior for Assembly Learning Assembly from Disassembly

Form2Fit

Training data generation



Learns dense shape descriptors to 
establishes correspondences

Learning Shape Prior for Assembly Learning Assembly from Disassembly

Form2Fit

Disassembly is easier than assembly



64x

Form2Fit

Fully self-supervised ground-truth 
label for shape correspondence 

Learns dense shape descriptors to 
establishes correspondences

Learning Shape Prior for Assembly Learning Assembly from Disassembly



<< rewind 64x

Form2Fit

Learns dense shape descriptors to 
establishes correspondences

Learning Shape Prior for Assembly Learning Assembly from Disassembly

Fully self-supervised ground-truth 
label for shape correspondence 



12x12x

12x12x12x

Data Collection from Disassembly 



kit is secured to table to prevent accidental displacement from bad suction grasps

Self-supervised Disassembly 



Shape Matching Network

Planner

θ

p, q

Matching Network descriptors

× 20Place Network

Suction Network

Kit Heightmap

Object Heightmap
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Results



Varying Initial Position - 90% 

12x
12x

12x 12x

Trained on fixed single kit

Different kit location and orientation 



Generalization to Novel Settings - 94%
Multiple Mixture

Trained on fixed single kit



Generalization to Novel Kits - 86%

64x

64x64x

64x



descriptors encode object orientation 

same orientation 

different rotation 

What does Form2Fit Learn?



descriptors encode spatial correspondence

same points share 
similar descriptors 

What does Form2Fit Learn?



descriptors encode object identity

unique descriptor for 
different objects

What does Form2Fit Learn?



Limitation and Failure Cases 



Limitation and Failure Cases 

Top-down pick and place with 2D rotation Transparent packages



Limitation and Failure Cases 

Transparent packages

ClearGrasp: 3D Shape Estimation of Transparent Objects for Manipulation 
https://sites.google.com/view/cleargrasp, ICRA 2020

https://sites.google.com/view/cleargrasp
https://sites.google.com/view/cleargrasp


Generalizable Manipulation  
Generalizable Grasping:  

Grasp In the Wild
Generalizable Assembly:  

Form2Fit 

Visual 
representation: 

Obtaining 
training data: 

Action affordance
Action-view representation

Shape correspondence for 
object assembly

Self-supervised disassembly 
for assemblyLow-cost human demonstration 
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