Category-Level Object Pose Estimation

Shuran Song
Acknowledgment

He Wang Srinath Sridhar Jingwei Huang Julien Valentin

Xiaolong Wang Yi Li A. Lynn Abbott Leonidas Guibas
Instance-level 6DoF Pose Estimation

- Instance-level 6DoF pose estimation
- 3DoF translation
- 3DoF rotation

Xiang, et al. 2017
Instance-level 6DoF Pose Estimation

Why it is useful?
- Concise description of scene and state
- Can be easily used by planning algorithm

6D Poses Estimation Berenson et al., 2009 Miller and Allen 2009 Kimm et al 2019
Instance-level 6DoF Pose Estimation

Why it is useful?
- Concise description of scene and state
- Can be easily used by planning algorithm

Good for structured known settings with rigid objects
Instance-level 6DoF Pose Estimation

Why it is limiting?

• Need 3D models of the exact objects
• Cannot generalize to unseen objects instances
Instance-level 6DoF Pose Estimation

Why it is limiting?

• Need 3D models of the exact objects
• Cannot generalize to unseen objects instances
• Handles a small collection of known instances.
Category-level pose estimation that enables algorithm to generalize to unseen object instance by leveraging category prior.
Today’s Talk

Category-level pose estimation for

Rigid Object

Articulated Object

What’s next?
Today’s Talk

Category-level pose estimation for

Rigid Object

Articulated Object

What’s next?

Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation
He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, Leonidas Guibas
CVPR’19
Problem Formulation

Task: detecting and estimating **6D pose** and **3D size** of **novel** objects in certain categories from RGBD images.
Challenges

• Defining and representing category-level object poses

• Intra-category shape variations

• Training data collection
Normalized Object Coordinate Space (NOCS)
Normalized Object Coordinate Space (NOCS)

Category-level object orientation can be defined for each category up to the limit of global symmetry in the category.
There are multiple ways to interpret a NOCS map:

(1) as a shape reconstruction in NOCS of the observed parts of the object, or
(2) as dense pixel–NOCS correspondences.

More robust to partial observation
Method Overview
Method Overview
Method Overview
Handling Symmetry

Symmetry-aware loss function: \[L_s = \min_{i=1,\ldots,|\theta|} L(\tilde{y}_i, y^*) \]

min-of-N loss
Context-Aware MixEd ReAlity (CAMERA)

Mixed-reality data generation pipeline
Dataset Statistics

- Context-Aware MixEd ReAlity
 - 300K images (275K/25K)
 - 31 real-world tabletop scenes
 - 1085 ShapeNet models
Mixed Reality Data
Real-World Dataset
Dataset Statistics

- **Real Dataset (Train/Val/Test)**
 - 8K RGB-D (4K/0.95K/3.75K)
 - 18 real scenes (6/6/6)
 - 42 unique instances (3/1/3)

- **6 Object Categories**
 - bottle, bowl, camera, laptop, mug
 - symmetric vs. asymmetric
Results on Real Test Data

Training Data:
275K CAMERA
20K COCO (without NOCS)
4.3K real images

Performance:
3D IoU @ 50%: 76.4%
5°, 5cm: 10.2%
10°, 10cm: 23.1%
Result Visualization

Ground Truth

Prediction (Ours)
Recap

Category-level pose estimation for

Normalized object coordinate space (NOCS)
defines a shared space with consistent
object scaling and orientation.
Recap

Category-level pose estimation for

Normalized object coordinate space (NOCS) defines a shared space with consistent object scaling and orientation.

x Rigid object Assumption
Recap

Category-level pose estimation for Rigid Object
Today’s Talk

Category-level pose estimation for

Rigid Object

Articulated Object

What’s next?

Category-level Articulated Object Pose Estimation (CVPR’20)
Xiaolong Li*, He Wang*, Li Yi, Leonidas Guibas, A. Lynn Abbott, Shuran Song
Problem definition

Input

Output

3D Point Cloud from a Single Depth Image

Segmentation

Part Pose + Size

Joint States

Joint Parameters
Representation: ANCSH
Articulation-aware Normalized Coordinate Space Hierarchy

Normalized Articulated Object Coordinate Space (NAOCS)

Normalized Part Coordinate Space (NPCS)
Hierarchical Normalization in ANCSH
Normalized Articulated Object Coordinate Space (NAOCS)
Hierarchical Normalization in ANCSH

Normalized Part Coordinate Space (NPCS)
Representation: ANCSH

- NAOCS: canonical space for joint
- NPCS: Part attributes
Method: ANCSH Network

PointNet++ → Part Segmentation

PointNet++ → Scale + Translation

PointNet++ → Joint Voting

Part Segmentation → Normalized Part Coordinate Space

Scale + Translation → Normalized Articulated Object Coordinate Space

Joint Voting → Normalized Part Coordinate Space
Method: Pose Fitting with Kinematic Chain Constraint

Input

Canonical space

Camera space

Separate fitting

Estimated pose

Not consistent!

Joint fitting

Optimized pose

More consistent!
Results: Pose Estimation

Rotation Error

Translation Error
Results: Joint Parameters Estimation

Our method achieves high-accuracy joint parameters estimation!
Results visualization of Hold-Out Instances

Eyeglasses Oven Washing Machine Laptop Drawer
Results: ICCV 2015 Articulated Pose Estimation Dataset

RGB reference Predicted Pose Labeled GT Pose
Recap

Category-level pose estimation for

- Rigid Object
- Articulated Object

- A novel representation for category level articulated objects—ANCSH;
- Joint optimization of part poses with kinematic chain constraints improves accuracy
What’s next?

Category-level pose estimation for

Rigid Object Articulated Object

Not everything in the world is a rigid body with a canonical pose!
Deformable?
“piles” of stuff?
Fluid?
Unknown Category
Beyond object pose estimation

Robot Definition of Objects

Human Definition of Objects and Poses

physical interactions
Beyond object pose estimation

Robot Definition of Objects

Human Definition of Objects and Poses

Detect object with interaction

DensePhysNet Xu et al, RSS’19
Beyond object pose estimation

- Articulation from interaction
- Robot Definition of Objects
- Human Definition of Objects and Poses
- Object Pose from Grasping Point
- physical interactions
Summary

Instance-level

Category-level Pose Estimation

Beyond Category-level

Rigid object

Articulated object

Deformable, Granular, Fluid, unknown category…
Acknowledgment

Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation
He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, Leonidas J. Guibas
CVPR 2019

Category-level Articulated Object Pose Estimation
He Wang*, Xiaolong Li*, Li Yi, Leonidas Guibas, A. Lynn Abbott, Shuran Song
CVPR 2020