## Self-Adaptive Manipulation Rethinking Embodiments in Embodied Intelligence



Shuran Song

Columbia University Artificial Intelligence & Robotics Lab

## Self-Adaptive Manipulation Rethinking Embodiments in Embodied Intelligence



Shuran Song

Columbia University Artificial Intelligence & Robotics Lab

### **Embodied Intelligence**

#### Develop embodied agents that is able to acquire intelligent behaviors through interacting with their environments.



Manipulation

Waypoint







#### Multi-agent Collaboration





#### **Object Searching**

#### **Question Answering**



Das et al.

Motion Planning





Peng et al.

### **Embodied Intelligence**

**Problem formulation** 

 $f(\mathbf{X}) \rightarrow \mathbf{Y}$ 

#### Input: Observation







Left, Right .... Manipulation:

Pick, Place ...

## **Embodied Intelligence**

#### **Problem formulation**



#### Input: Observation



#### **X: External** environment, objects

 $f(\mathbf{X}) \rightarrow \mathbf{Y}$ 

**Output: Actions** 

#### Navigation:

Left, Right ... Manipulation:

Pick, Place ...



#### Input: Observation







#### Input: Observation







#### Input: Observation



#### Why it matters?

 $f(\mathbf{X}) \rightarrow \mathbf{Y}$ 

**Output: Actions** 

#### Navigation:

Left, Right ... Manipulation:

Pick, Place ...

Why it matters ?

#### Input: Observation



 $f(\mathbf{X}) \rightarrow \mathbf{Y}$ 

The agent's embodiment can directly influence the sensory input and action space

**Output: Actions** 

#### Navigation:

Left, Right ...

Manipulation:

Pick, Place ...



System's functionality should also influence the agent's embodiment

Input: Observation



Why it matters ?



**Output: Actions** 

#### Navigation:

Left, Right .... Manipulation:

Pick, Place ...

System's functionality should also influence the agent's embodiment

#### Input: Observation







Why it matters ?



#### Input: Observation



Embodiment



 $f(\mathbf{X}) \rightarrow \mathbf{Y}$ 

**Output: Actions** 

#### Navigation:

Left, Right ... Manipulation:

Pick, Place ...

#### Input: Observation





Embodiment

#### **Self-Adaptive Manipulation**

### **Self-Adaptive Manipulation**



#### Adagrasp (ICRA'21)

https://adagrasp.cs.columbia.edu/

- Treating a robot's hardware as an integral part of its behavior —
- the learned manipulation policies should be conditioned on the agent's hardware also inform how hardware should be improved.



#### Fit2Form (CoRL'20)

https://fit2form.cs.columbia.edu/

### **Self-Adaptive Manipulation**



Adagrasp (ICRA'21)

- Treating a robot's hardware as an integral part of its behavior —
- the learned manipulation policies should be conditioned on the agent's hardware also inform how hardware should be improved.

AdaGrasp: Learning an Adaptive Gripper-Aware Grasping Policy ICRA 2021



Zhenjia Xu



Beichun Qi



Shubham Agrawal

## **Grasping Algorithms Today ...**



## $f(\mathbf{x}) \rightarrow action$

#### **Prior works in grasping**

Mahler et al. ICRA. 2016 DexNet 1.0 Mahler et al. RSS,2017 DexNet 2.0 Morrison et al. RSS, 2018. Pinto and Gupta, ICRA 2016 Prattichizzo and Trinkle, Springer Handbook of Robotics. 2008 Redmon and Angelova ICRA, 2015 Kalashnikov et al, CORL 2018 Goldfeder et al 2009 Gualtieri and Platt ICRA 2018 Gualtieri et al IROS 2016 Levine et al IJRR 2018 Viereck et al CORL 2017 Weisz and Allen ICRA 2012

## **Grasping Algorithms Today ...**



 $f(\mathbf{x}) \rightarrow \text{action}$ 

X: External environment, objects

Where + How to grasp?



## **Grasping Algorithms Today ...**



#### $f(\mathbf{x}, \mathbf{g}) \rightarrow \text{action}$ f g: Robot gripper hardware





#### Scene



#### Grippers

WSG 50









#### **Barrent Hand**

















## Advantages

• Adaptability: quickly adapt to <u>new</u> grippers without additional training data.

#### New Gripper can also be broken or damaged gripper



### Advantages



• Adaptability: quickly adapt to new grippers without additional training data.

• Versatility: learn to adequately use a diverse set of grippers, the system can effectively improve its versatility on handling a larger variety of objects and tasks.

### AdaGrasp Overview



#### Scene TSDF

Scene encoding for all grasp positions

## AdaGrasp Overview



# **Gripper Selection**



Highest Score











RG2

**Barrett Hand** 





Grasp Score Visualization (red: higher score)

BarrettHand





Scene





WSG 50 <u>Half</u>-open

WSG 50 <u>Fully</u>-open





Grasp Score Visualization (red: higher score)

![](_page_33_Figure_5.jpeg)

### **Comparisons to Prior Work**

![](_page_34_Picture_1.jpeg)

- UniGrasp: Learning a Unified Model to Grasp with Multifingered Robotic Hands. *Shao et al.*
- Key idea: Predicting contact points on object surface that passes force closure check

![](_page_34_Picture_4.jpeg)

# **Comparisons to Prior Work**

![](_page_35_Picture_2.jpeg)

Inaccurate contact point with partial surface input

**Robustness to Partial Observation** 

![](_page_35_Picture_5.jpeg)
# **Comparisons to Prior Work**

#### **AdaGrasp Partial Observation** (One camera)

Multi-Object Barrett Hand





Multi-Object **WSG-50** 

**UniGrasp (Four cameras)** 

**Contact Point** Prediction



Sample contact points on multiple objects



## **Comparisons to Prior Work**





Quantitative Results.





Training Grippers



# Simulation Multi-Object with Obstacles



Training Grippers



# **Experiments in Real World**



WSG 50

RG2





Novel objects & Novel Gripper not Seen during Training

Barrett Hand-B

Barrett Hand

5x speed





WSG 50

RG2





Novel objects & Novel Gripper not Seen during Training

Barrett Hand-B

Barrett Hand

5x speed





WSG 50

RG2



Barrett Hand-B

Barrett Hand

#### Object's height is too small for the gripper



WSG 50

RG2





Triangle is hard to grasp for <u>2-finger</u> grippers

#### 5x speed

Barrett Hand-B

Barrett Hand







# Real World <u>Novel</u> Object

RG2

WSG 50





Barrett Hand-B

Barrett Hand

#### More details: https://adagrasp.cs.columbia.edu/



Adagrasp (ICRA'21)

- Treating a robot's hardware as an integral part of robot behavior —
- the learned manipulation policies should be conditioned on their hardware also inform how hardware should be improved.

AdaGrasp: Learning an Adaptive Gripper-Aware Grasping Policy Zhenjia Xu, Beichun Qi, Shubham Agrawal, Shuran Song ICRA 2021

Fit2Form: 3D Generative Model for Robot Gripper Form Design Conference on Robotic Learning (CoRL) 2020



Huy Ha



Shubham Agrawal

Treating a robot's hardware as an integral part of robot behavior —

the learned manipulation policies should be conditioned on their hardware also inform how hardware should be improved.



#### Fit2Form (CoRL'20)

## **Motivation: Specialized tools in Natural**





## You need the right tool for the right job

Photograph by Author Morris (left) and Peter R. Grant (right)

## Motivation





# Task specific gripper



### General purpose gripper

## <u>Can we use machine learning algorithms to automate this design process?</u>

✓ Improves performance and robustness

× Manual design process is costly and timeconsuming

## Task specific gripper

# **Gripper Finger Form Design**



Target object



### Grasp Success

# **Design Objectives**







- **X** Base Disconnected
- Multiple Connected × Component
  - Single Connected
- Component  $\checkmark$
- **Base Connected**







## Navigate large design space (all possible shapes in 30<sup>3</sup> Volume)

## Approach

## Represent high-level design objectives

(in a differentiable manner to enable efficient learning)



## Navigate large design space

## Approach



Represent high-level design objectives





### Navigate large design space

## Approach



Represent high-level design objectives





## Approach

# **Initiate Training with Random Object Shapes**







# Fit2Form On Adversarial Grasp Objects [Wang et al. CASE'19]







## Real world experiments



#### $G S_0 S_1 S_2 S_3 S_4 R_1 R_2 R_3 R_4 R_5 R_6$



## G S<sub>0</sub> S<sub>1</sub> S<sub>2</sub> S<sub>3</sub> S<sub>4</sub> R<sub>1</sub> R<sub>2</sub> R<sub>3</sub> R<sub>4</sub> R<sub>5</sub> R<sub>6</sub> Imprint



#### $G S_0 S_1 S_2 S_3 S_4 R_1 R_2 R_3 R_4 R_5 R_6$



## Real world experiments



## Fit2Form



## $G S_0 S_1 S_2 S_3 S_4 R_1 R_2 R_3 R_4 R_5 R_6$ Imprint

0 0 0 0







## Real world experiments



## G S<sub>0</sub> S<sub>1</sub> S<sub>2</sub> S<sub>3</sub> S<sub>4</sub> R<sub>1</sub> R<sub>2</sub> R<sub>3</sub> R<sub>4</sub> R<sub>5</sub> R<sub>6</sub> Fit2Form

## G S<sub>0</sub> S<sub>1</sub> S<sub>2</sub> S<sub>3</sub> S<sub>4</sub> R<sub>1</sub> R<sub>2</sub> R<sub>3</sub> R<sub>4</sub> R<sub>5</sub> R<sub>6</sub> Imprint



#### G S<sub>0</sub> S<sub>1</sub> S<sub>2</sub> S<sub>3</sub> S<sub>4</sub> R<sub>1</sub> R<sub>2</sub> R<sub>3</sub> R<sub>4</sub> R<sub>5</sub> R<sub>6</sub>

WSG 50





Stability

Robustness

## What does Fit2Form Learn?

# Single-sided Scoop



### Fit2Form



### **Imprint Baseline**

## **Double-sided Scoop**



### Fit2Form

## Imprint





### Fit2Form

# Dynamic Hook







## **Relaxed Imprint**



### **Imprint Baseline**

A <u>3D generative design</u> framework that uses machine learning algorithms to automate the process of robot hardware design.

- Treating a robot's hardware as an integral part of robot behavior —
- the learned manipulation policies should be conditioned on their hardware also inform how hardware should be improved.



#### Fit2Form (CoRL'20)



#### Adagrasp (ICRA'21)

https://adagrasp.cs.columbia.edu/

- Treating a robot's hardware as an integral part of robot behavior —
- the learned manipulation policies should be conditioned on their hardware also inform how hardware should be improved.



## Fit2Form (CoRL'20)

https://fit2form.cs.columbia.edu/

What's Missing?
### **Self-Adaptive Manipulation**

What's Missing?

#### Whole-body Motion Planning



Arm

#### **End-Effector**

Mobile base





### **Self-Adaptive Manipulation**

What's Missing?





#### **Sensor Input and Placement**





## **Self-Adaptive Manipulation**



# **Other physical properties**

### **Embodied Intelligence**



#### **Fixed Hardware**

Hardware as an integral part of robot behavior

✓ Adaptable **Environments** 

✓ Resilient **Potential Damages** 

✓ Versatile Tasks





## Acknowledgment

[1] AdaGrasp: Learning an Adaptive Gripper-Aware Grasping Policy, ICRA 2021

[2] Fit2Form: 3D Generative Model for Robot Gripper Form Design. Conference on Robotic Learning (CoRL) 2020



Zhenjia Xu

Beichun Qi









Huy Ha





