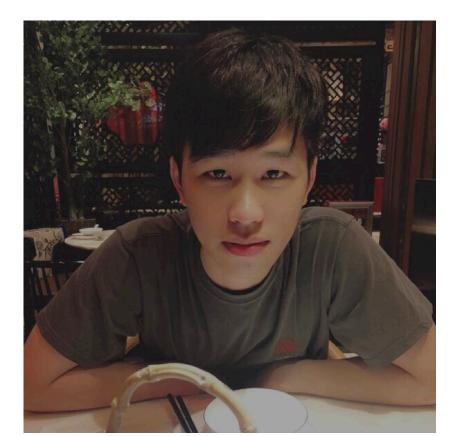
Active Scene Understanding with Robot Interactions

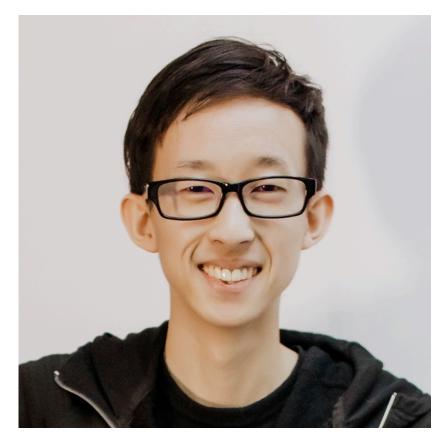
Shuran Song

Collaborators

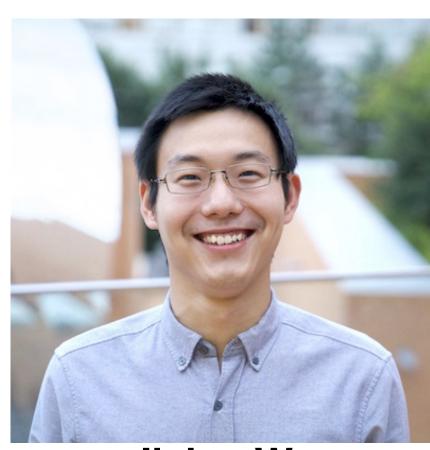
Zhenjia Xu



Zhanpeng He

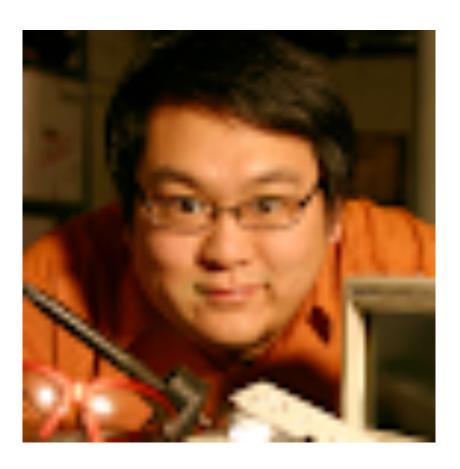


Andy Zeng



Jiajun Wu

Joshua B. Tenenbaum

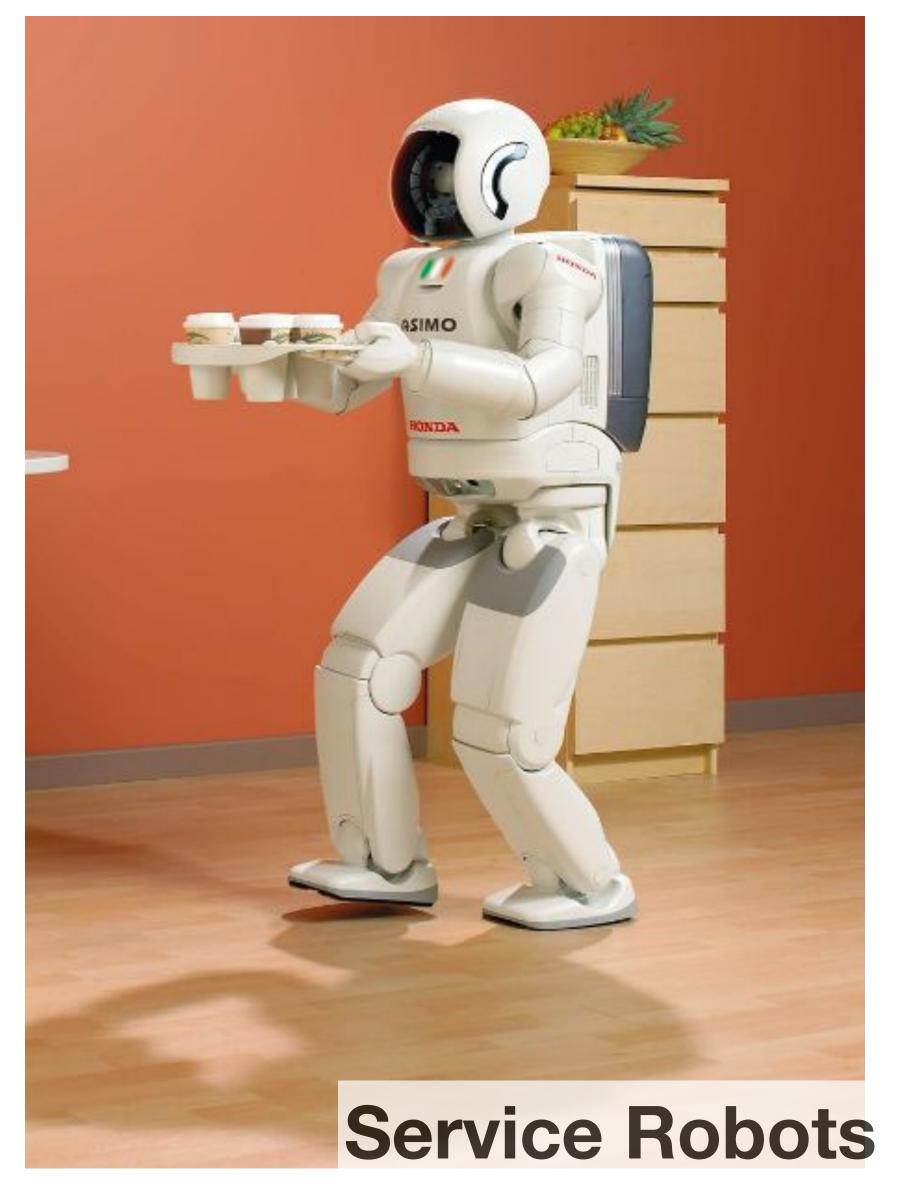


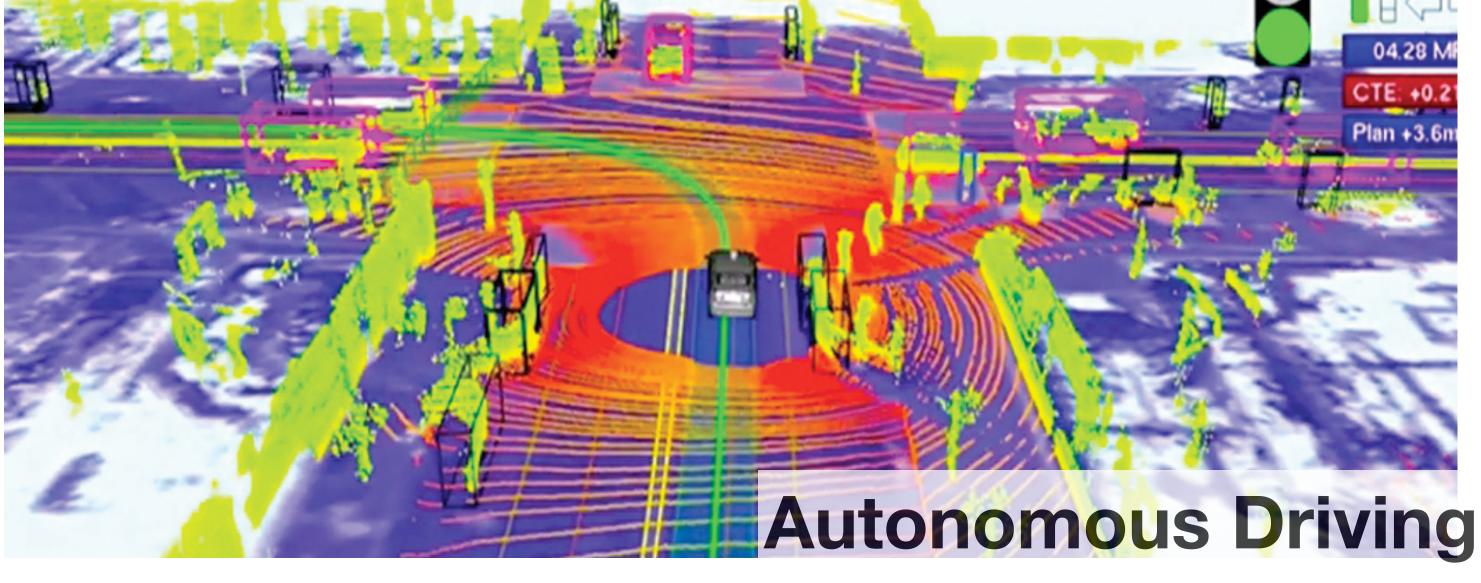
Johnny Lee

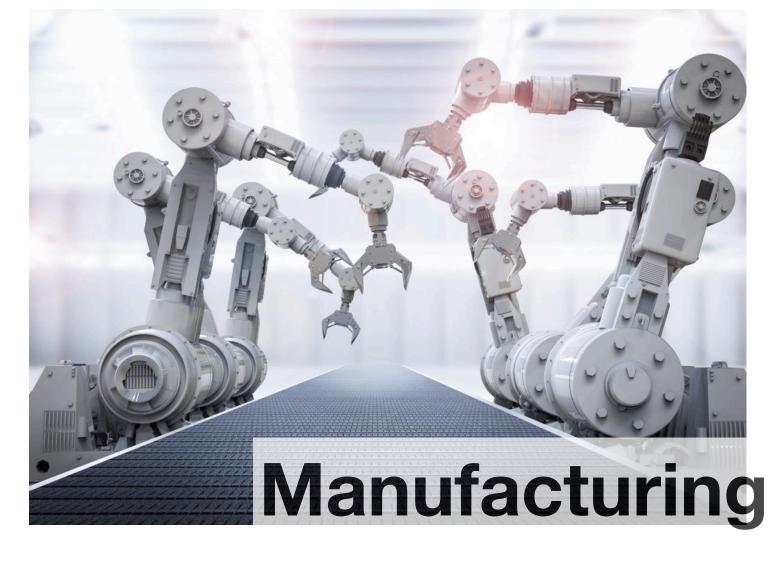
Thomas A. Funkhosuer

Alberto Rodríguez

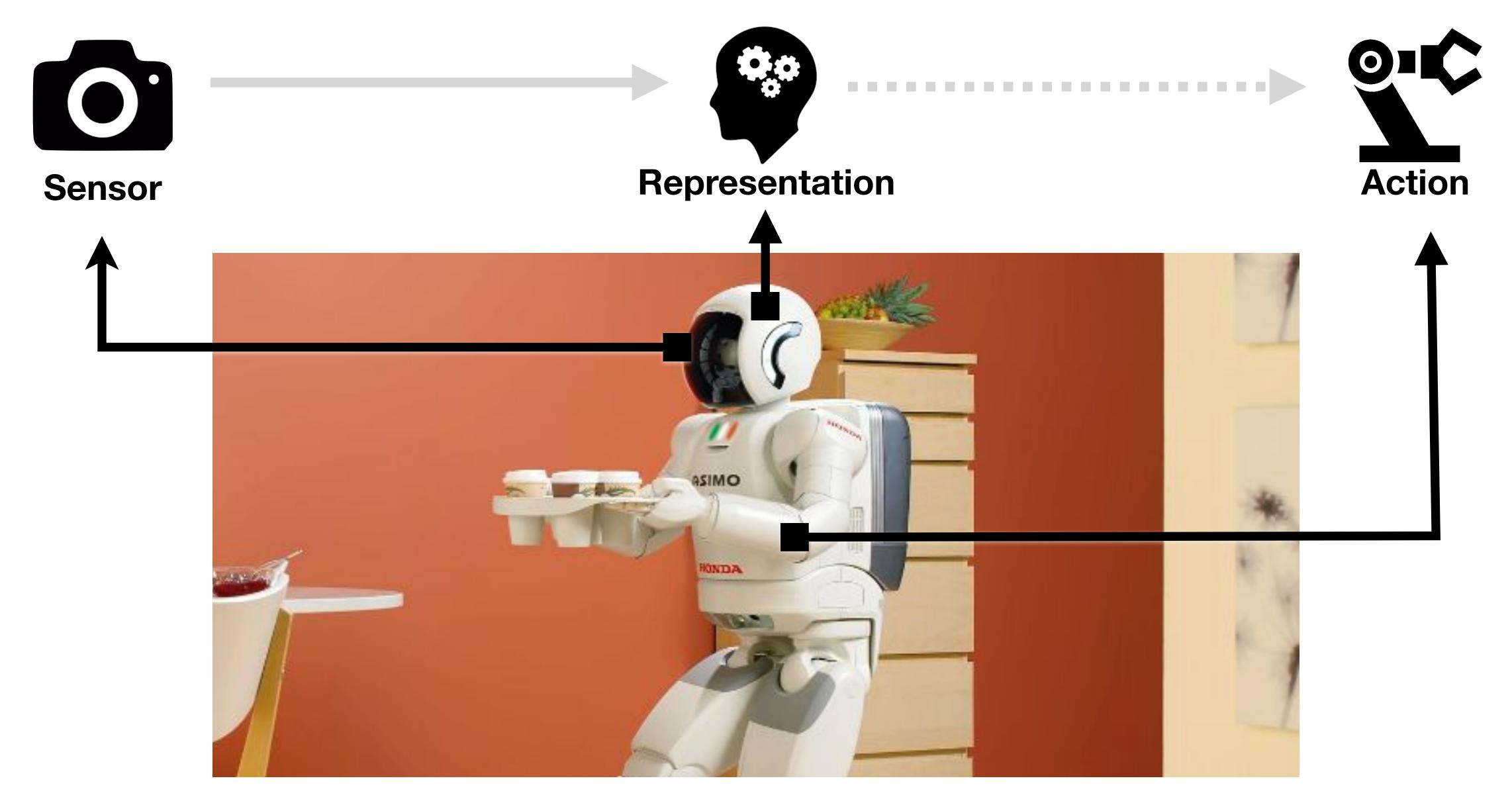
See, Understand, Act

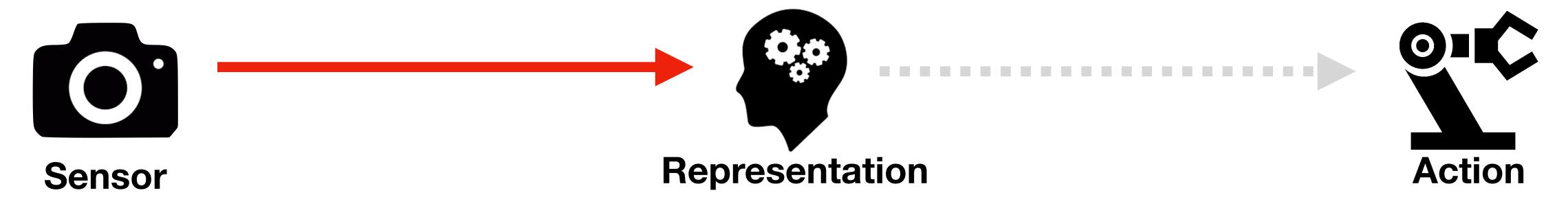


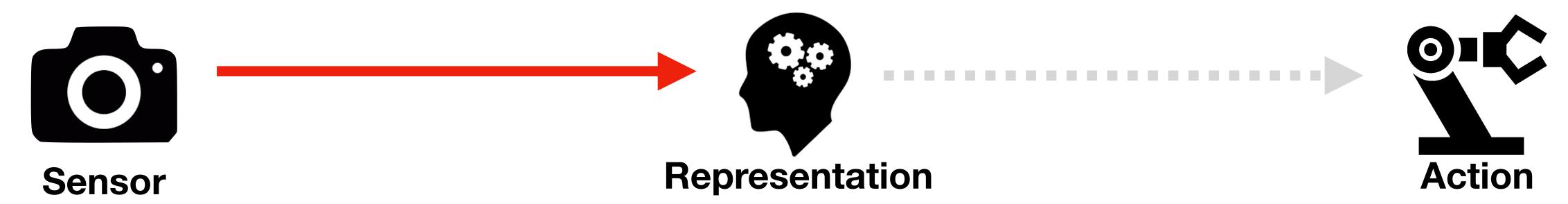




See, Understand, Act







Scene Representations

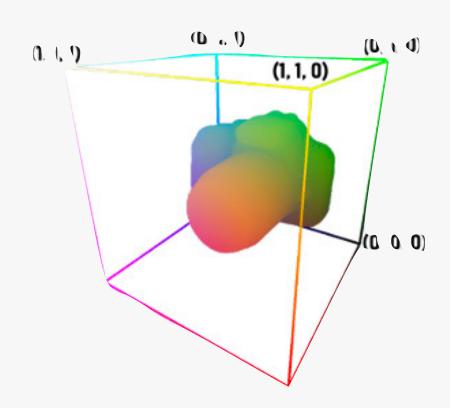
Object Detection

Bed nightstand

SlidingShapes

ECCV 2014, CVPR 2016

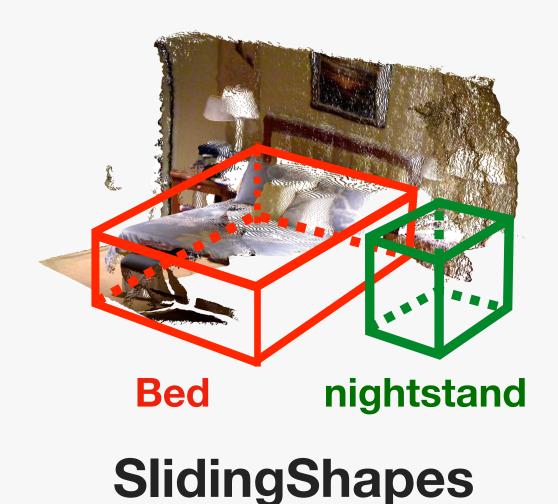
Pose Estimation



NOCS CVPR2019

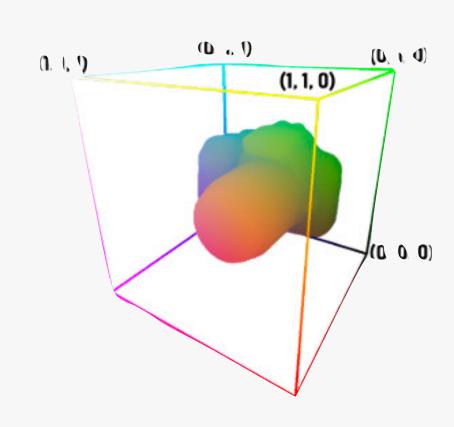
Scene Representations

Object Detection



ECCV 2014, CVPR 2016

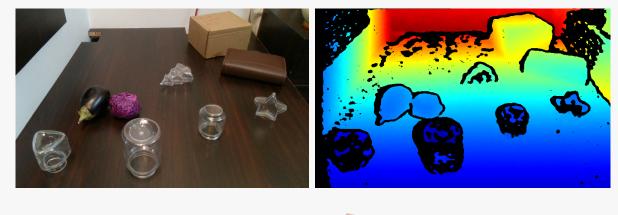
Pose Estimation

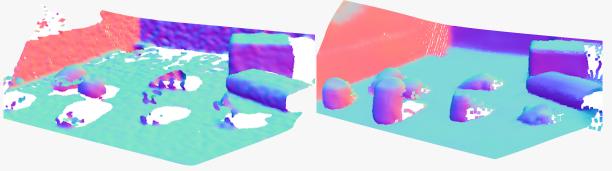


NOCS CVPR2019

Geometry Estimation

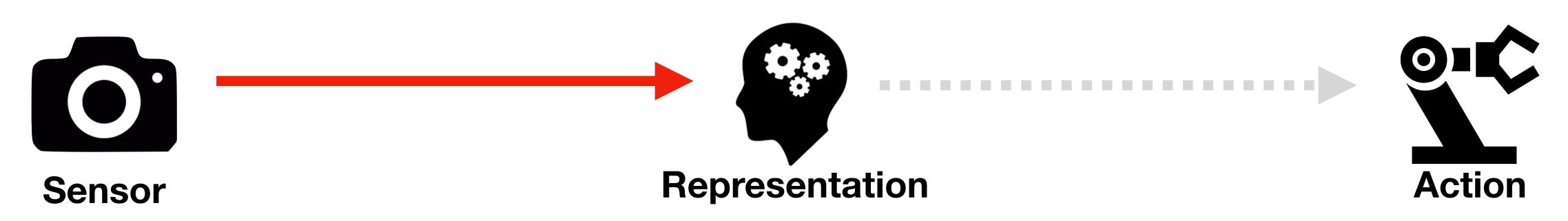
(transparent object)

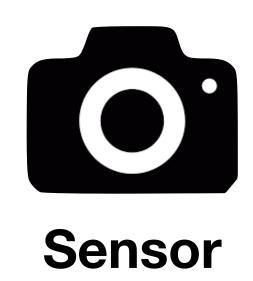


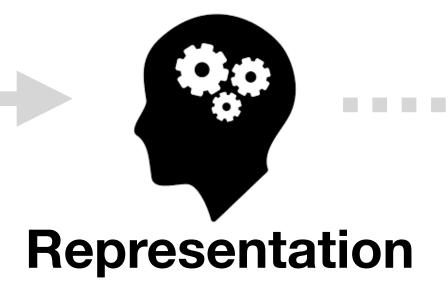


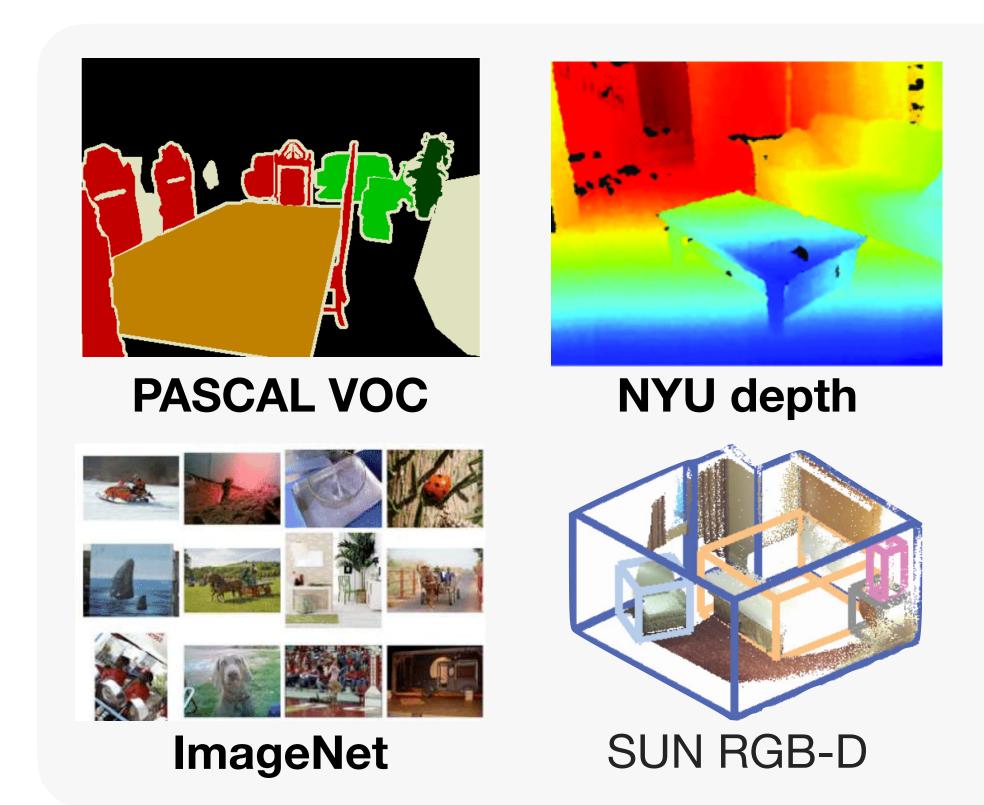
ClearGrasp ICRA2020

Semantic Scene Completion



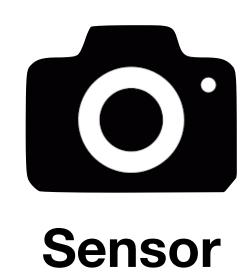


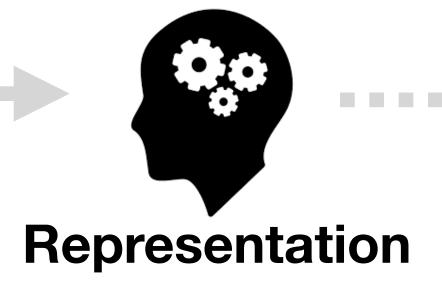


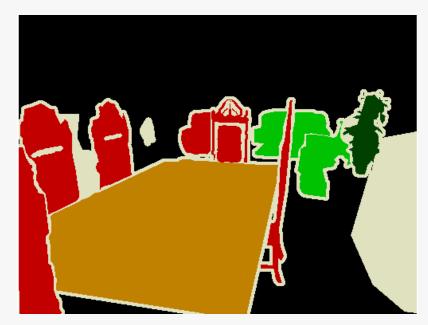


Computer Vision Benchmarks

Static images

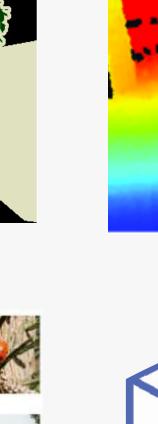


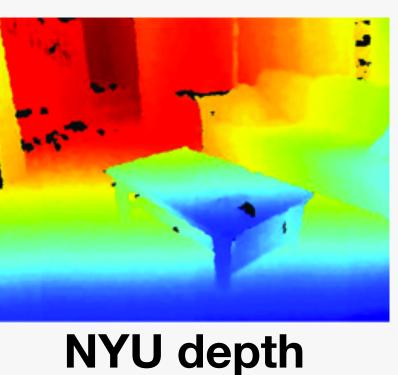




PASCAL VOC

ImageNet





The state of the s

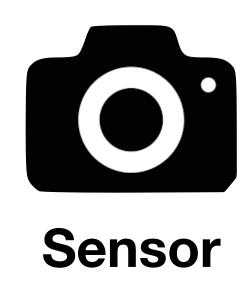
SUN RGB-D

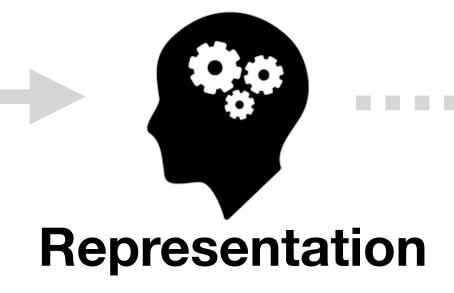
Moment in Time

CrowdPose

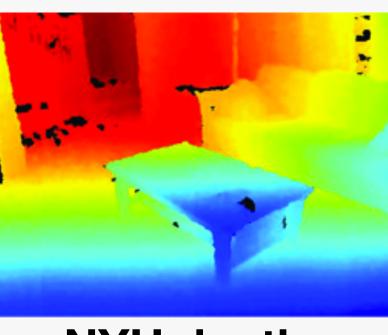
Computer Vision Benchmarks

- Static images
- Passive video

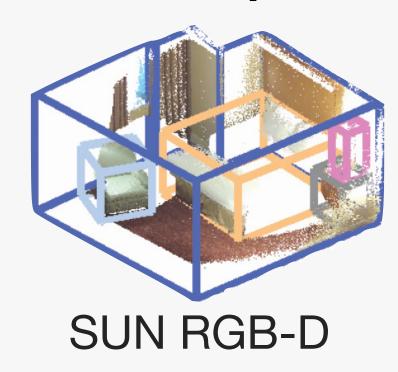


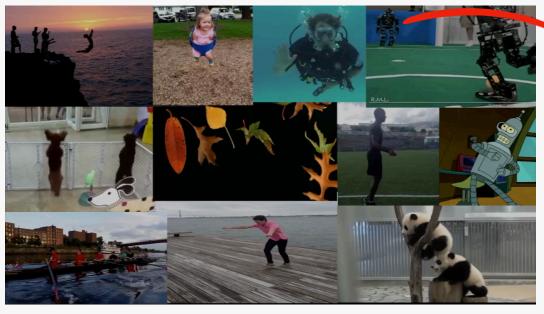


ImageNet

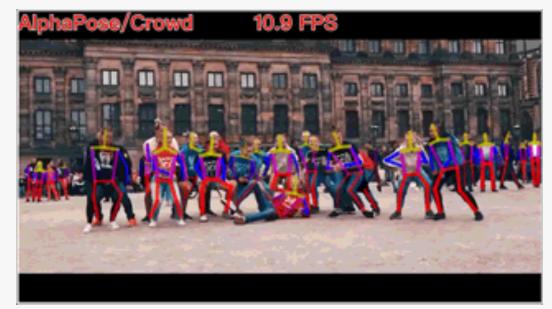


NYU depth





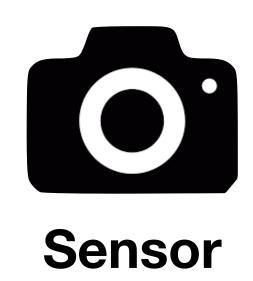
Moment in Time

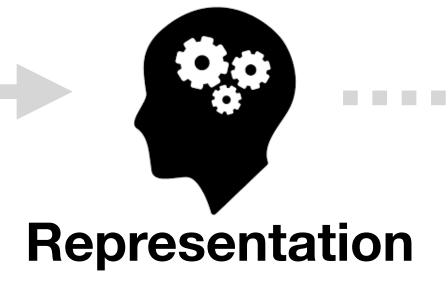


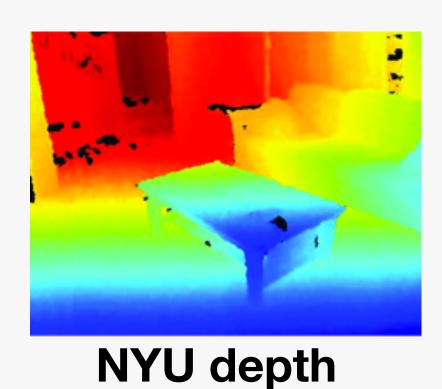
CrowdPose

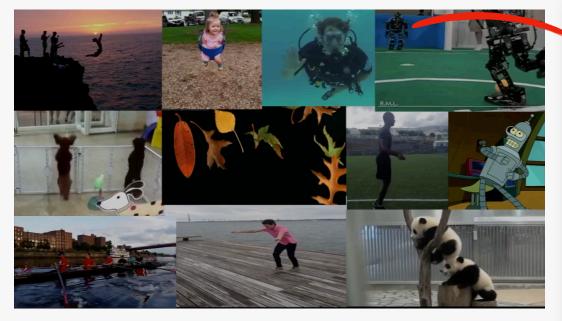
What causes all the motions?

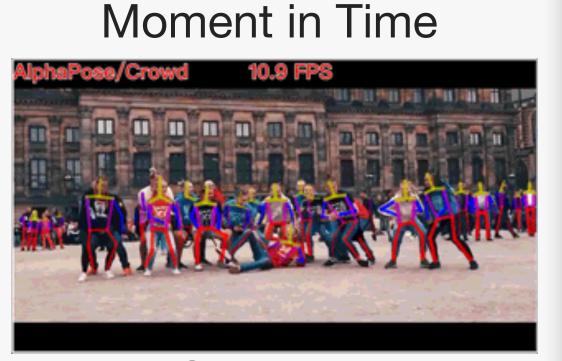
- Casual relationship between action and motion
- X Inform action planing

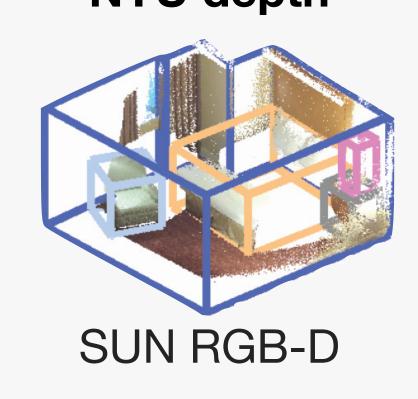






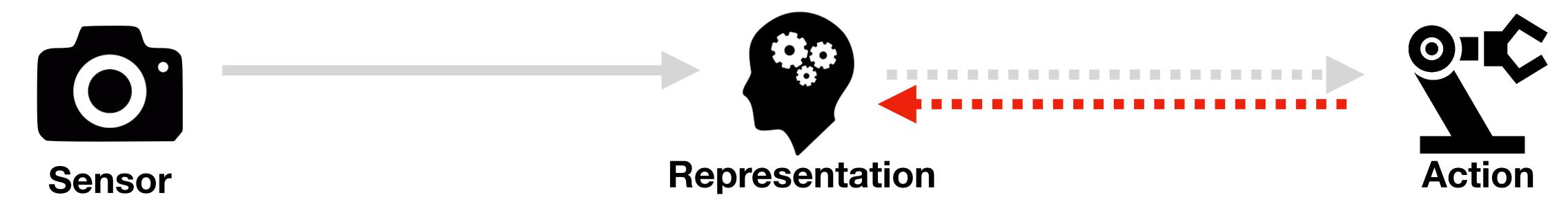






CrowdPose

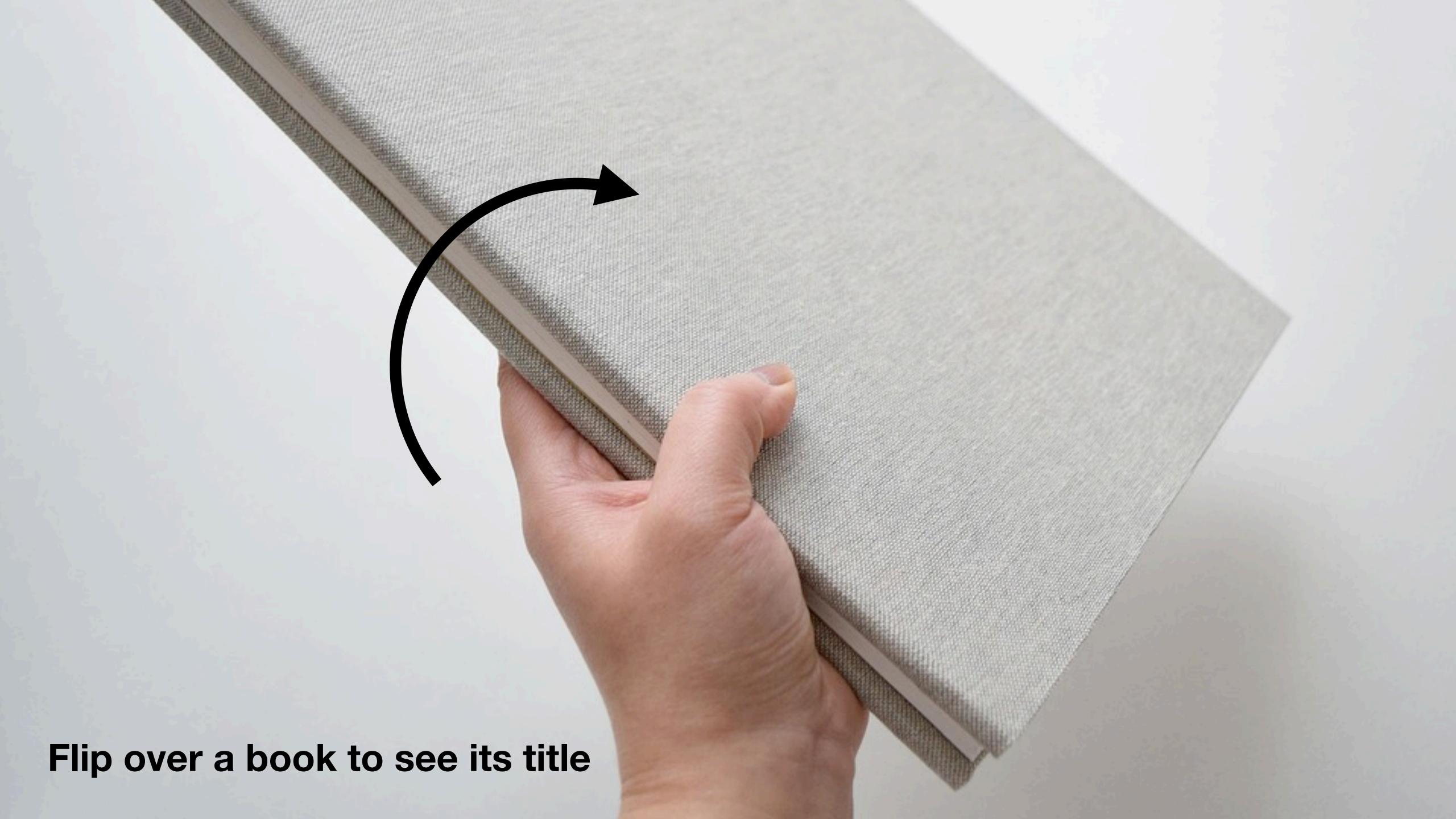
Passive Observers

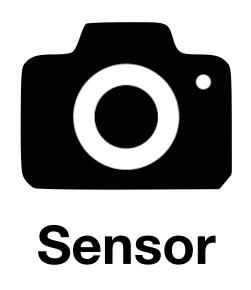


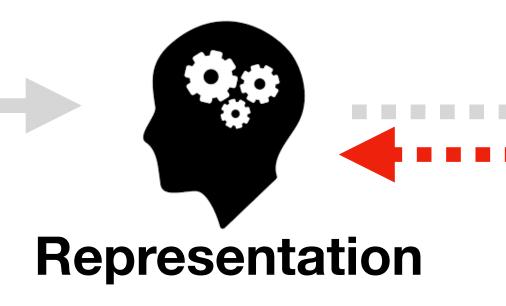
Using active exploration to retrieve useful information

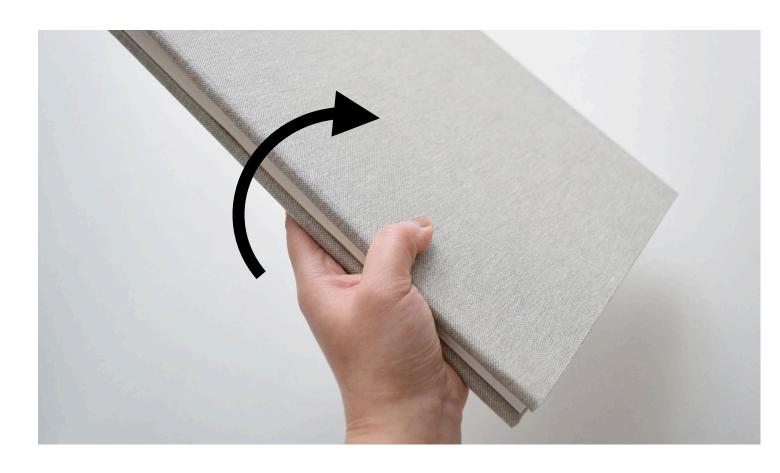


Push a large box to sense its weight





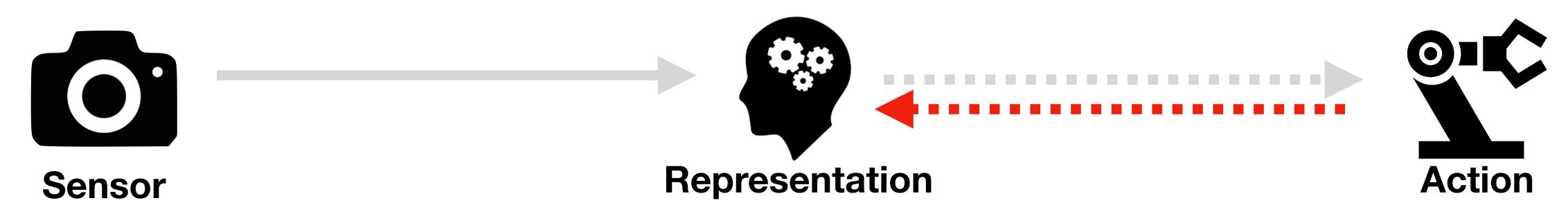


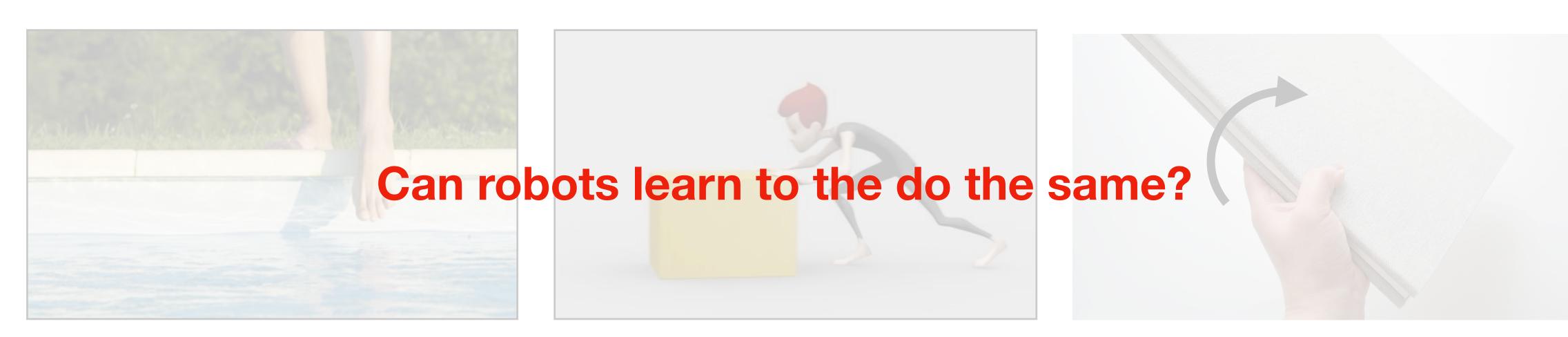


Action DippingInformation TemperaturePlaning Swim

Pushing
Weight
Lift up the box

Flipping
Title
Read the book





Action

Dipping

Information Temperature

Planing

Swim

Pushing

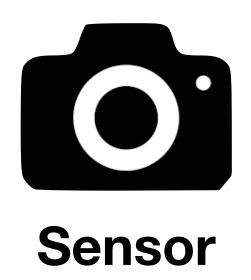
Weight

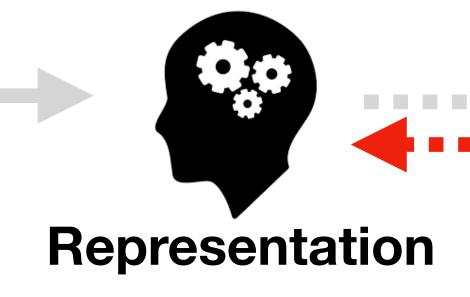
Lift up the box

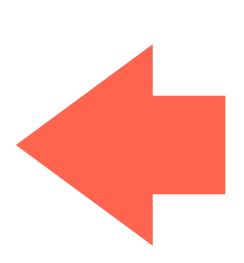
Flipping

Title

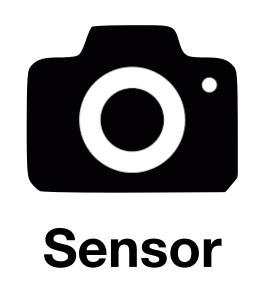
Read the book

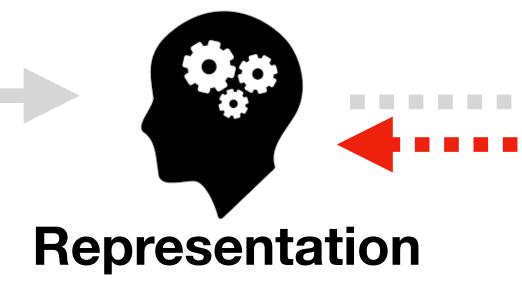


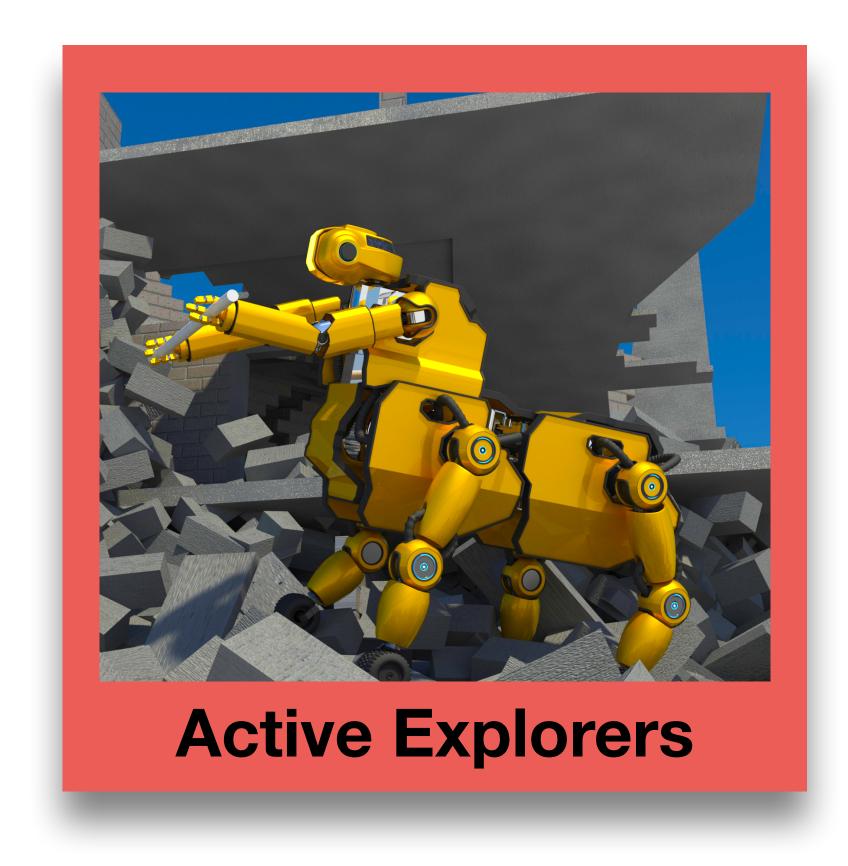


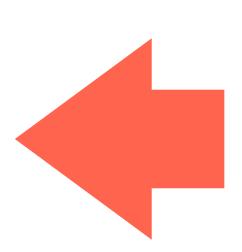


Active Scene Understanding

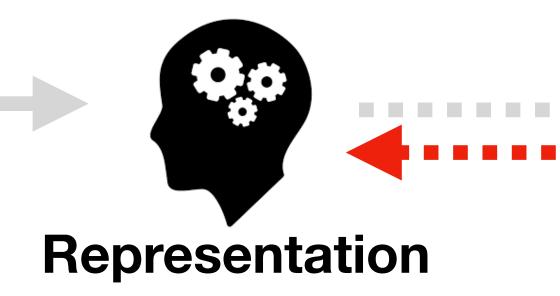


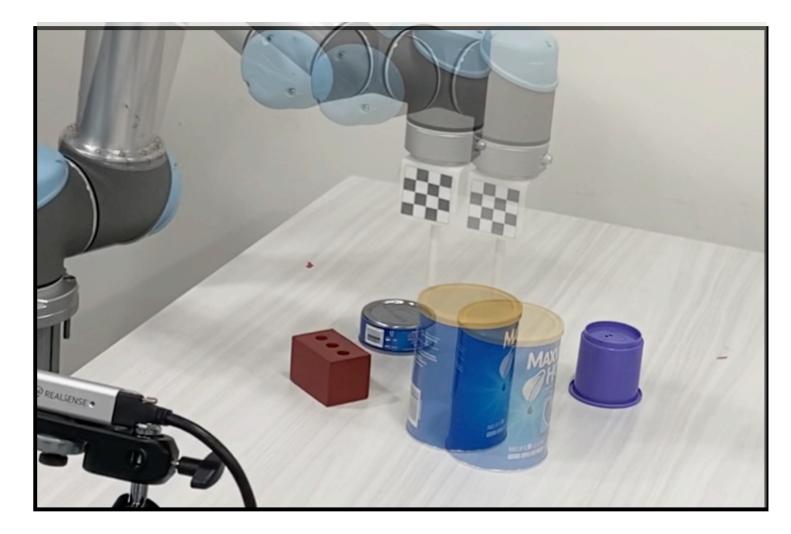




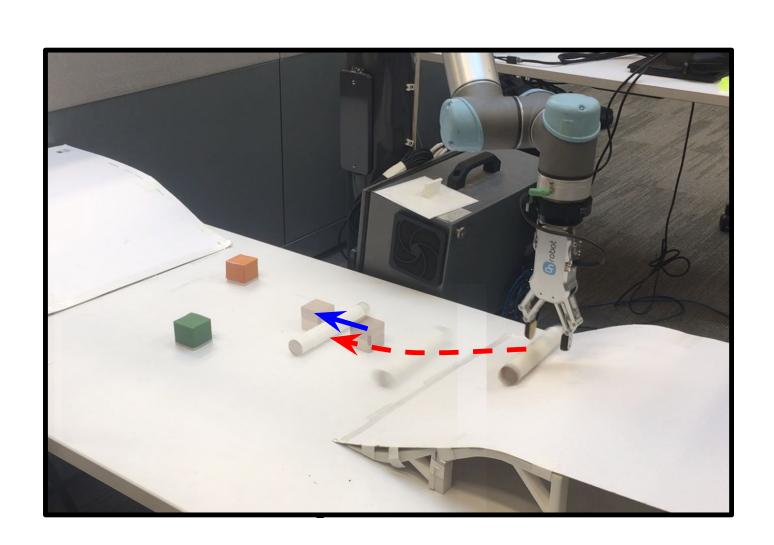


Active Scene Understanding

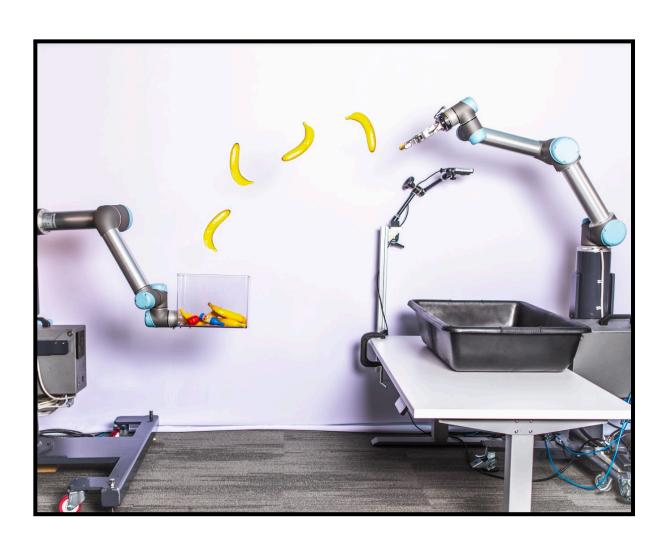




Dynamic Scene RepresentationCoRL 2020



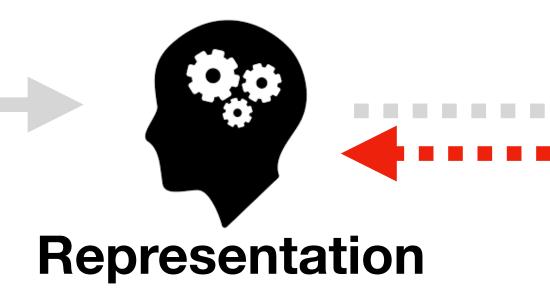
DensePhysNet RSS2019

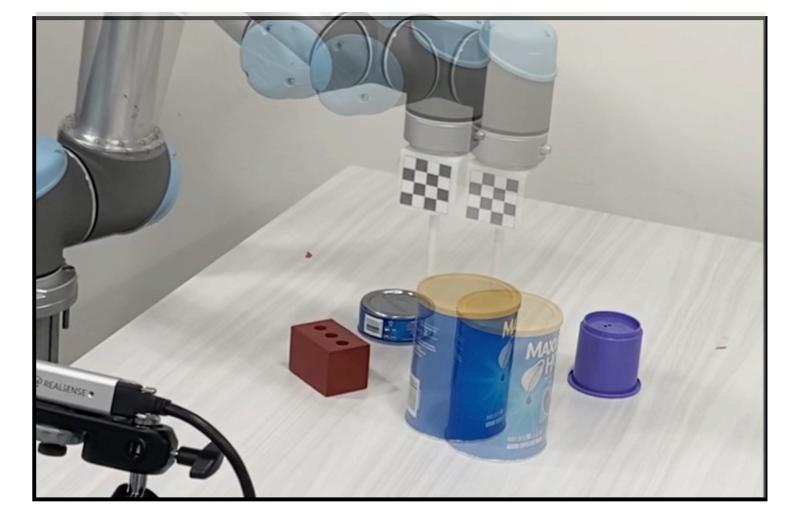


TossingBot RSS2019

Active Scene Understanding







Dynamic Scene RepresentationCoRL 2020

Learning 3D Dynamic Scene Representations for Robot Manipulation

Zhenjia Xu, Zhanpeng He, Jiajun Wu, Shuran Song CoRL 2020

https://dsr-net.cs.columbia.edu/

DensePhysNet RSS2019

TossingBot RSS2019

Interaction for Perception

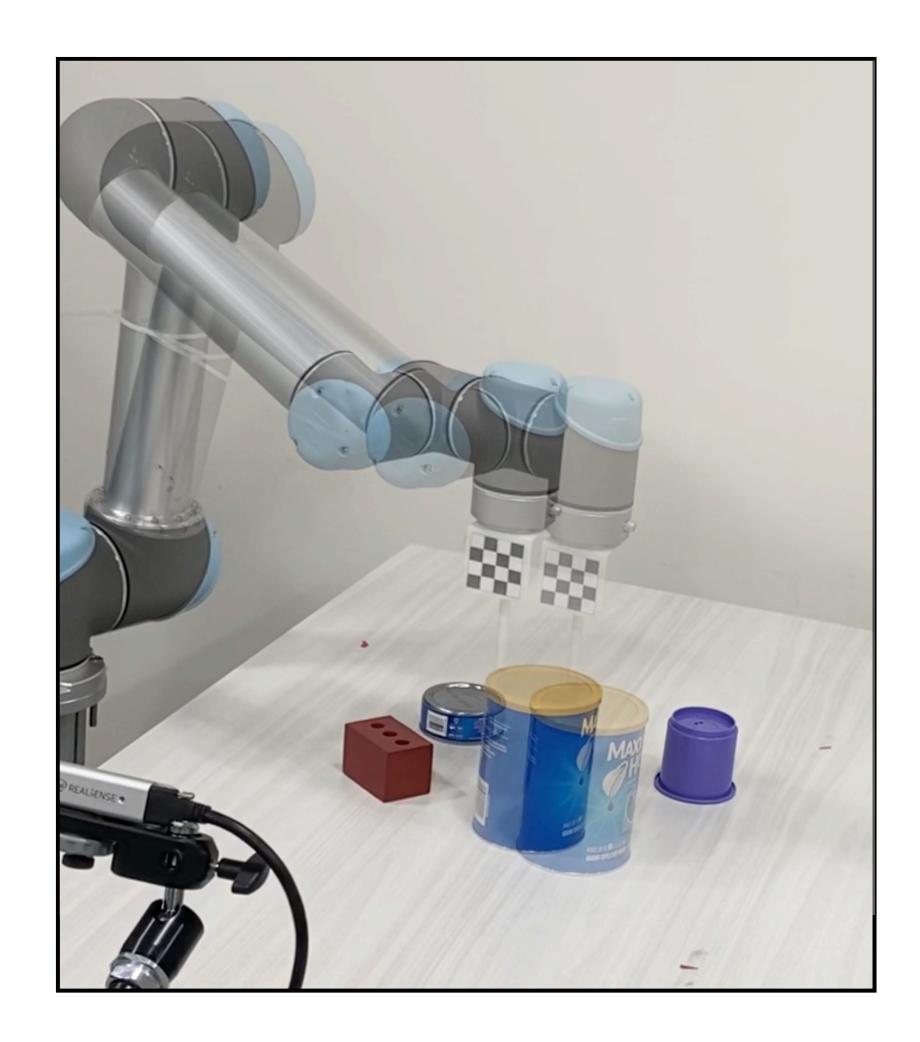
Goal:

Learning a Scene Representation with Interactions

Objects'
Instance Identity
3D geometry
Dynamics

How to do it?

Learning to predict object movement under robot's interaction

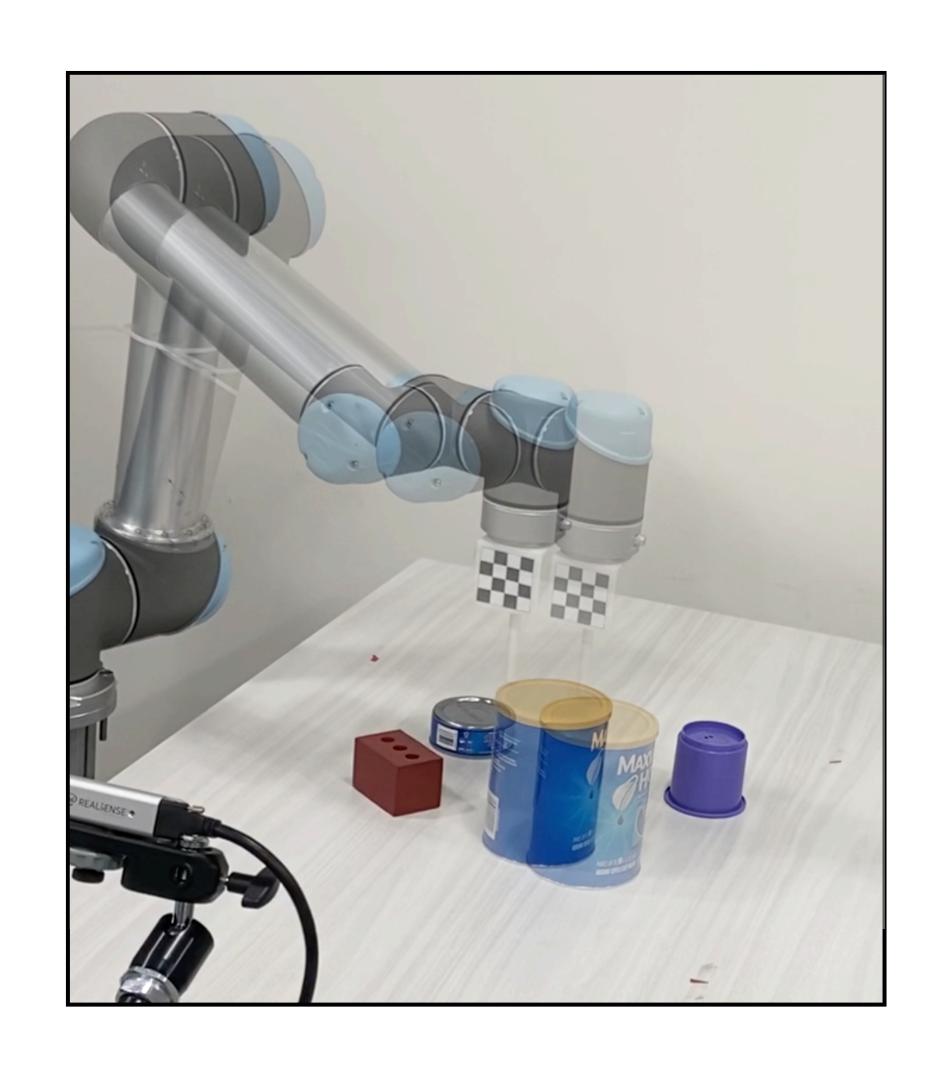


Interaction for Perception

Why does it work?

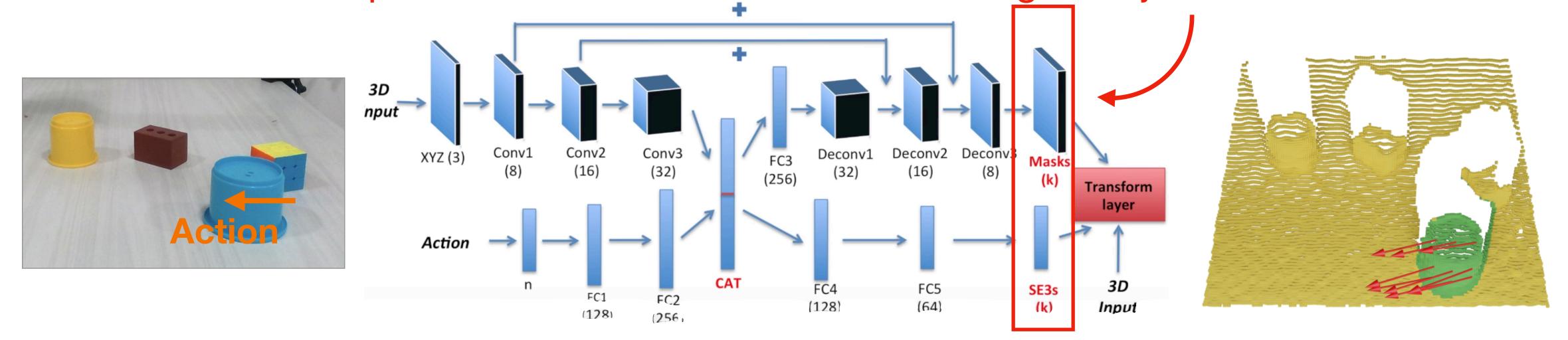
We know that the points on the same rigid object should move together. Formally, they should be described by the **same** SE(3) transformation.

Therefore, by analyzing the motion of the whole scene, the system will be able to identify the each individual rigid object that would best explain the motion.



Prior work: SE3-Net

Masks represent the networks's understanding of object instances

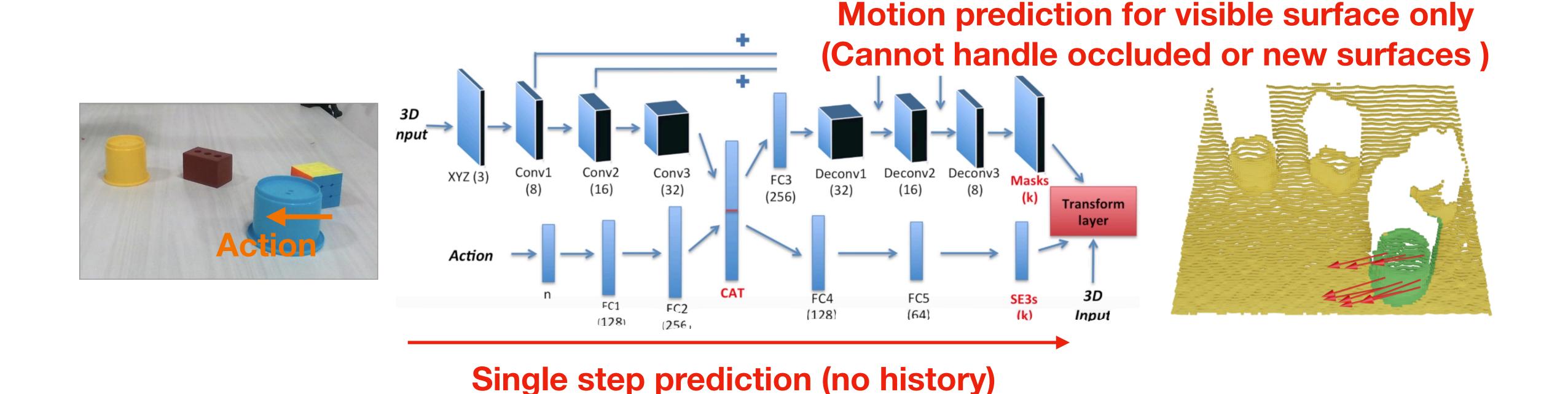


Predicting K SE(3) transformation for K different masks

Output point-wise scene flow (supervision)

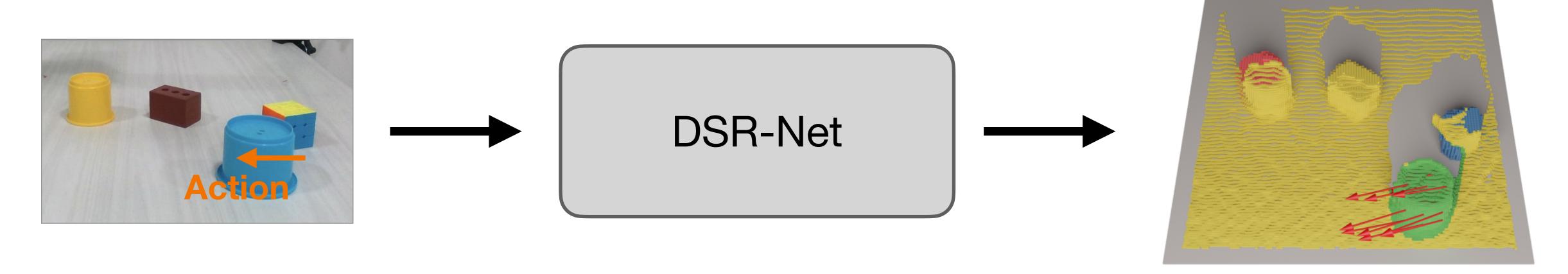
Se3-nets: Learning rigid body motion using deep neural networks A Byravan, D Fox, ICRA, 2017

SE3-Net - Issues



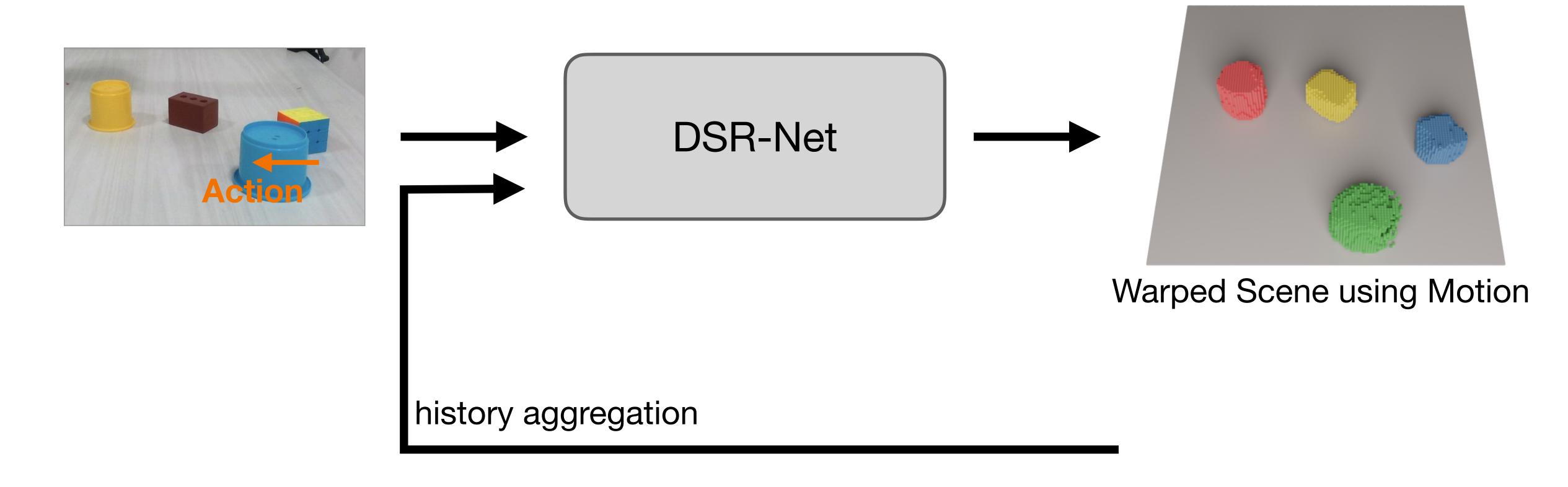
- 1. The mask only describe object that moved in this step
- 2. The representation cannot encode object **permanence** (once the object is occluded it disappears from the representation)
- 3. The representation cannot consistently track object identity over time

Dynamic Scene Representation (DSR)



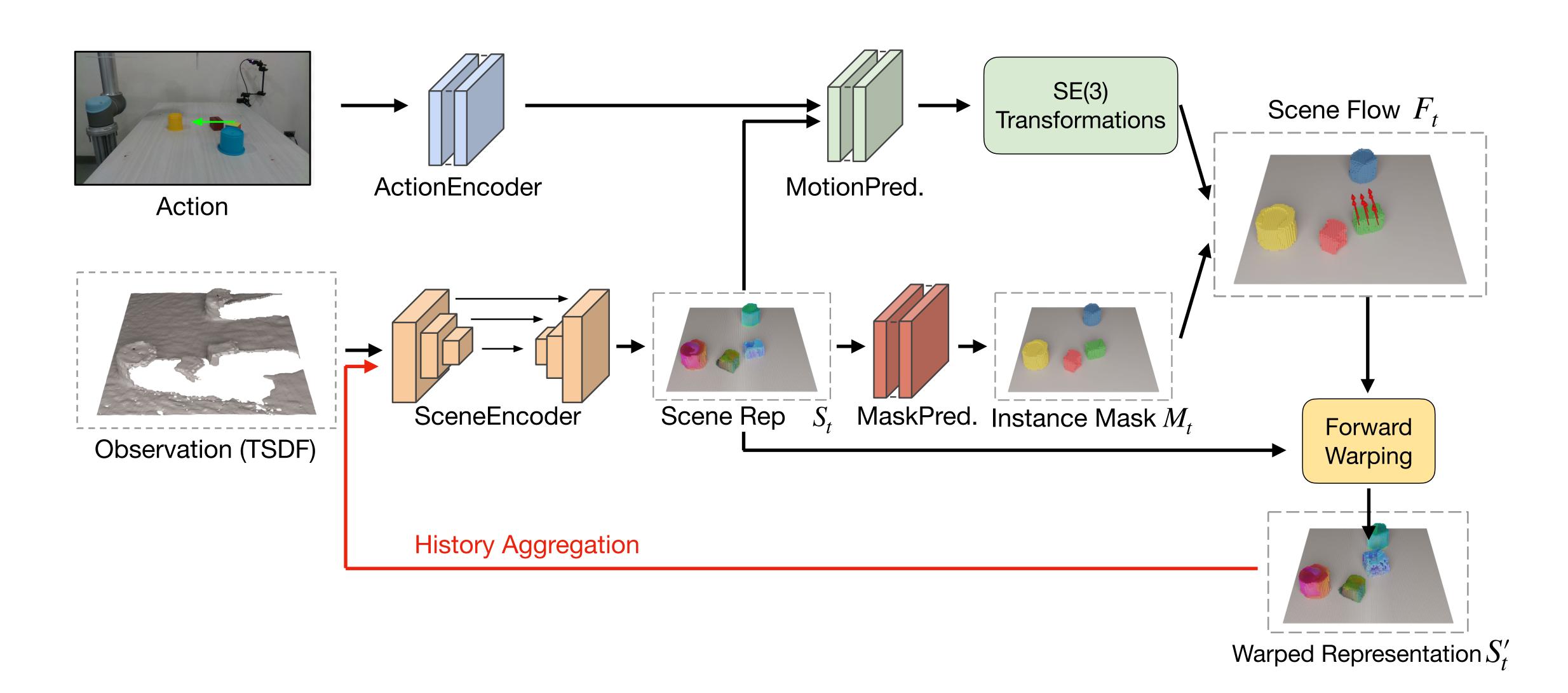
Amodal 3D representation: Encode objects' complete 3D shape, regardless of occlusion

Dynamic Scene Representation (DSR)



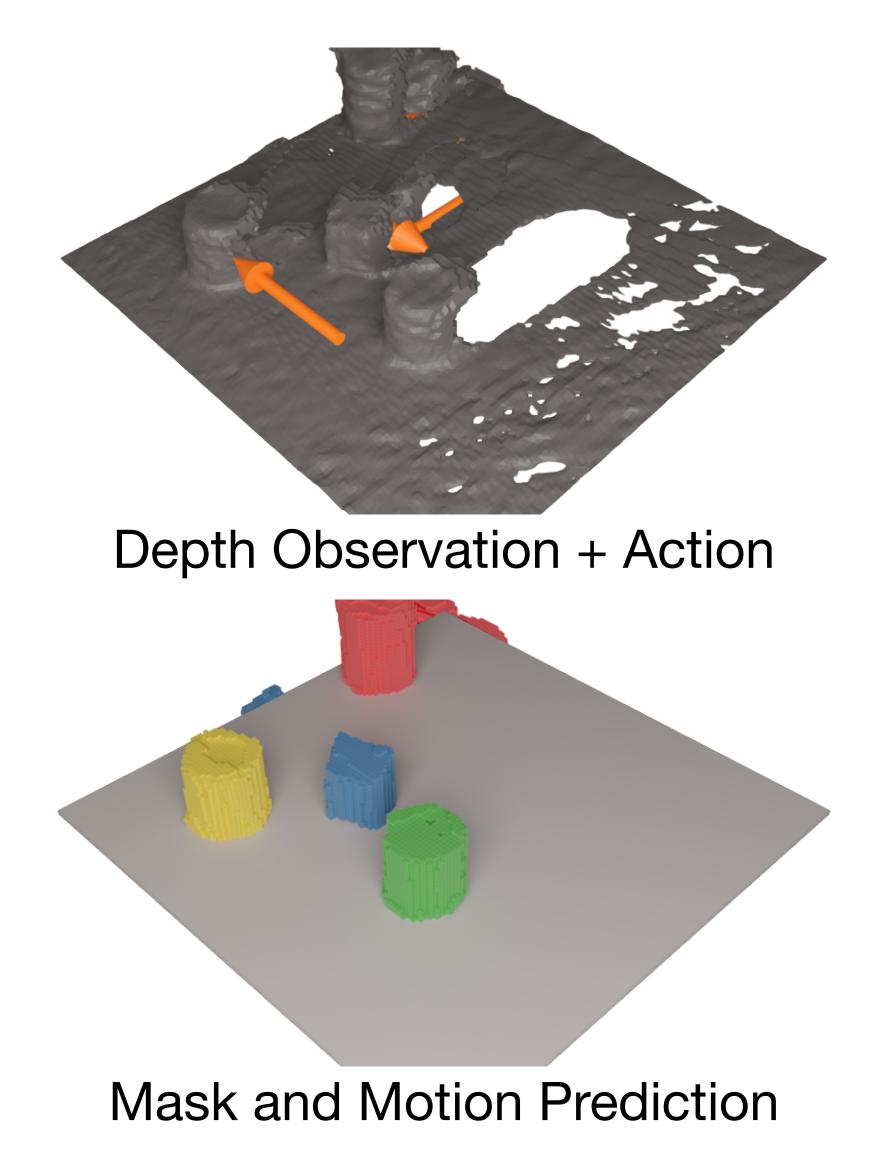
✓ Multiple object ✓ Object Permanence ✓ Continuity

DSR-Net



DSR-Net in Action

Real-World **Novel** object



Evaluation

We want to see whether DSR-Net is able to

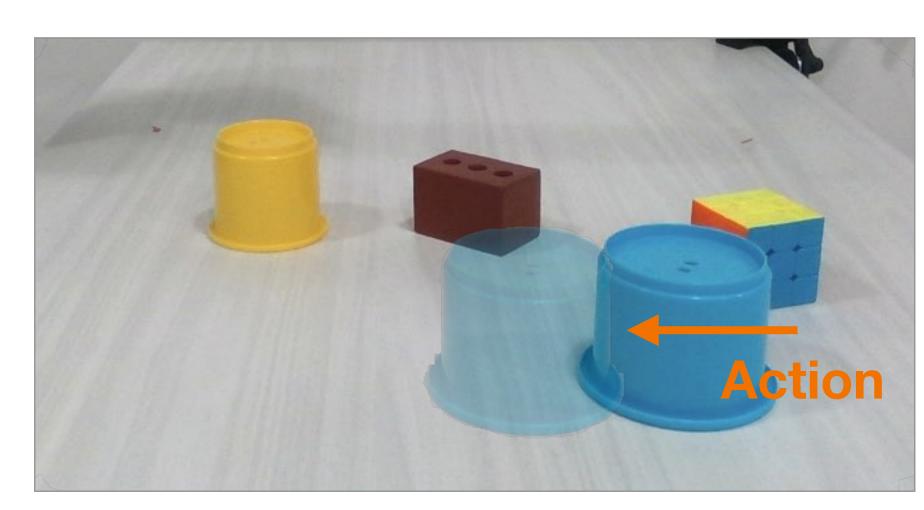
- 1. Accurately predict object motion under different robot interactions;
- 2. Aggregate the history and encodes object permanence and continuity;
- 3. Improve the performance of down-stream manipulation tasks.

Evaluation

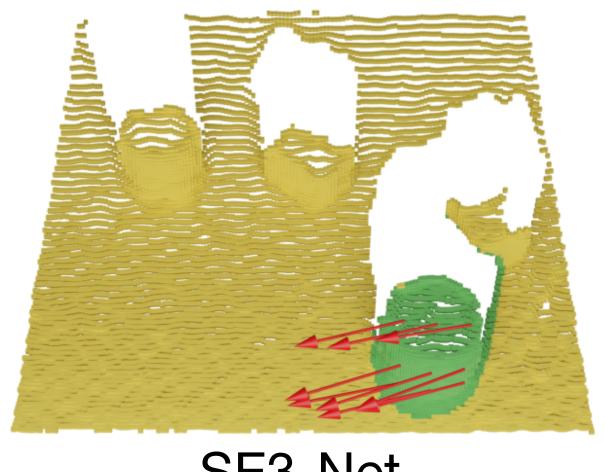
We want to see whether DSR-Net is able to

- 1. Accurately predict object motion under different robot interactions;
- 2. Aggregate the history and encodes object permanence and continuity;
- 3. Improve the performance of down-stream tasks.

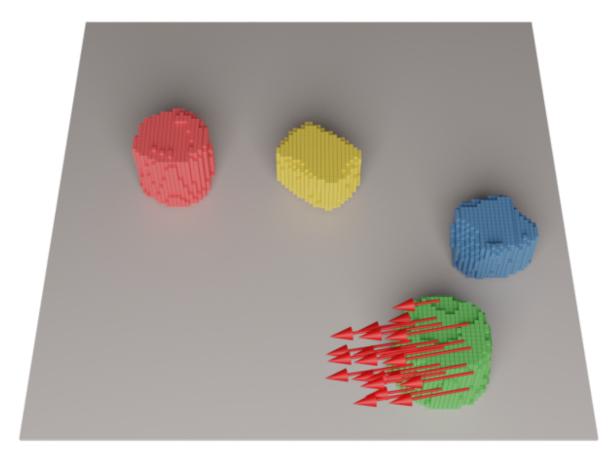
Result - Motion Prediction



Color image



SE3-Net

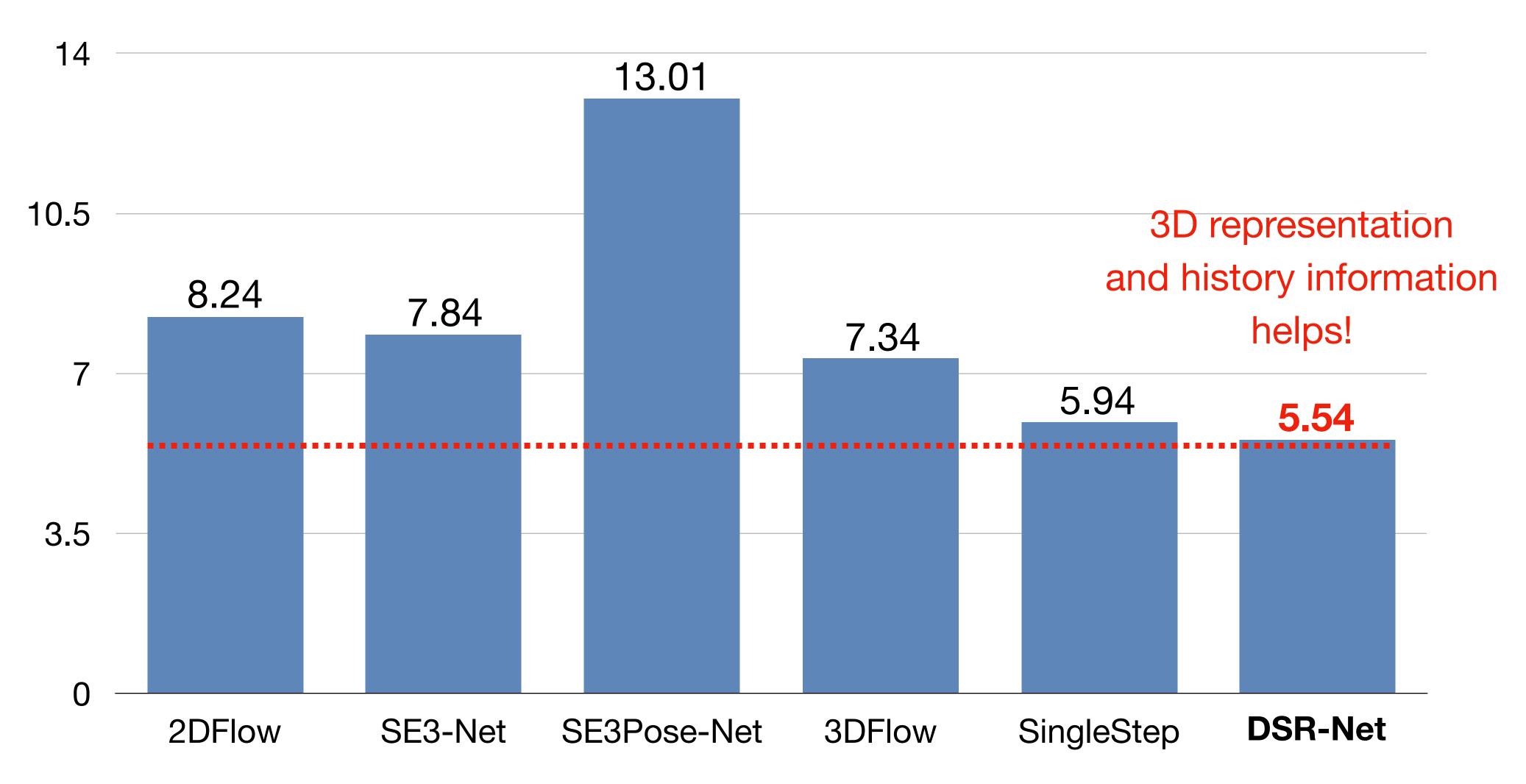


DSR-Net



SE3Pose-Net

Result - Motion Prediction



MSE of scene flow prediction on visible surface

Evaluation

We want to see whether DSR-Net is able to

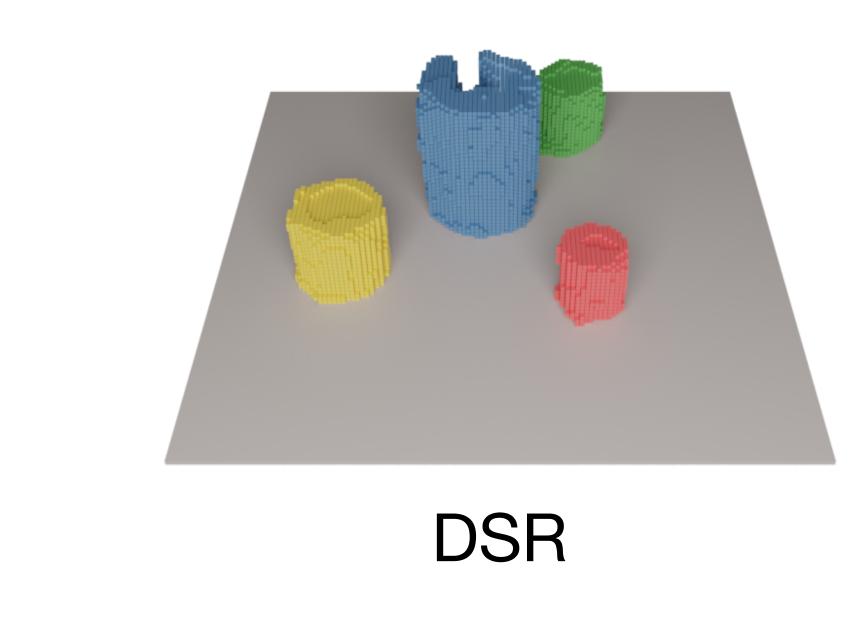
- 1. Accurately predict object motion under different robot interactions;
- 2. Aggregate the history and encodes object permanence and continuity;
- 3. Improve the performance of down-stream tasks.

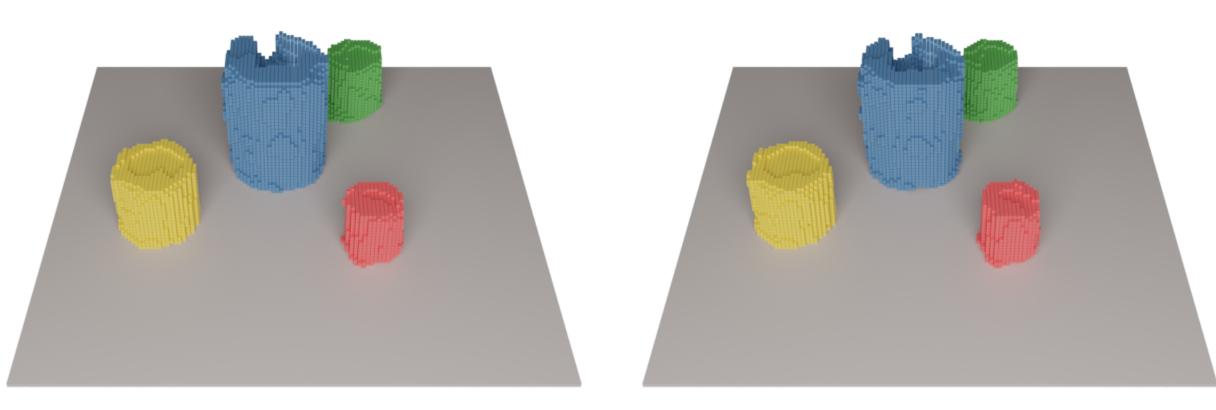
Object Permanence

Object Permanence: is the understanding that objects continue to exist even if they disappear from <u>view</u> due to <u>occlusion</u>.

Step 1

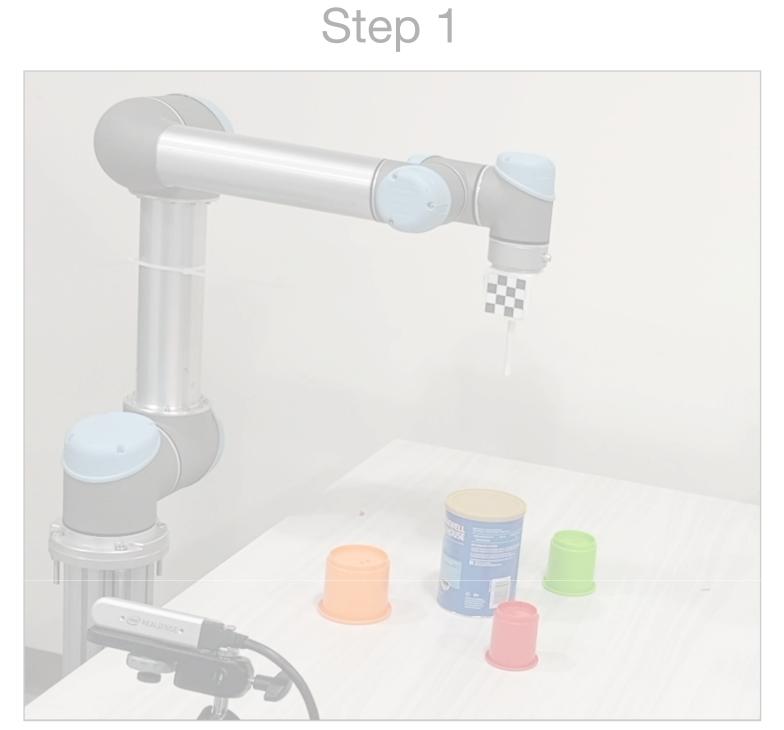
Camera View

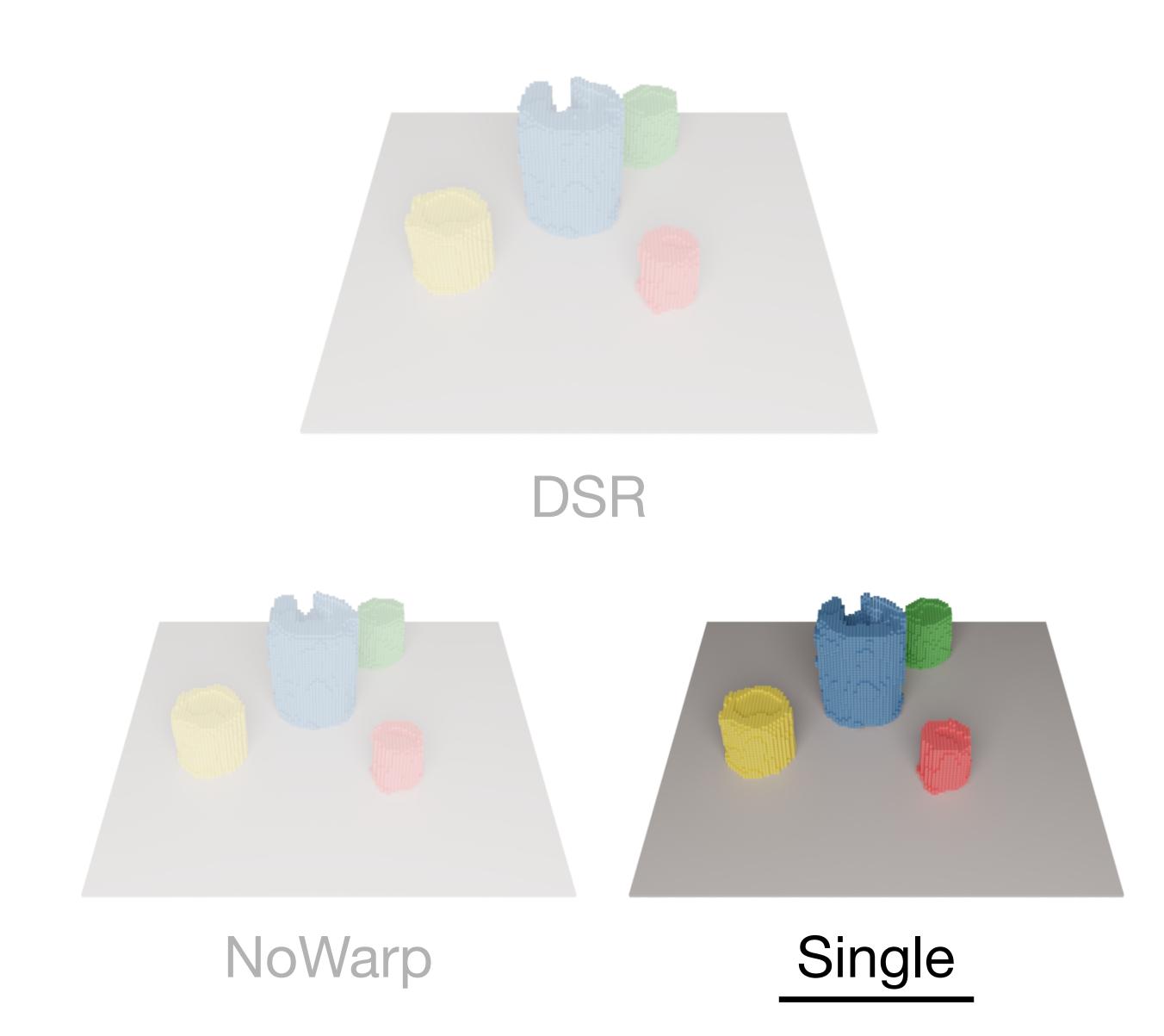




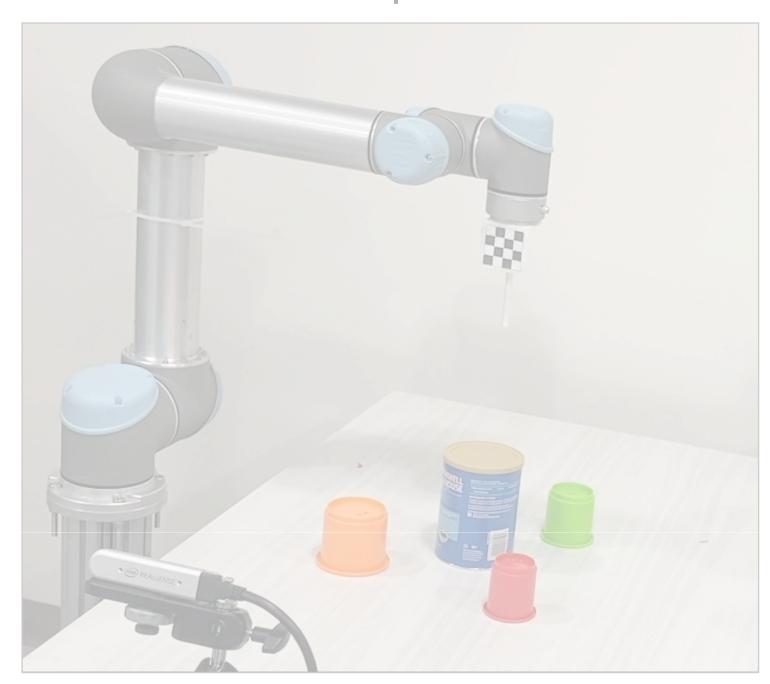
NoWarp

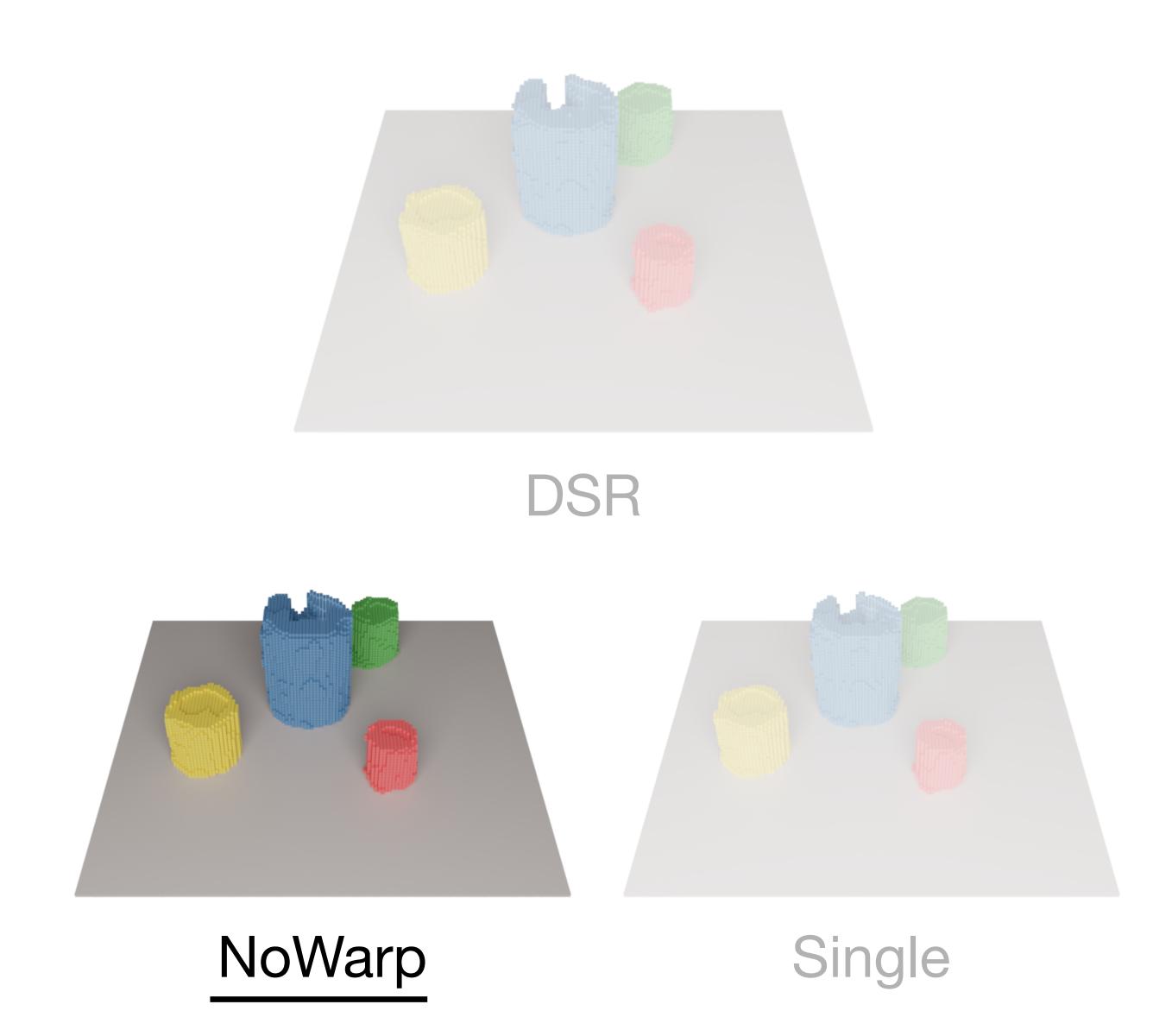
Single



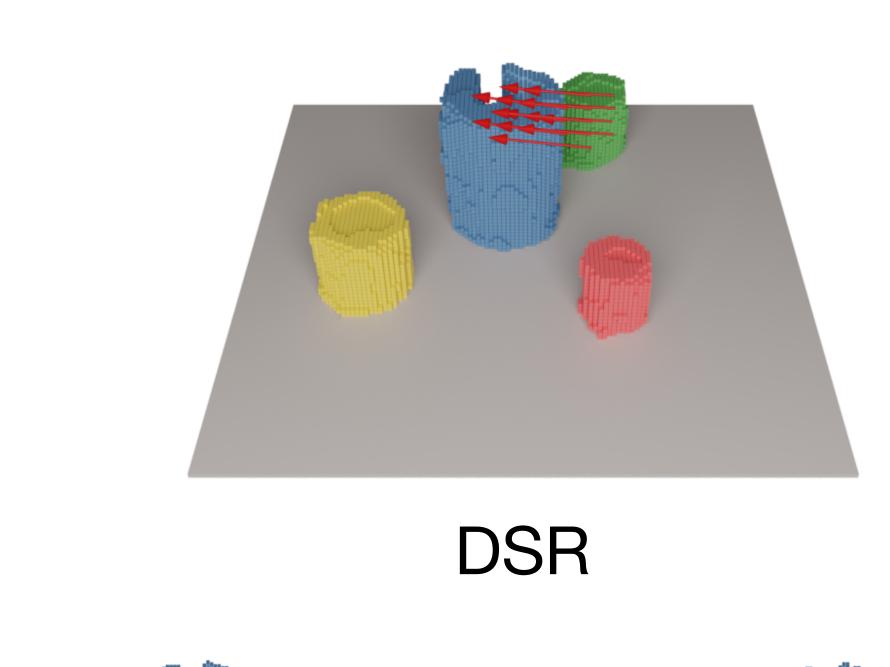


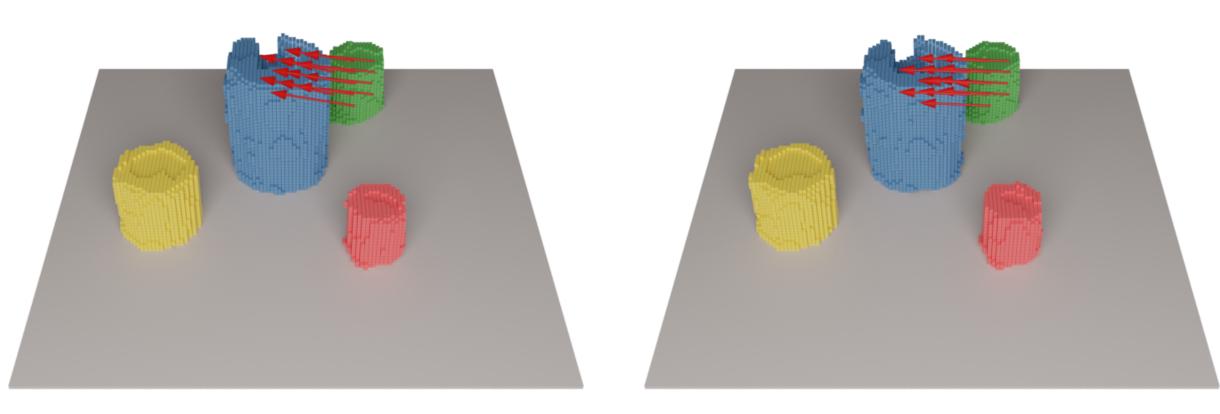
Step 1





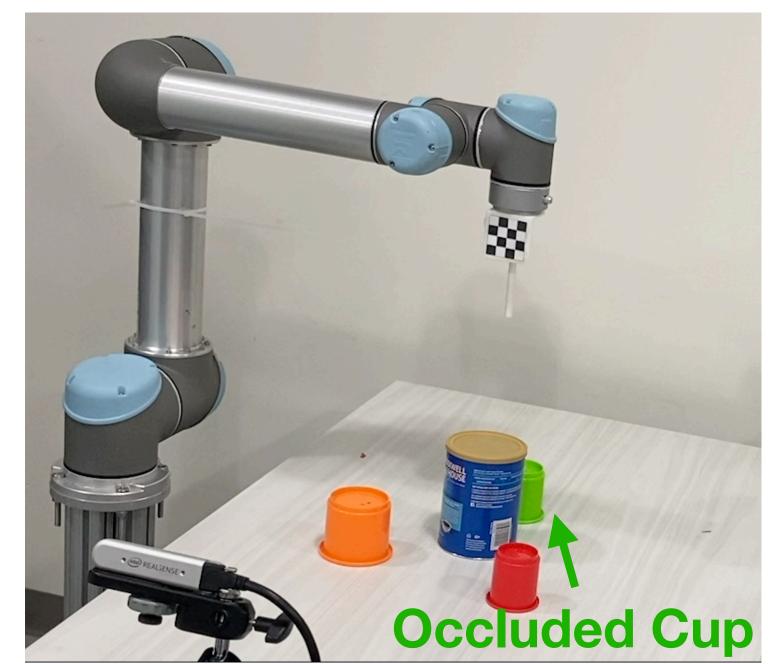
Step 1



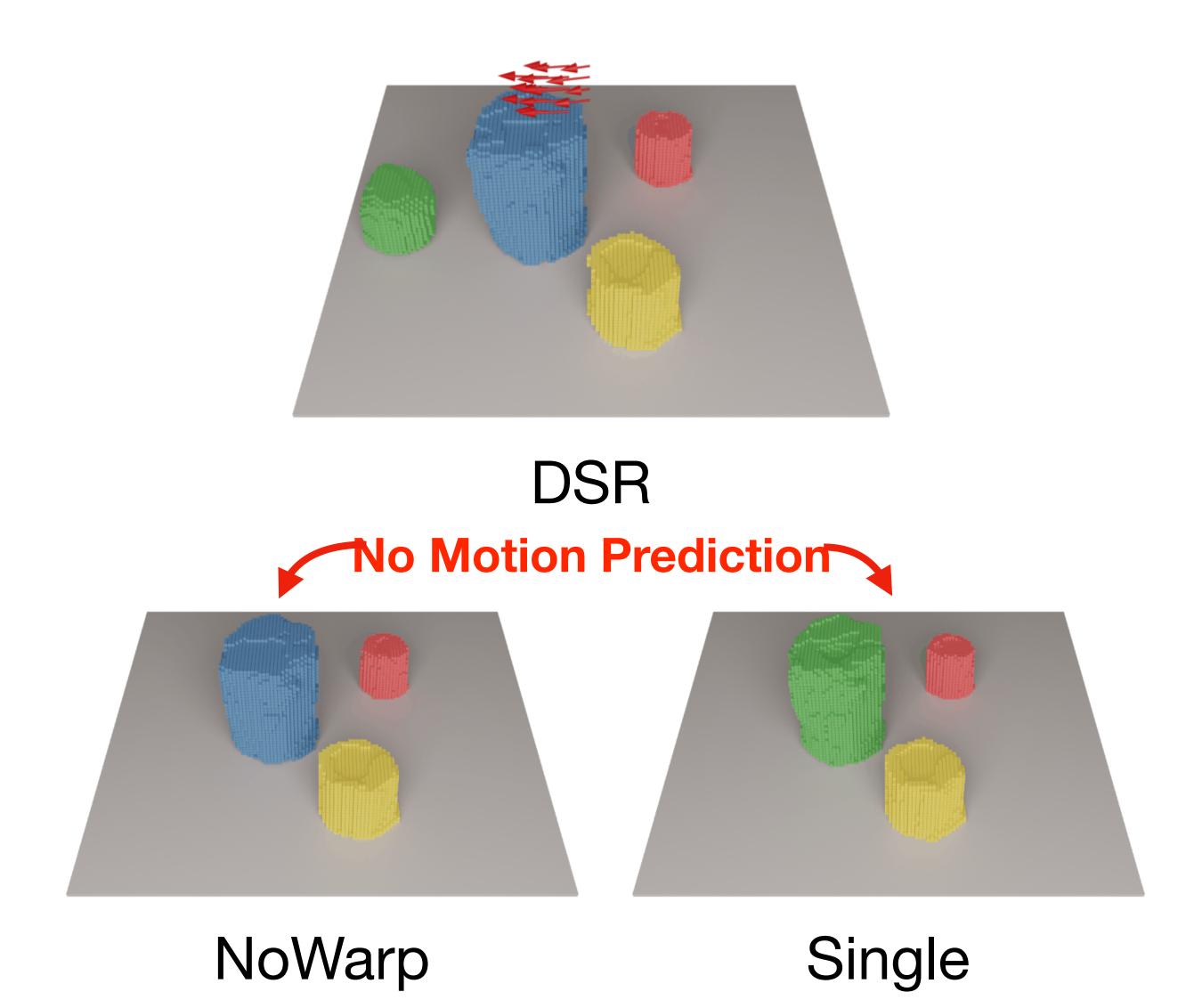


NoWarp Single

Step 2



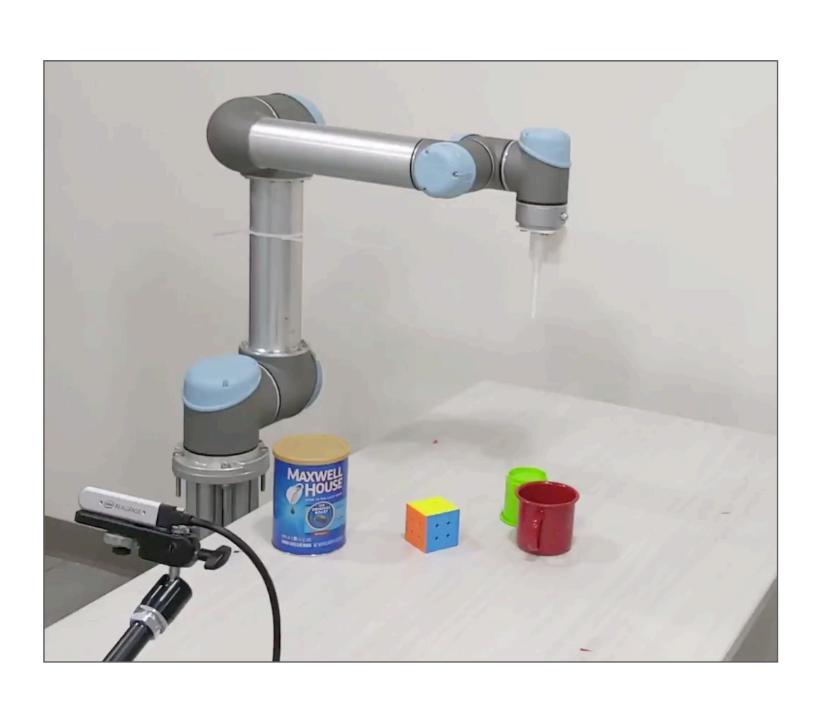
Camera View



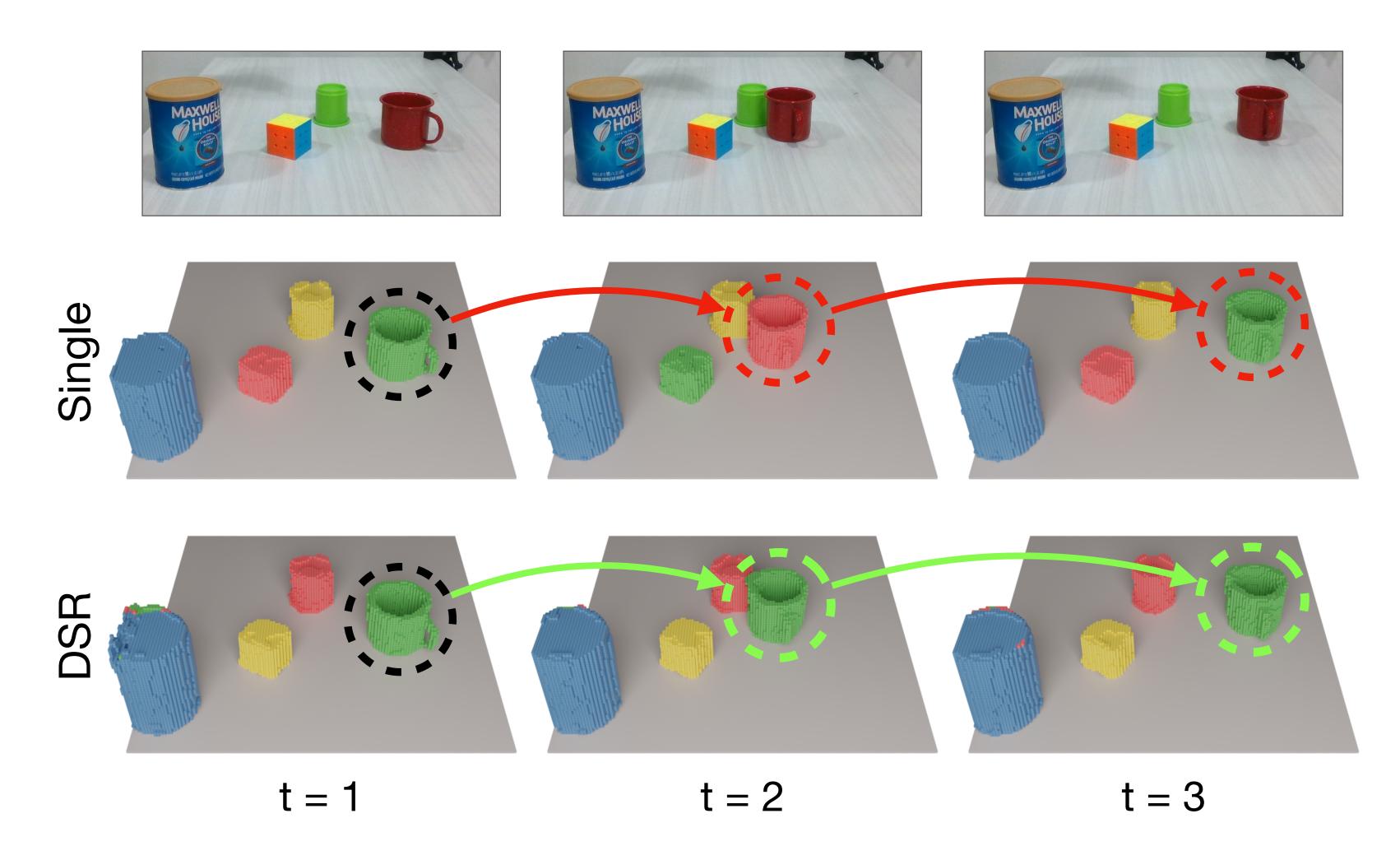
Object Continuity

Object Continuity: Representation can recognize individual object instance and track their identity over time.

Object Continuity Result

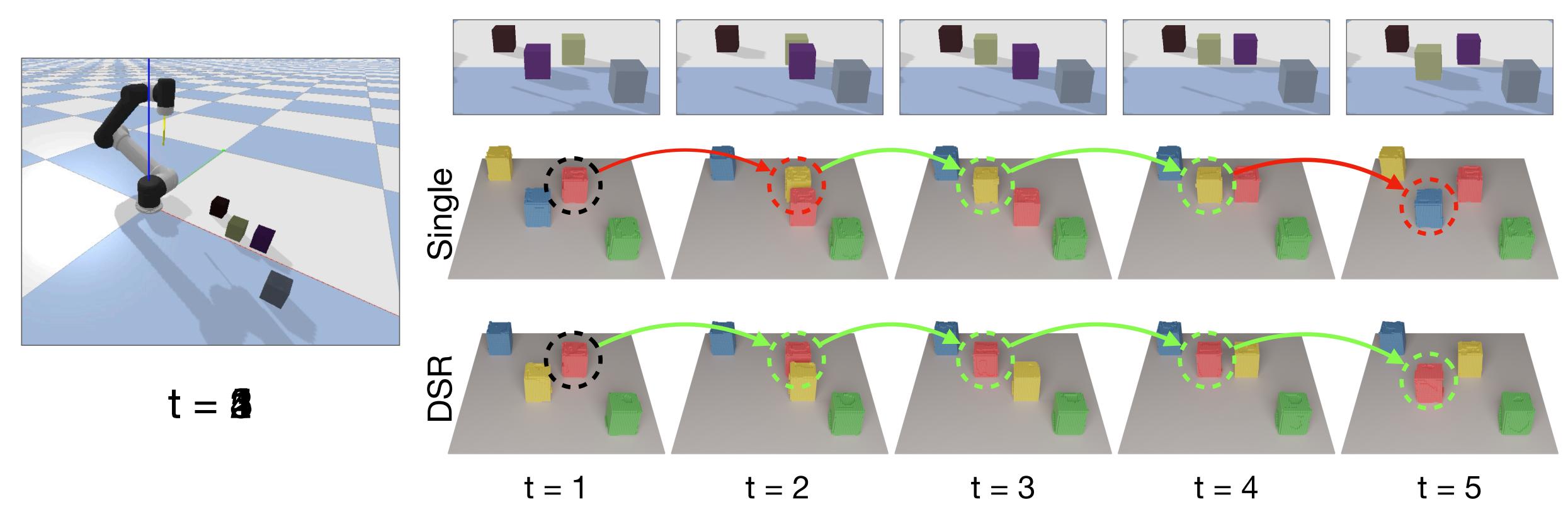


$$t = 3$$



Object Continuity Result

Objects are visually indistinguishable from depth input

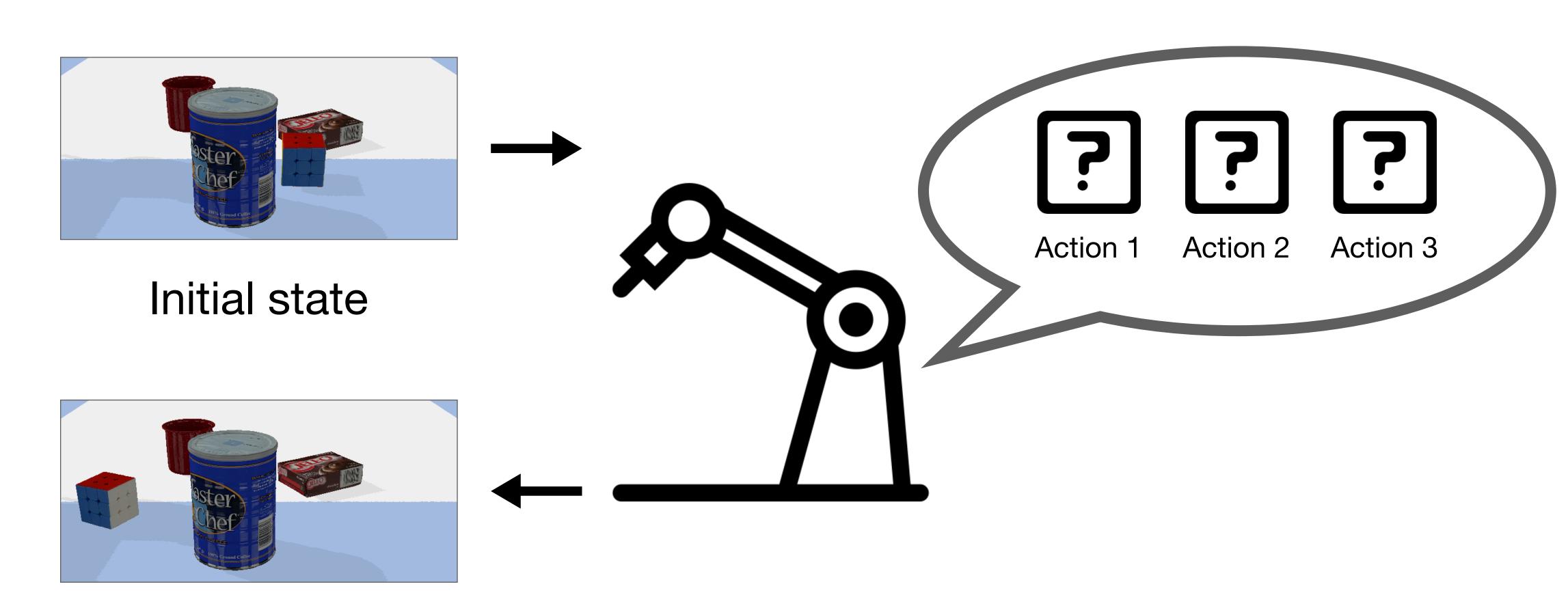


The continuity achieved by using history aggregation, instead of visual appearance.

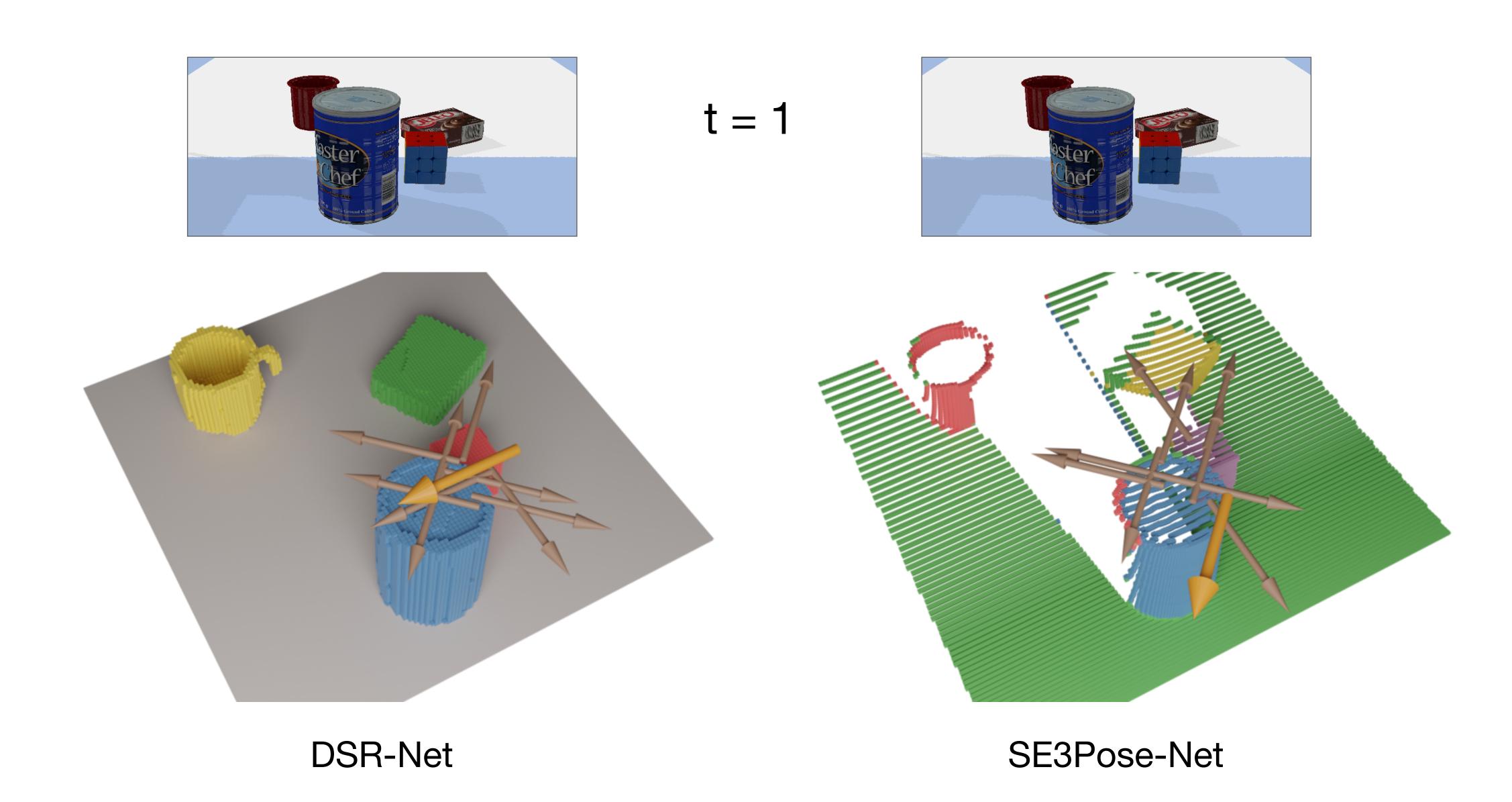
Evaluation

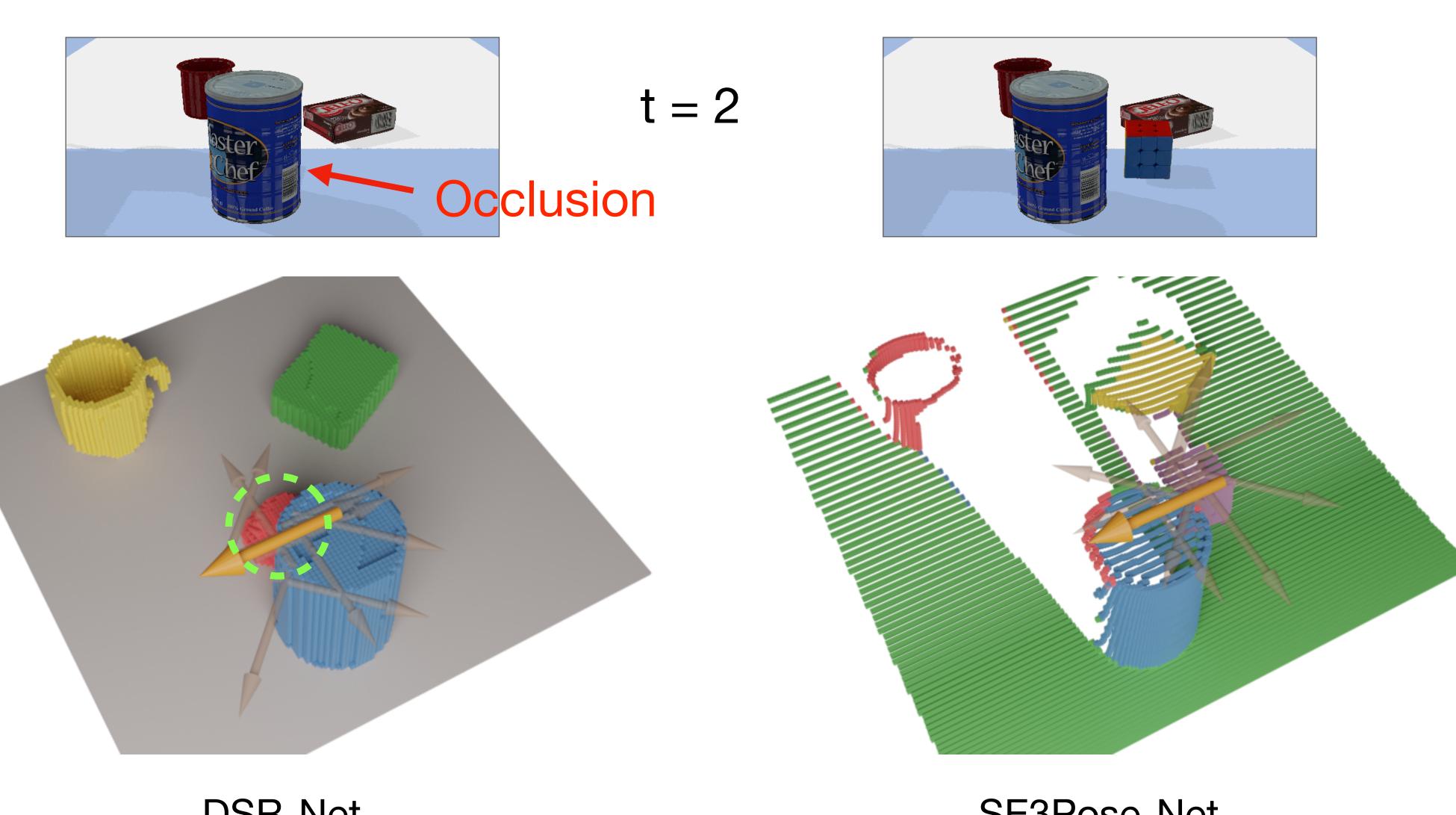
We want to see whether DSR-Net is able to

- 1. Accurately predict object motion under different robot interactions;
- 2. Aggregate the history and encodes object permanence and continuity;
- 3. Improve the performance of manipulation tasks.



Target state

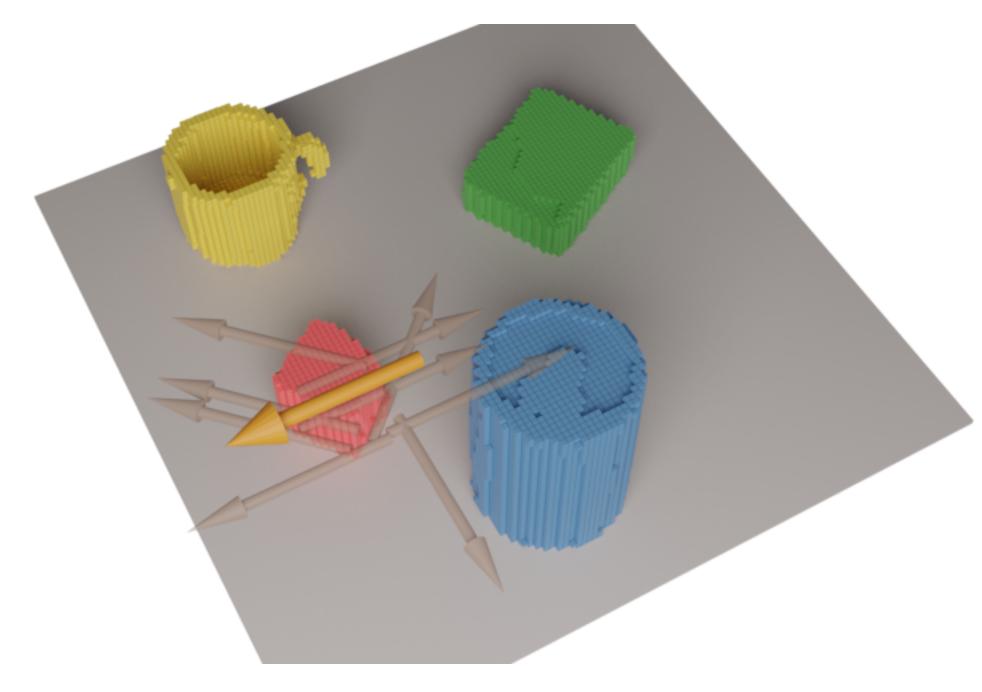




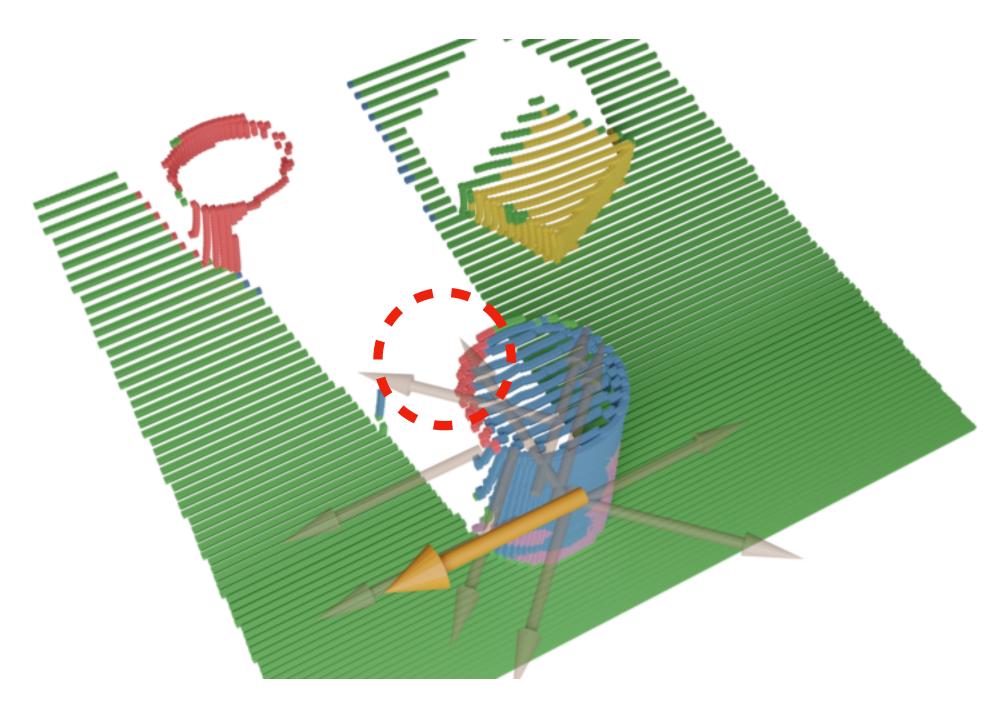
DSR-Net

SE3Pose-Net

t = 3

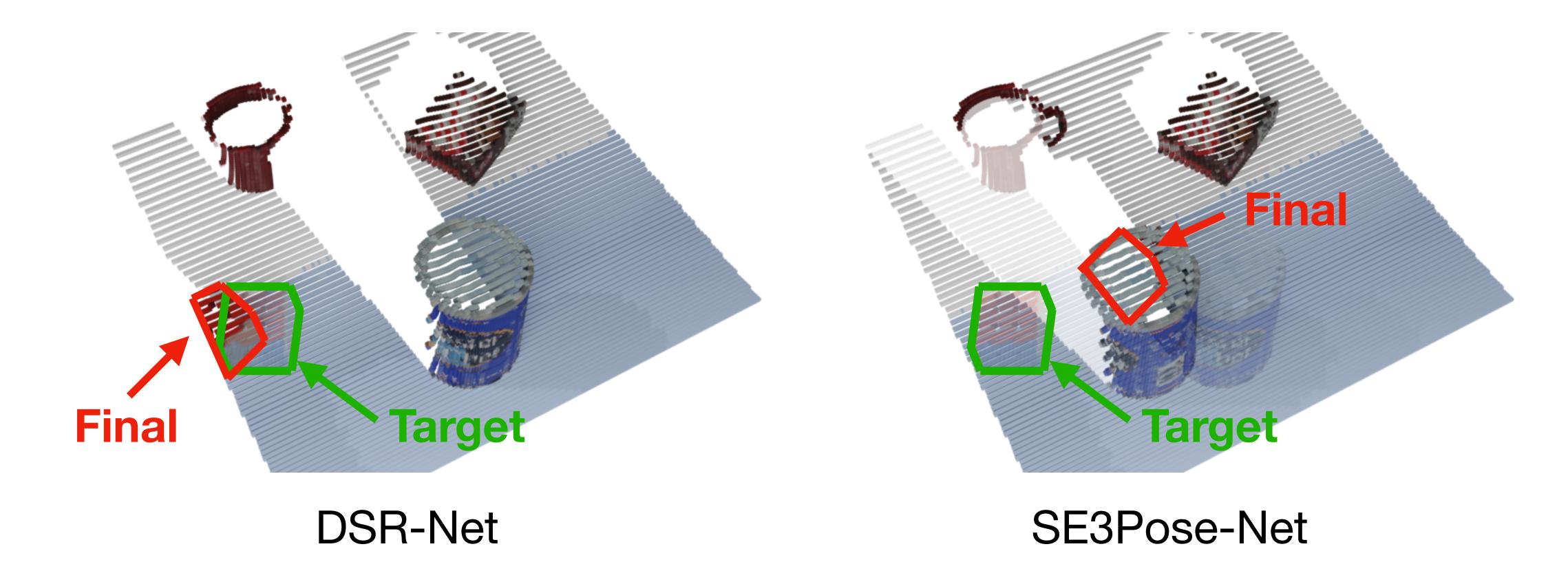


DSR-Net

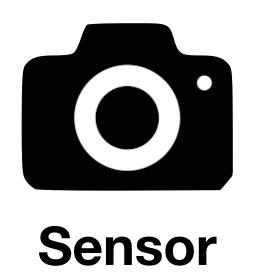


SE3Pose-Net

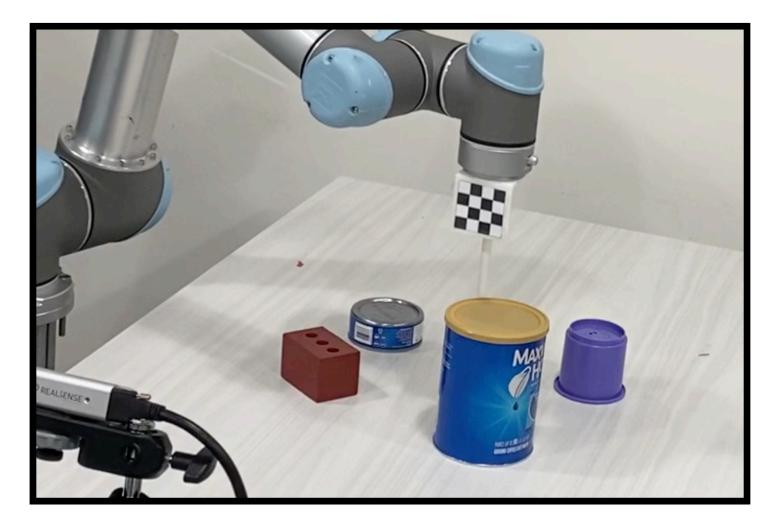
Final State Comparison



Active Scene Understanding







Code + Data https://dsr-net.cs.columbia.edu/

Dynamic Scene Representation:

Better 3D scene representation describes object instances, amodel 3D geometry, and their motion under interaction.

How about other object properties?

Mass? Friction? Other physical properties?

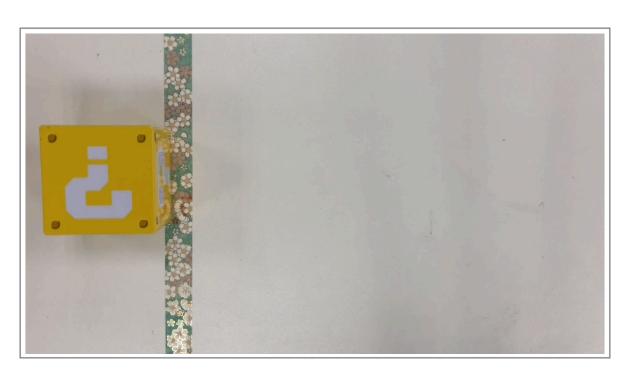
Why it is hard?

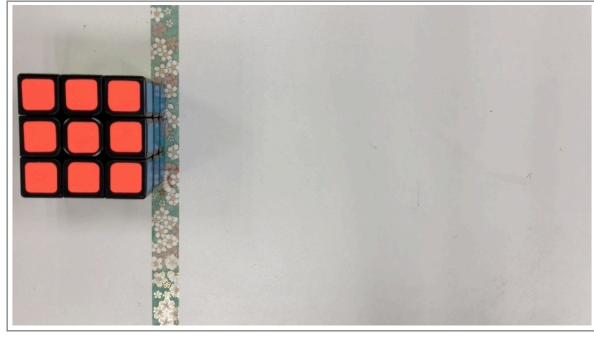
To learn physical properties though vision?

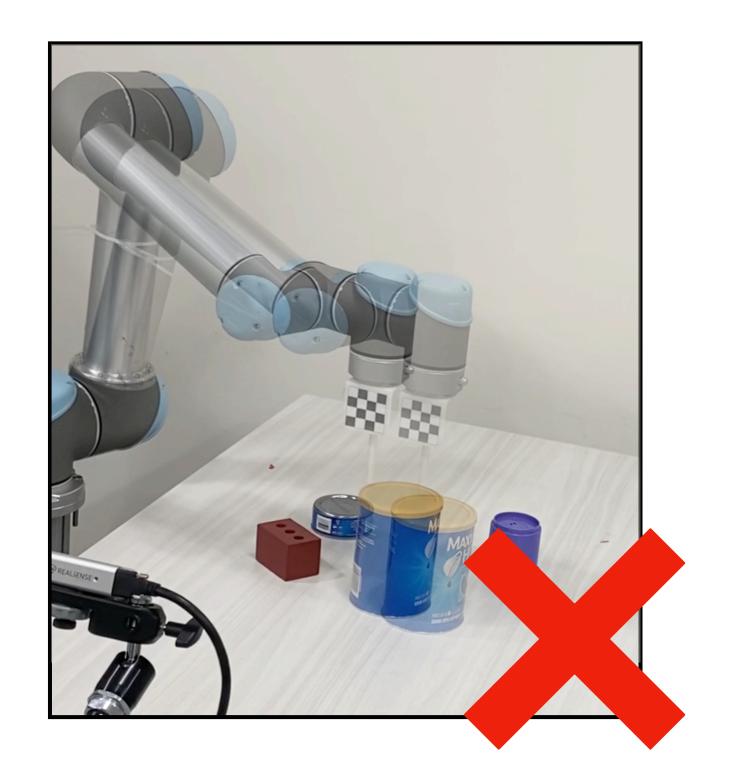
Cannot be inferred from appearance alone

Why it is hard?

To learn physical properties though vision?





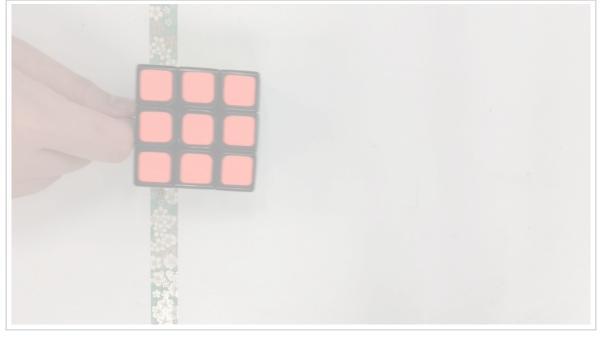


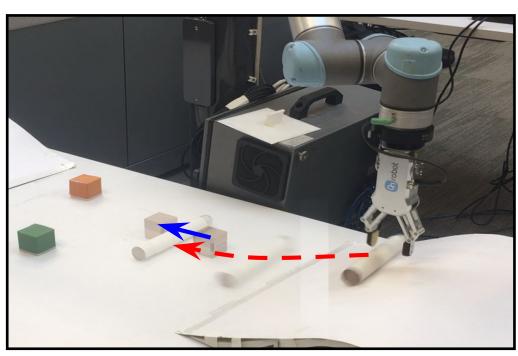
Cannot be inferred from appearance alone

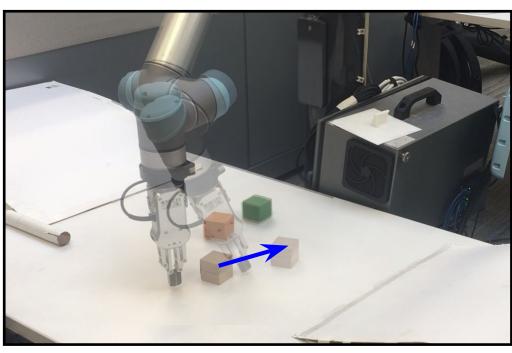
Not salient under quasi-static interactions

Interactions used in DSR (quasi-static pushing) is not enough

Why it is hard?



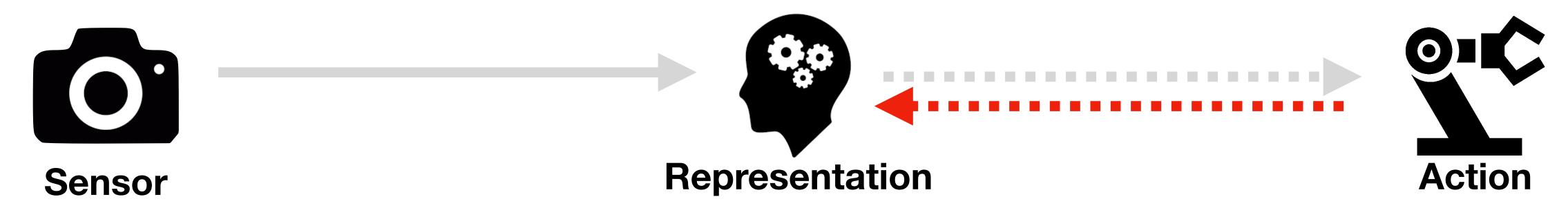


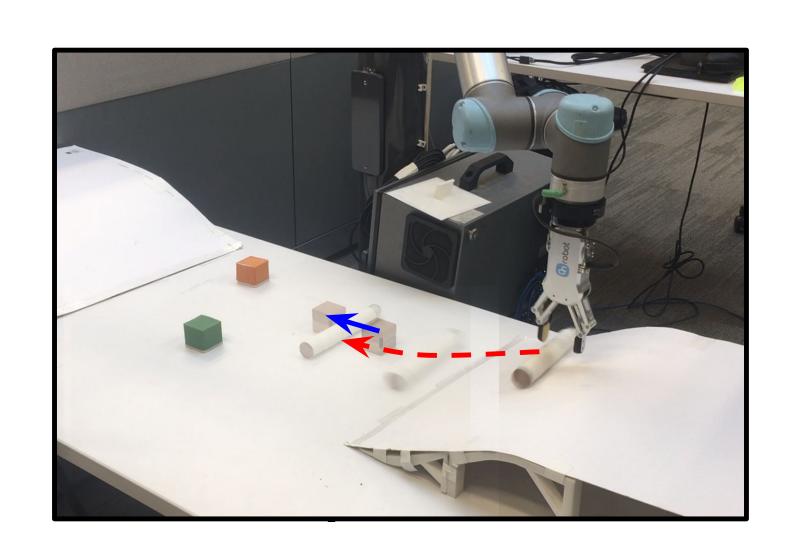


Cannot be inferred from appearance alone

Not salient under quasistatic interactions Need multiple interactions to decouple the properties

Active Scene Understanding

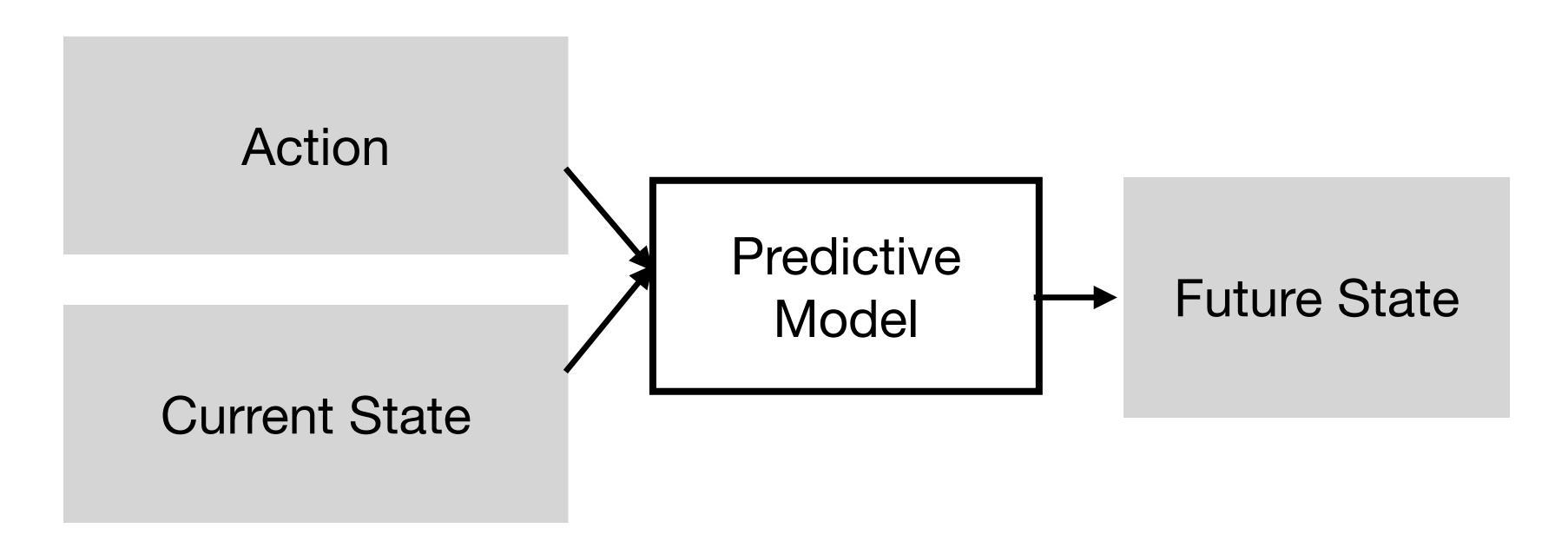




DensePhysNet: Learning Dense Physical Object Representations via Multi-step Dynamic Interactions (RSS2019)

Zhenjia Xu, Jiajun Wu, Andy Zeng, Joshua B. Tenenbaum, Shuran Song

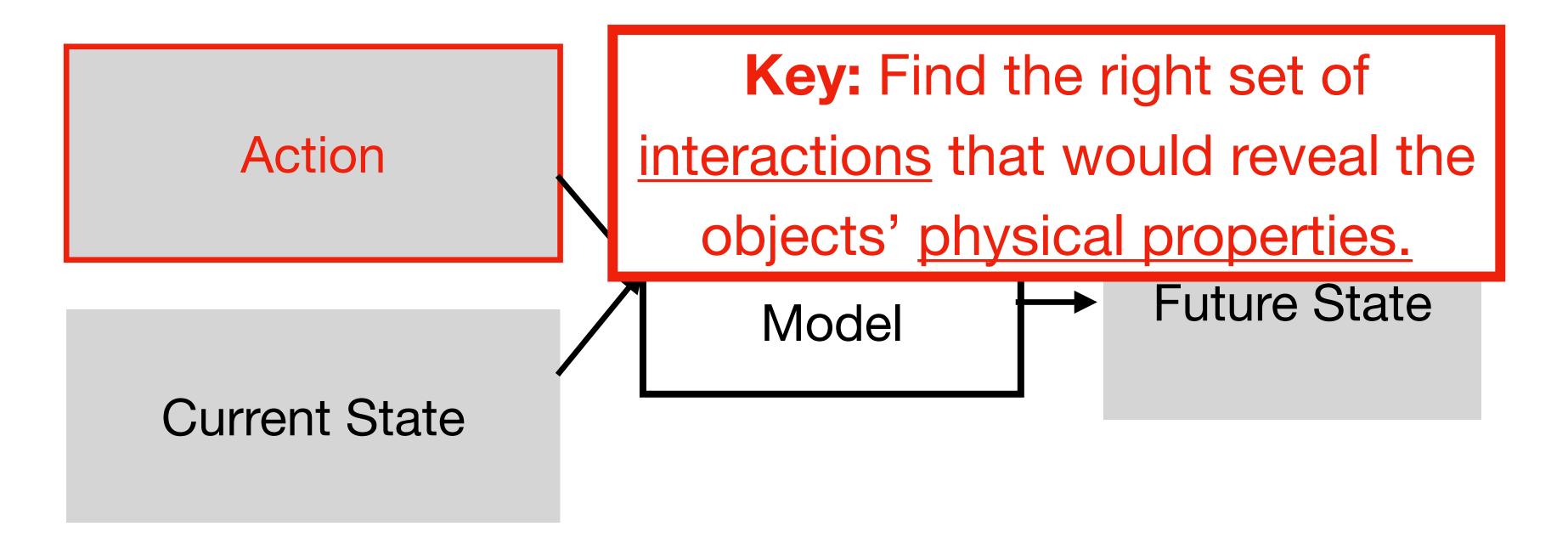
DensePhysNet



Hypothesis:

To accurately predict the future states, the system will need to acquire an implicit understanding of objects' physical properties and how they influence objects' motion.

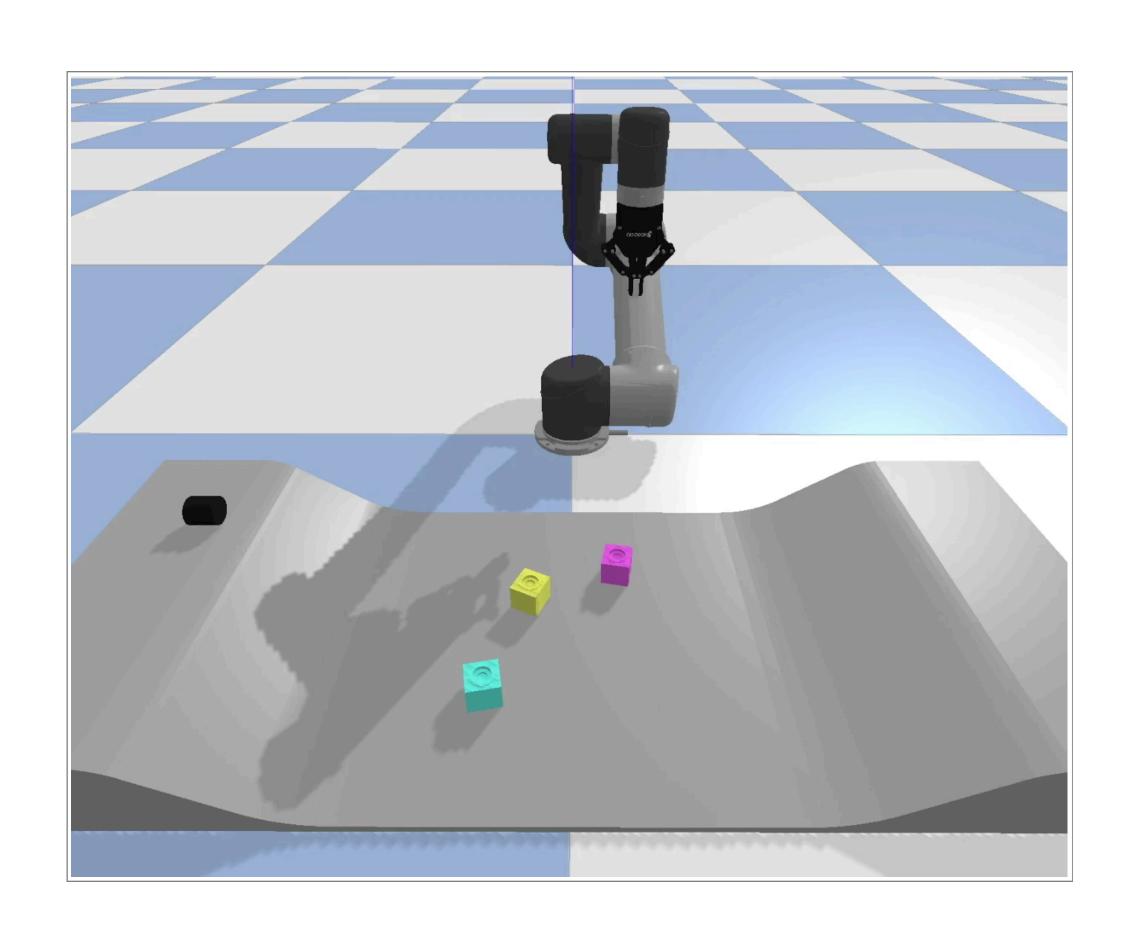
DensePhysNet

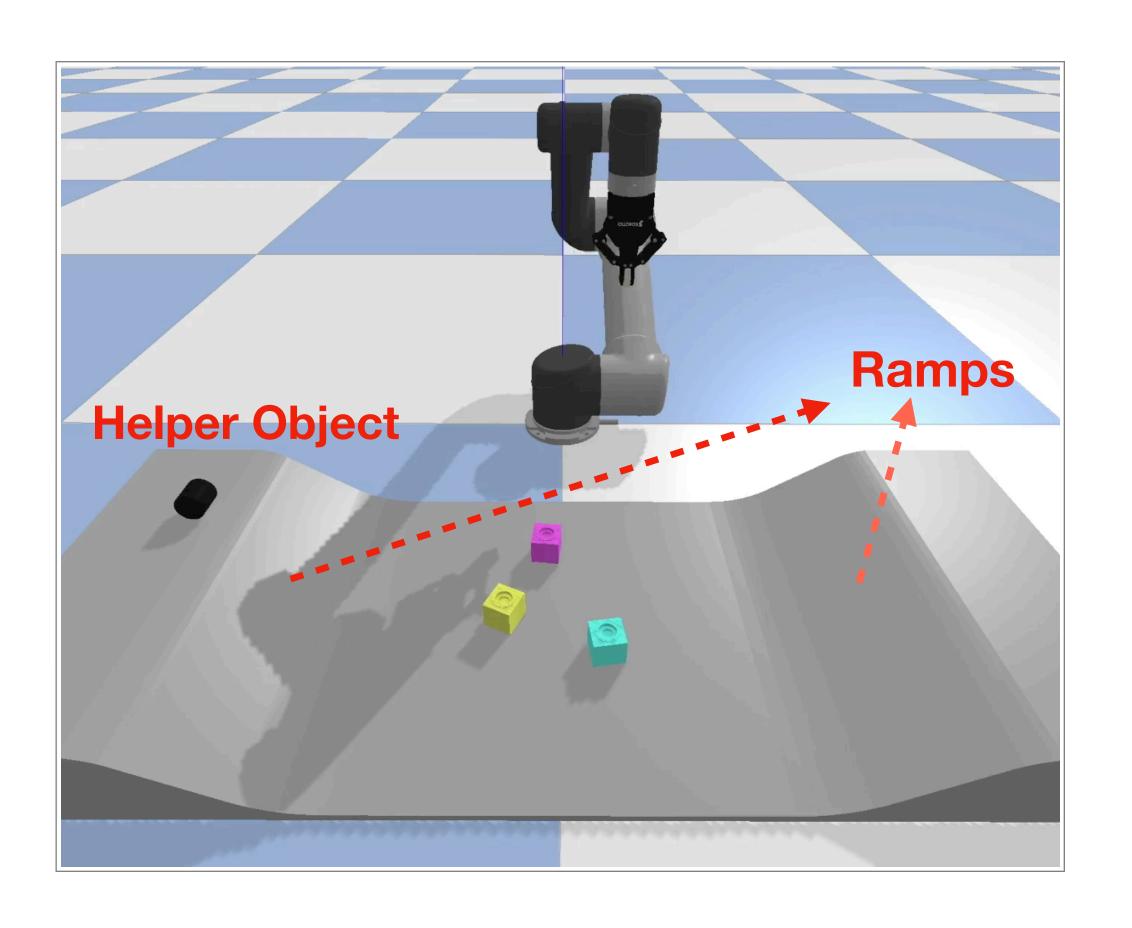


Hypothesis:

To accurately predict the future states, the system will need to acquire an implicit understanding of objects' <u>physical properties</u> and how they influence objects' motion.

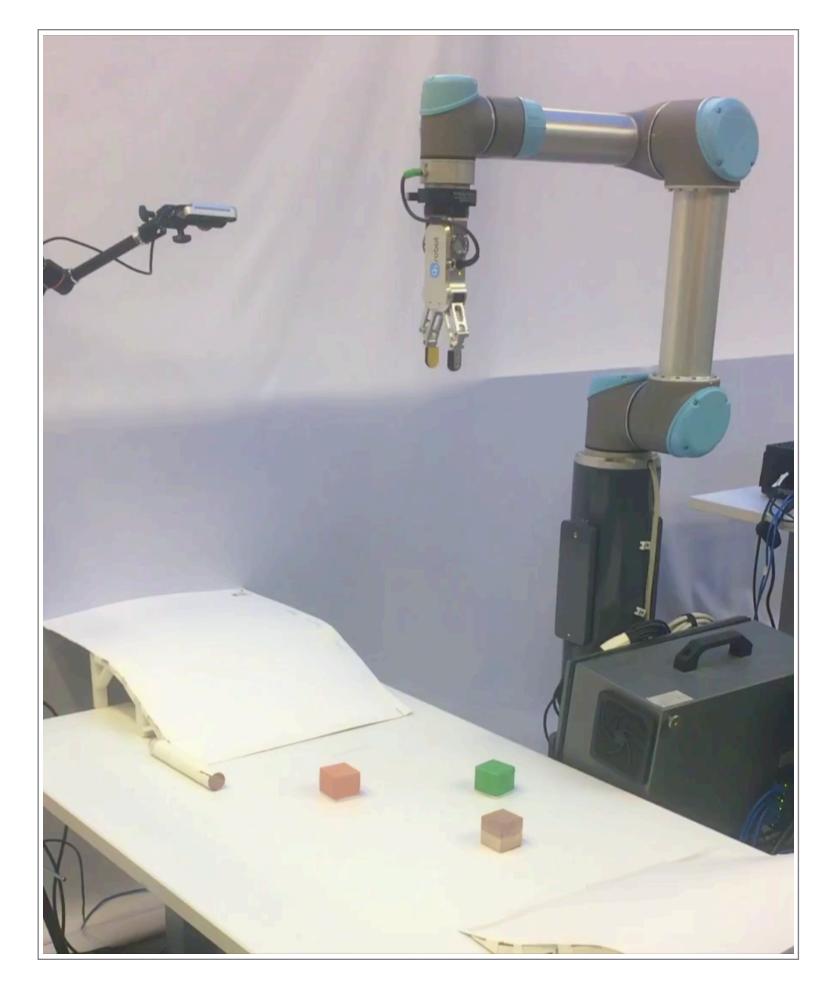
Dynamic Interactions

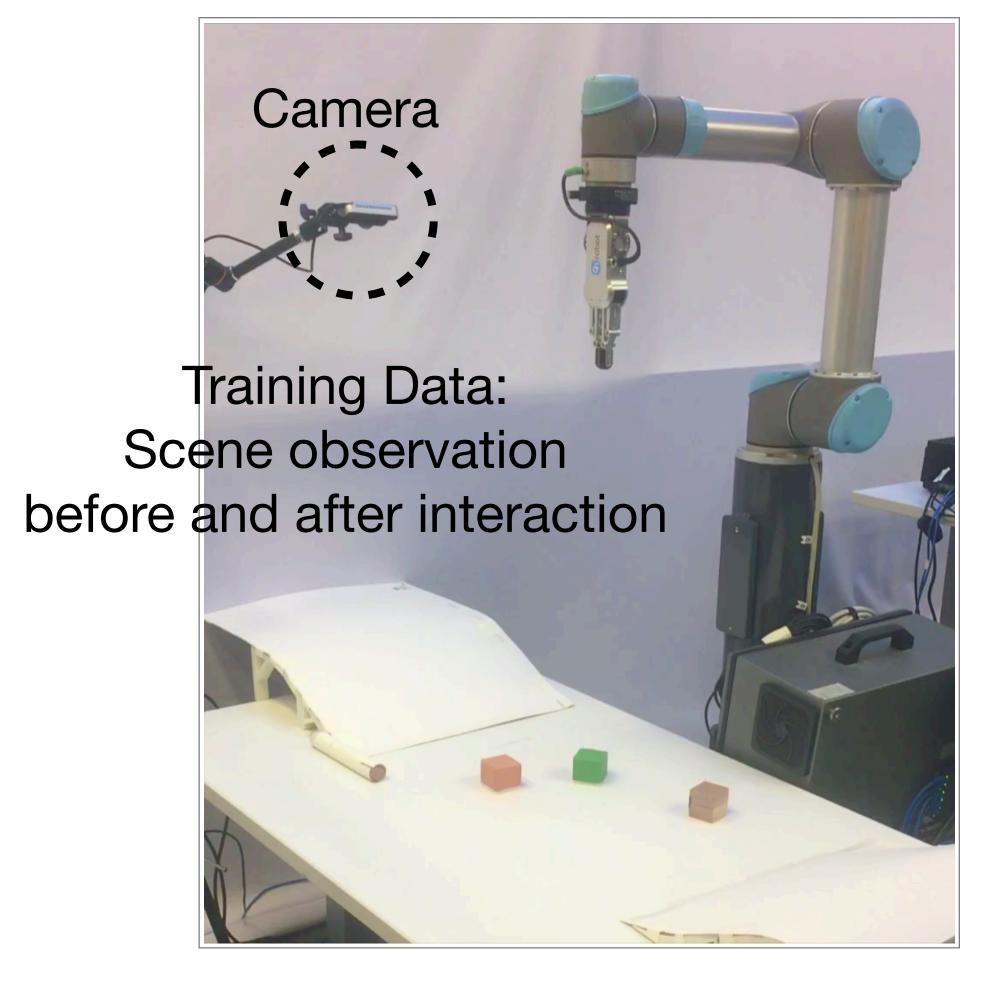




Sliding Collision

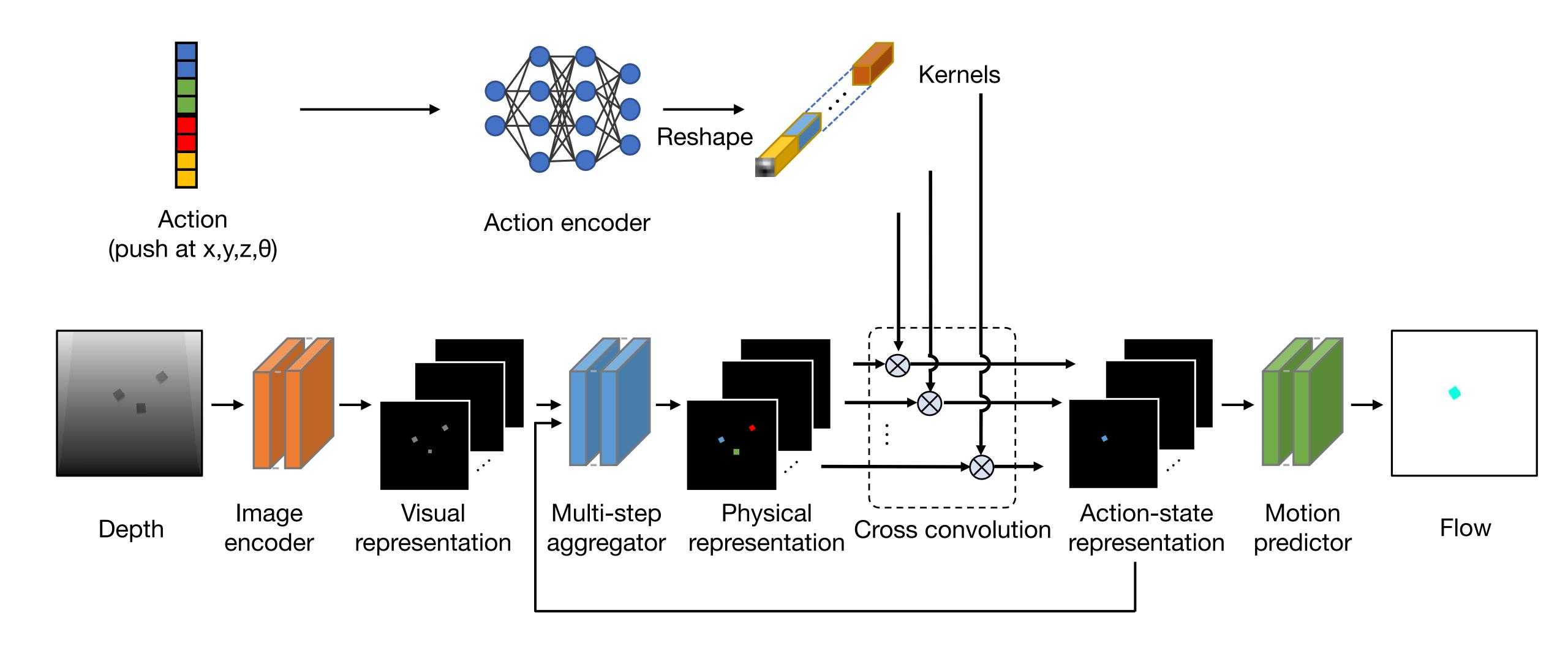
Dynamic Interactions



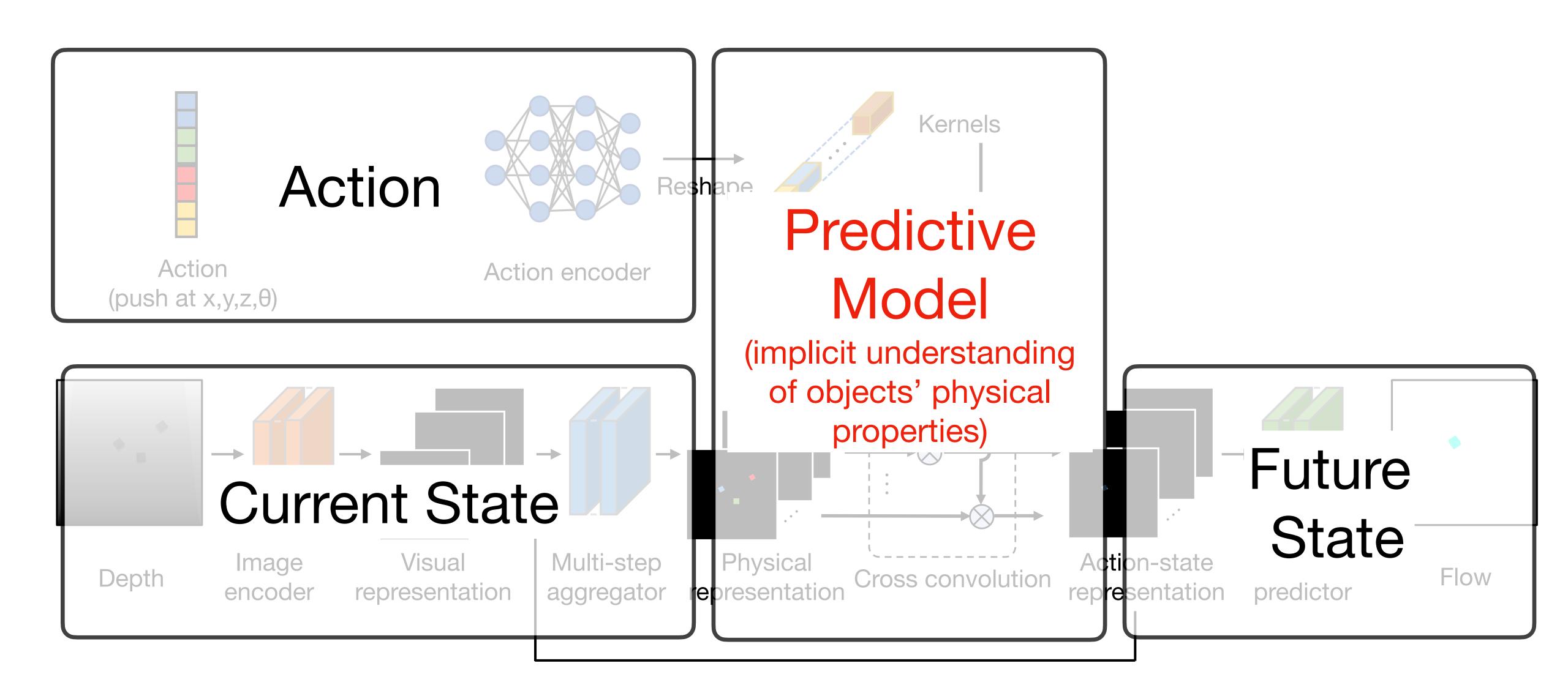


Sliding Collision

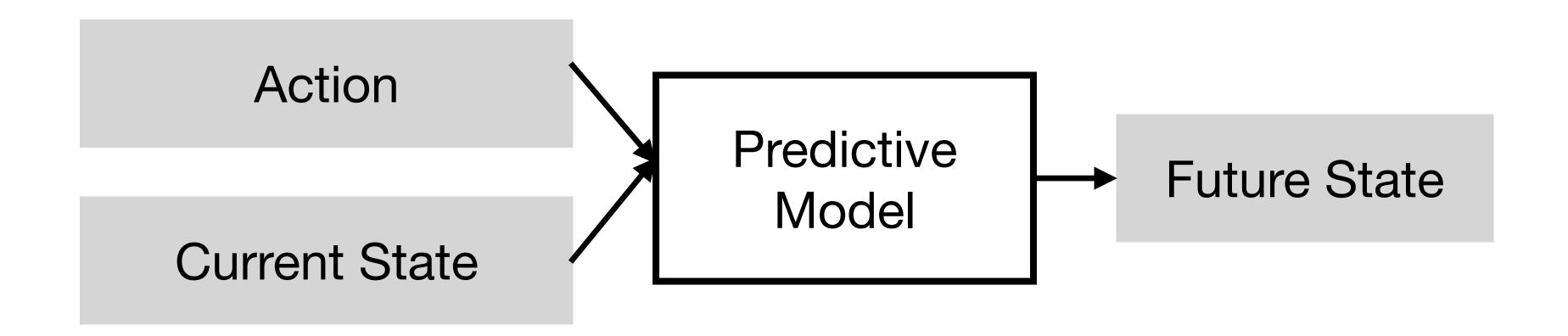
DensePhysNet



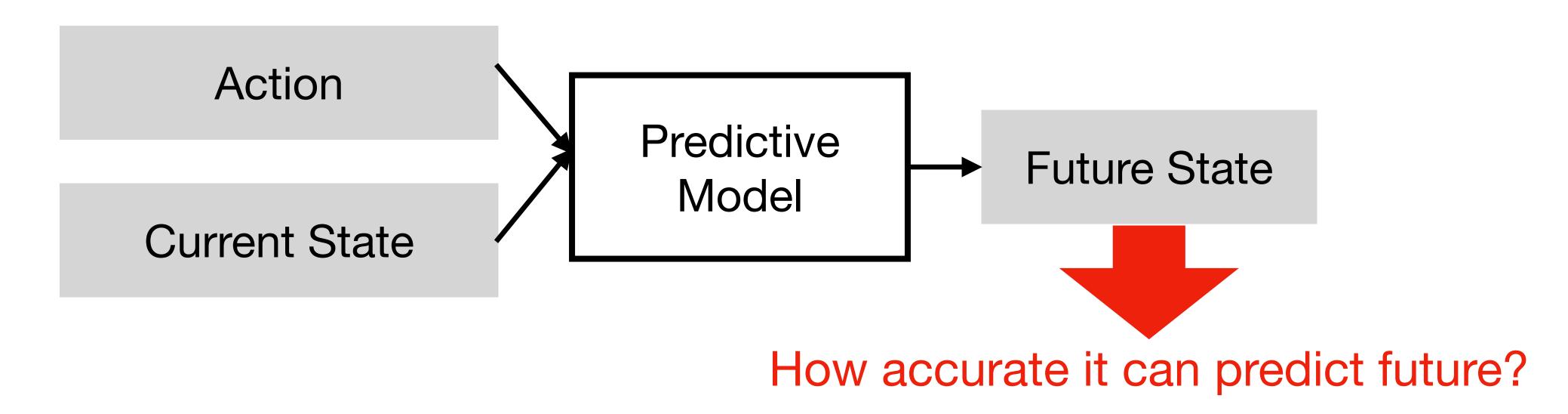
DensePhysNet



How to Evaluation DensePhysNet?

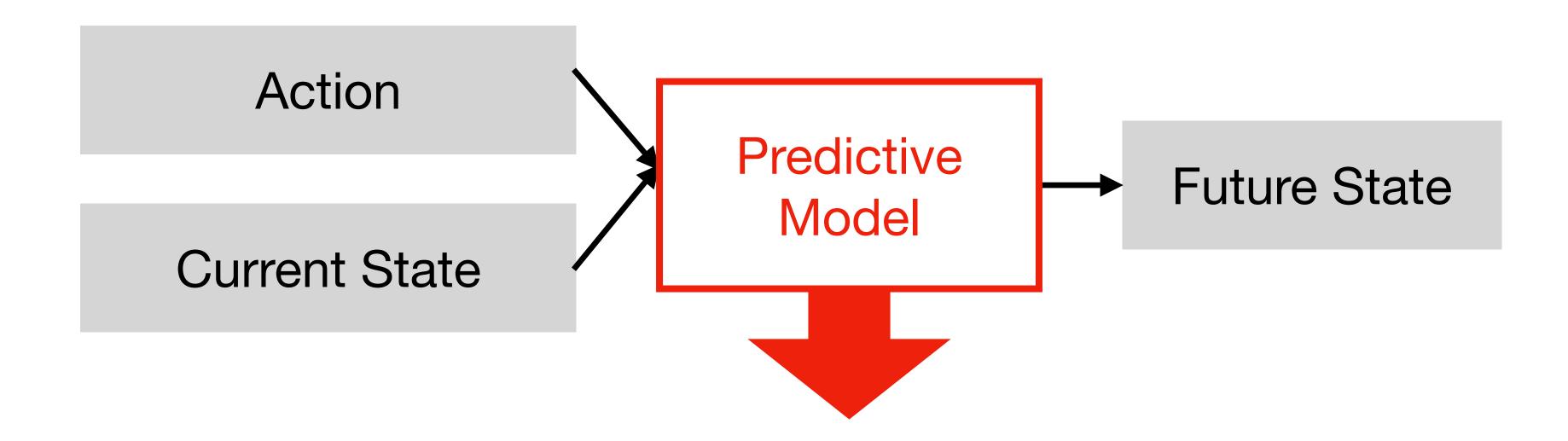


How to Evaluation DensePhysNet?



Although DensePhysNet is is trained as a predictive model, its predictive power is not the only thing we care about.

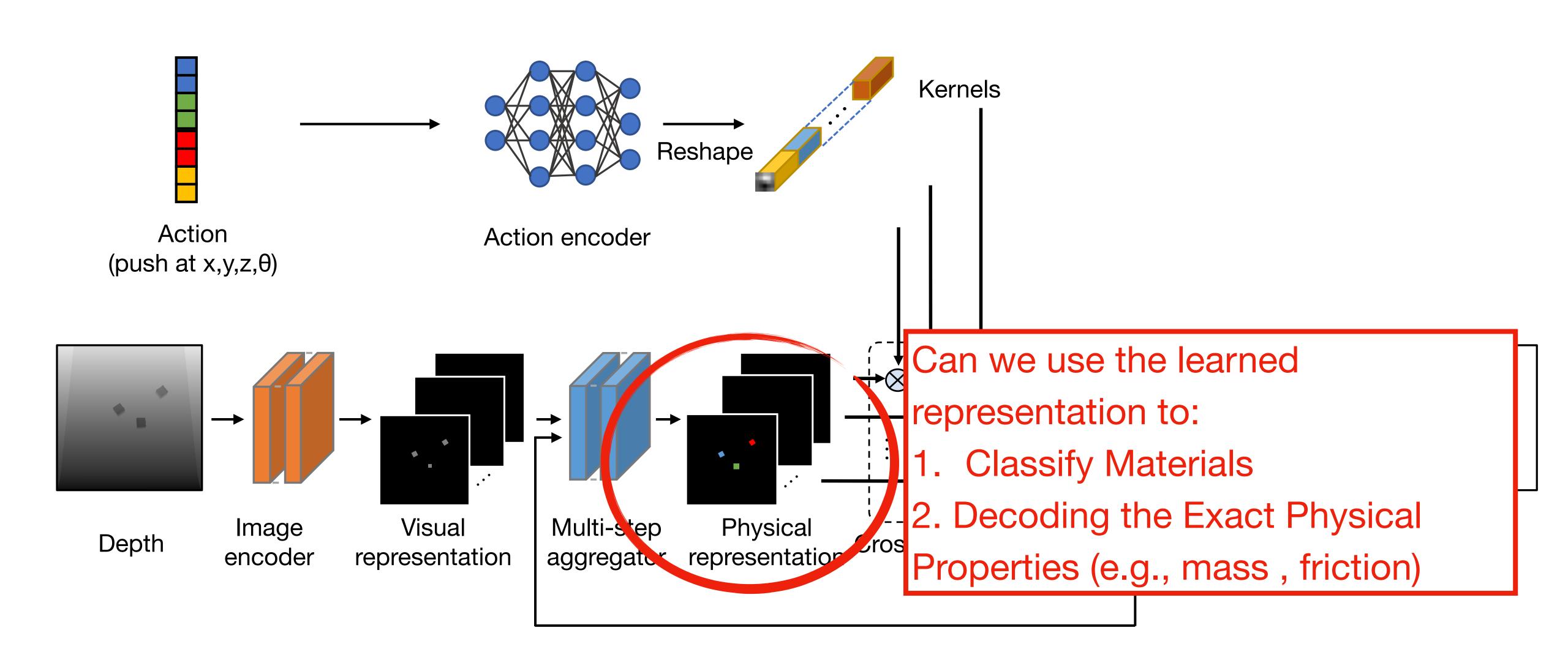
How to Evaluation DensePhysNet?



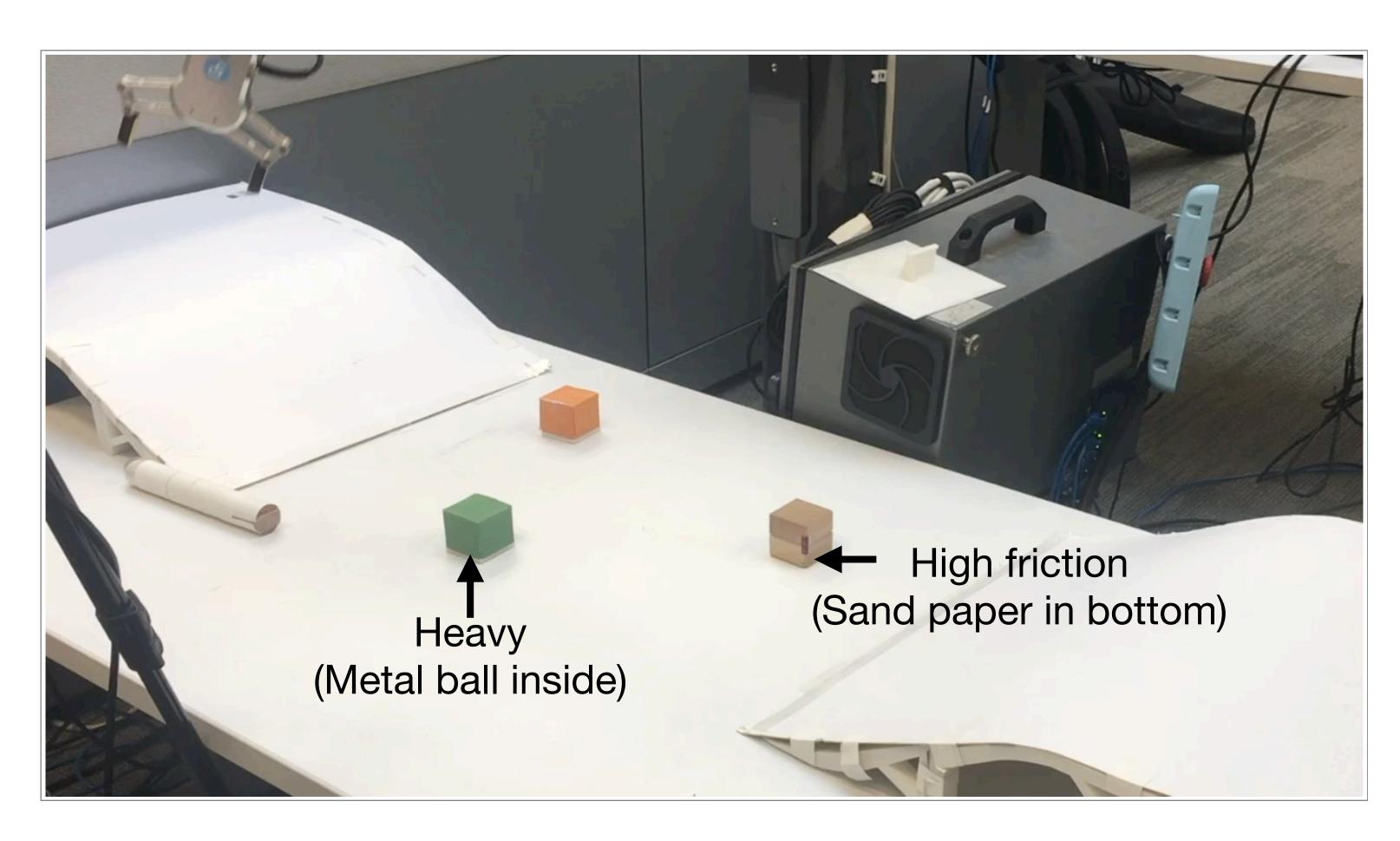
Although DensePhysNet is is trained as a predictive model, its predictive power is not the only thing we care about.

What we really care is whether the representation learns objects' physical properties.

Predictive Model



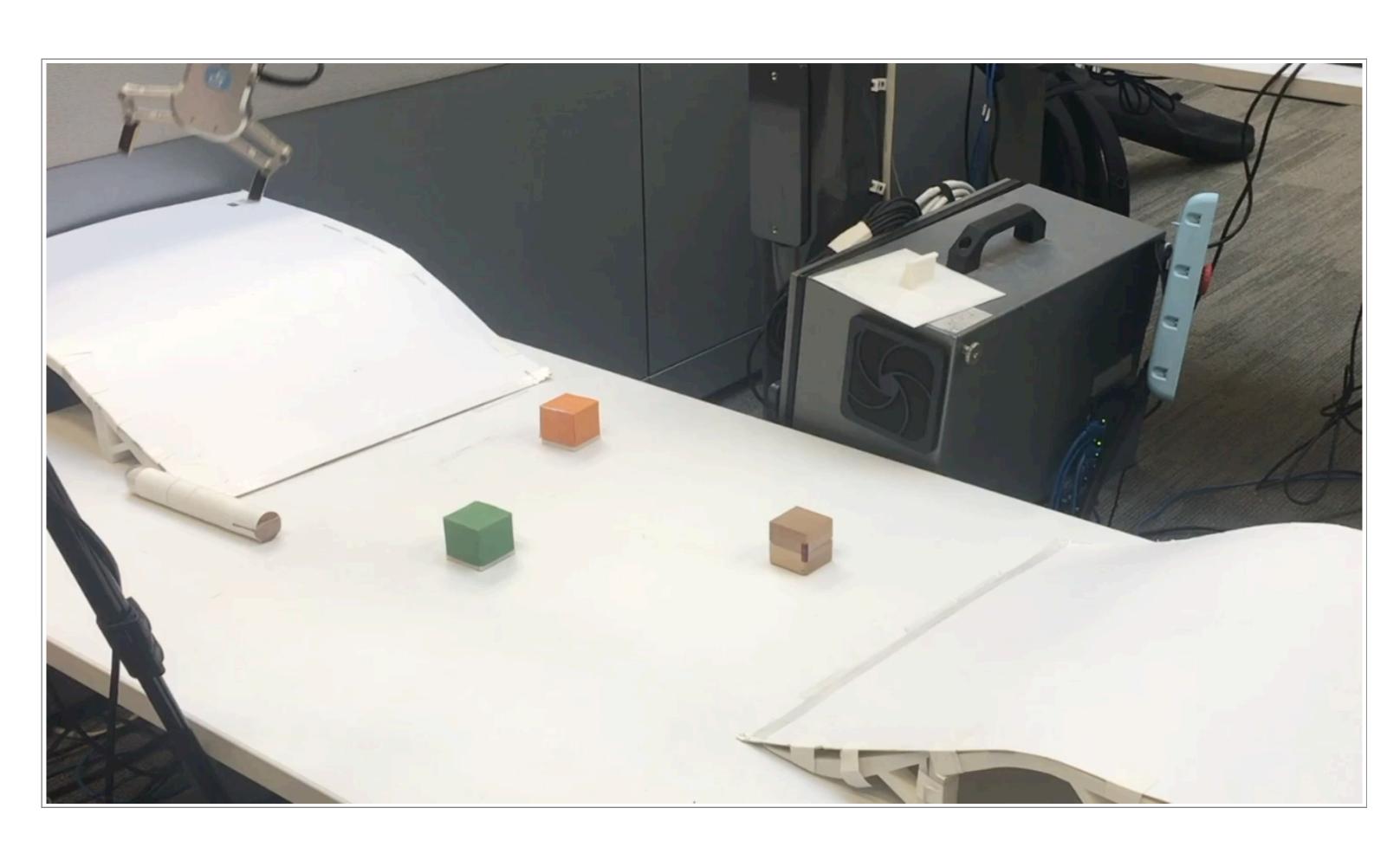
Material classification



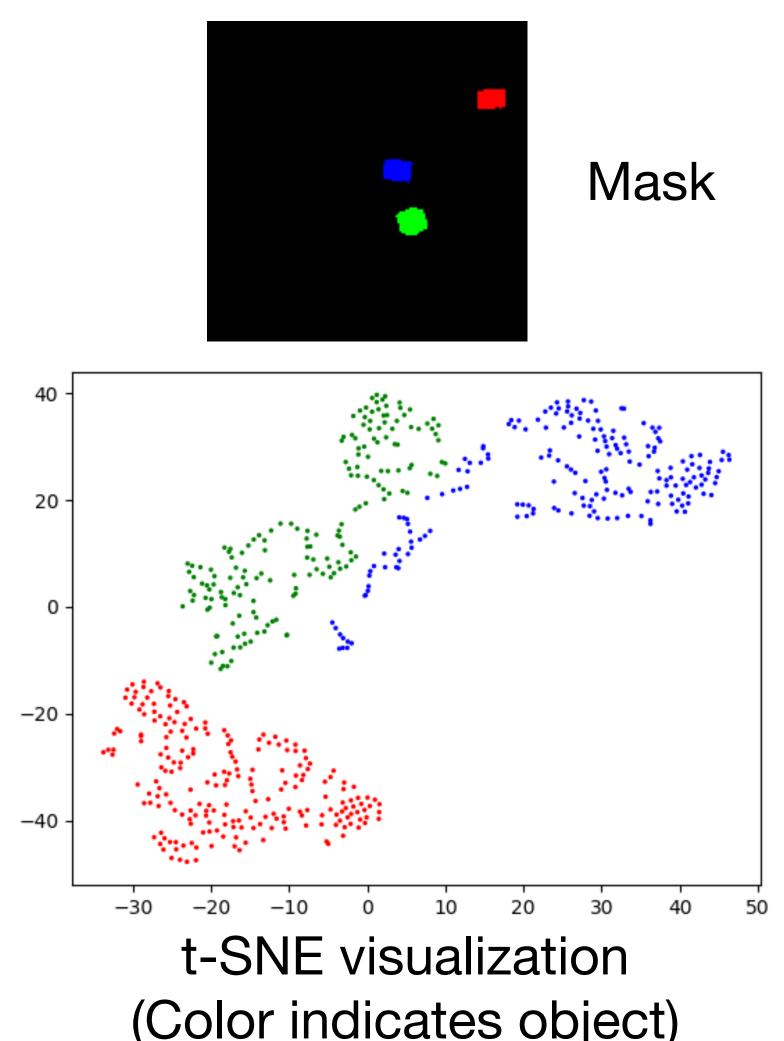
Since the system only use depth these three block are visually indistinguishable.

Real-time video (system use depth only)

Material classification

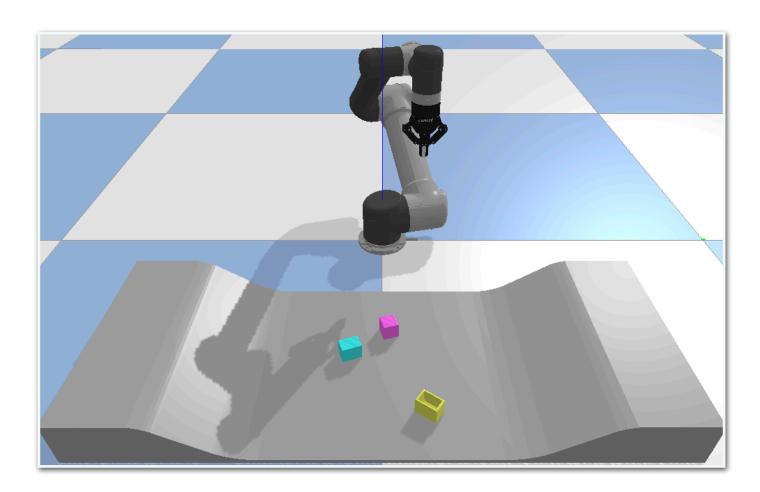


Real-time video (system use depth only)

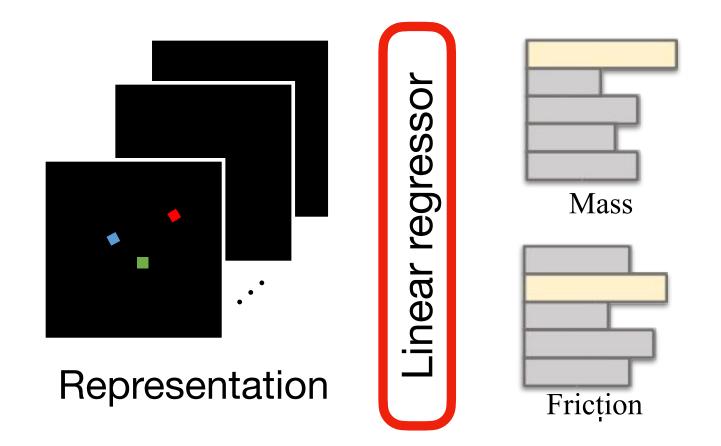


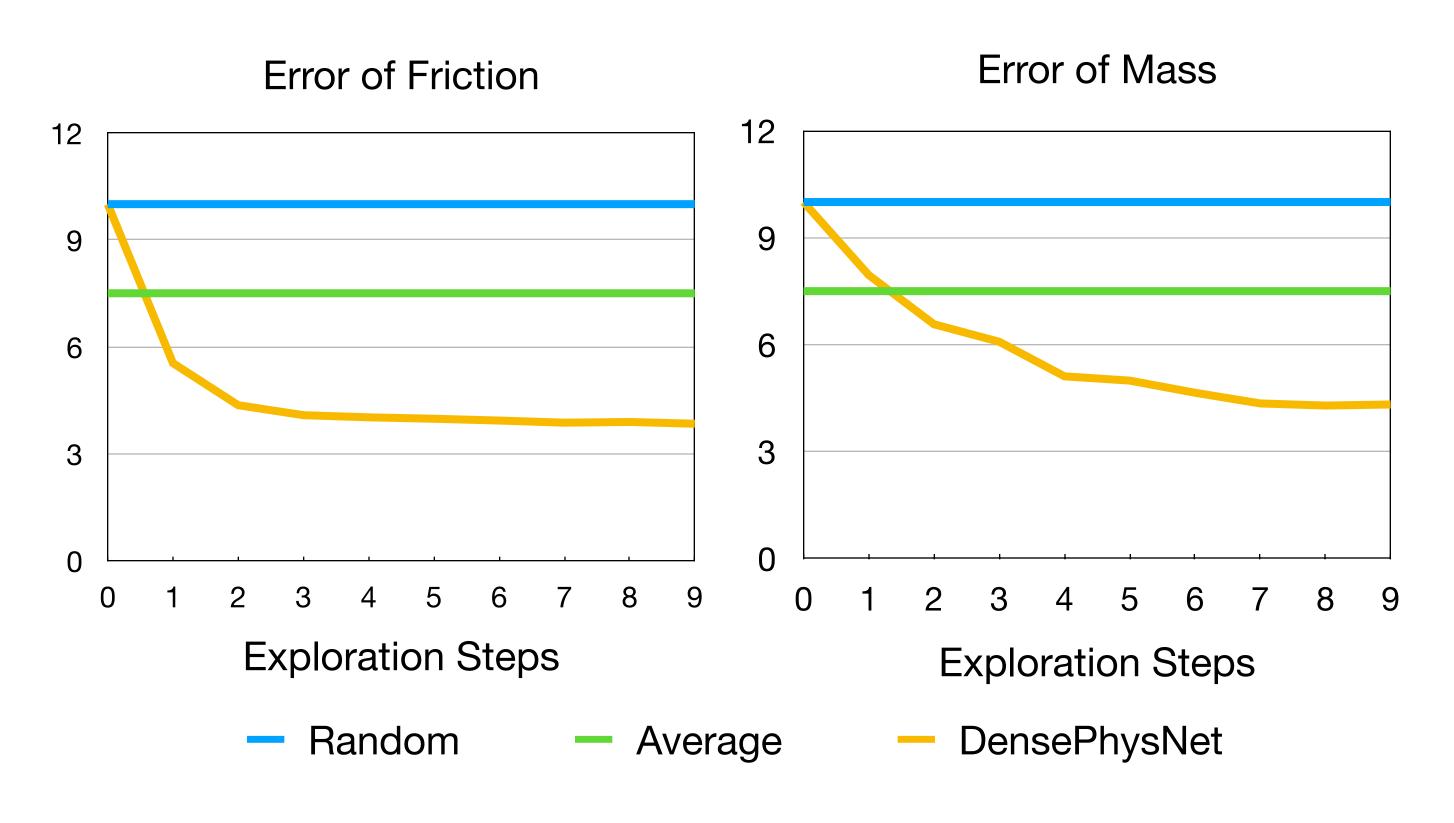
(Color indicates object)

Decoding Physical Properties



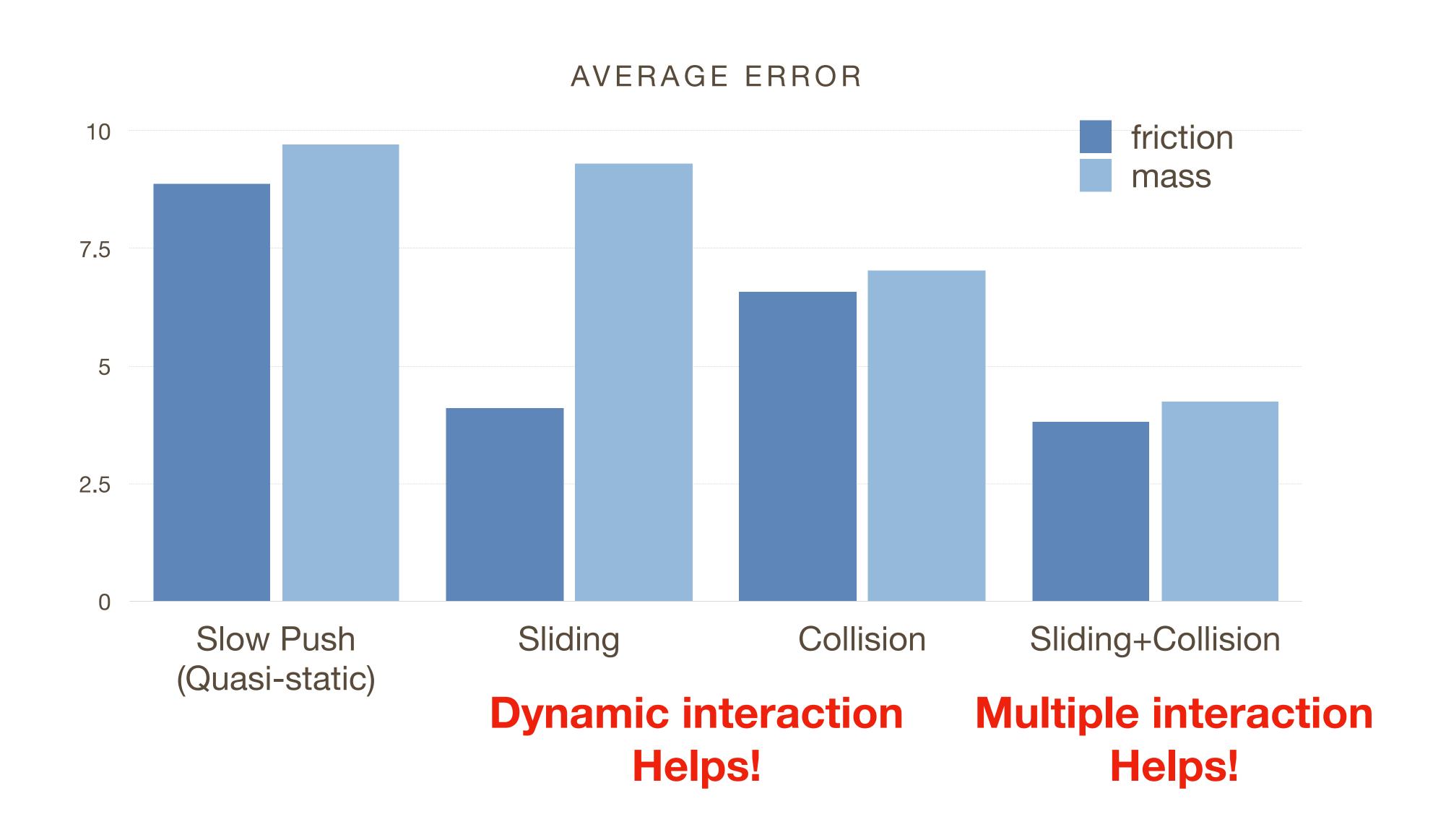
Test in Simulation





More interaction Helps!

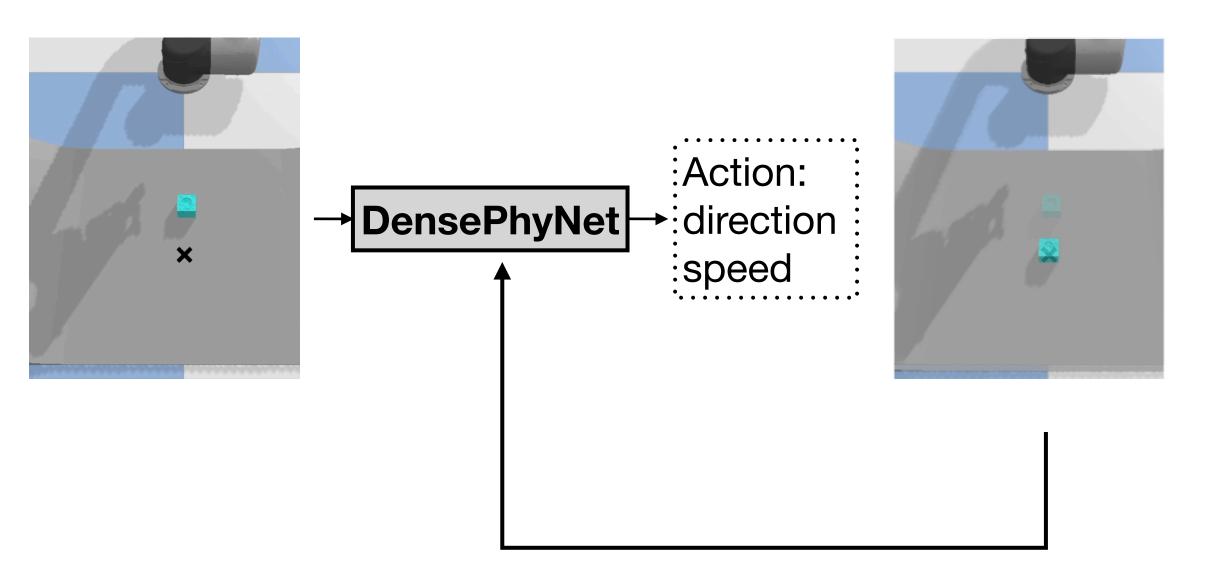
How about Interaction Types



Application in Manipulation

Application in Manipulation

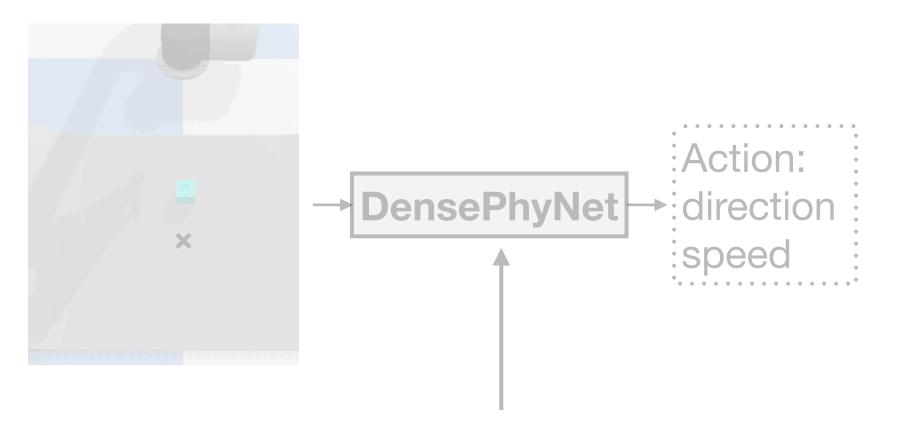
Learned <u>predictive model</u> for **known** manipulation tasks



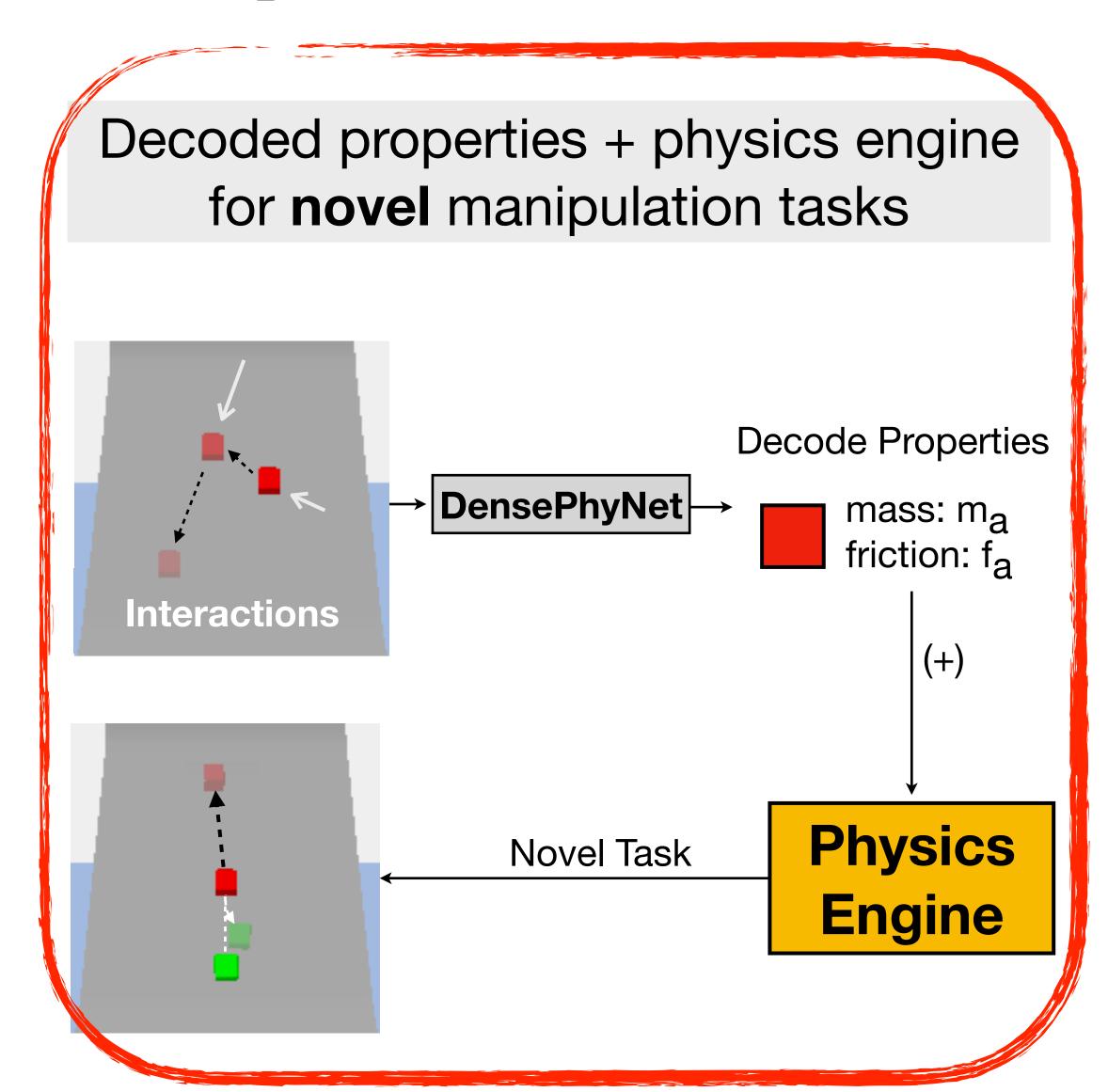
Updating the physical representation

Application in Manipulation

Learned predictive model for known manipulation tasks



DSR-Net cannot do this, since it cannot explicitly decode object physical property



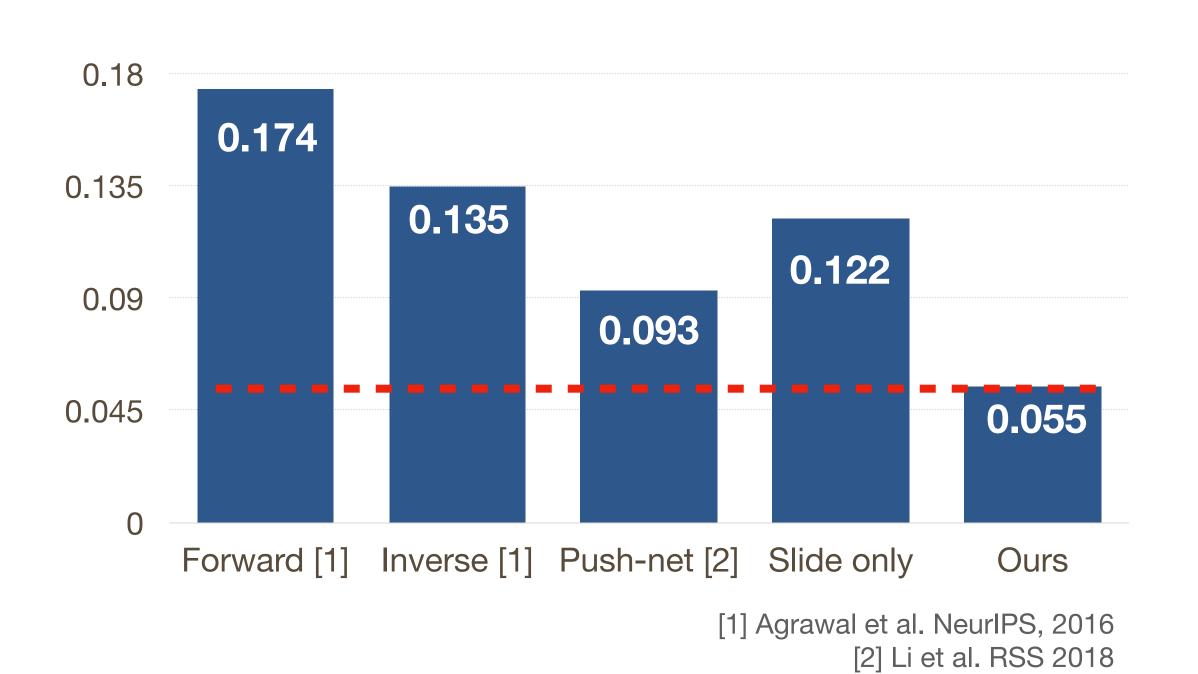
Application in Manipulation

Learned predictive model for known manipulation tasks

Decoded properties + physics engine for **novel** manipulation tasks

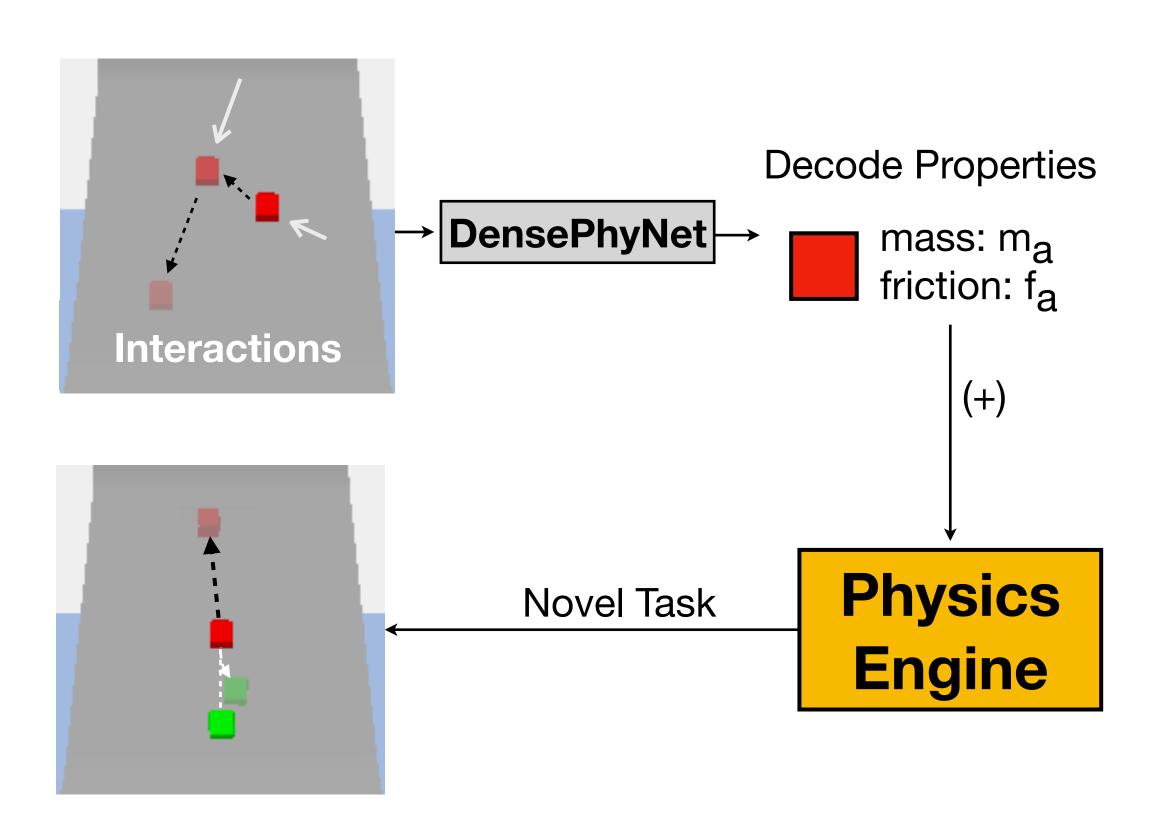


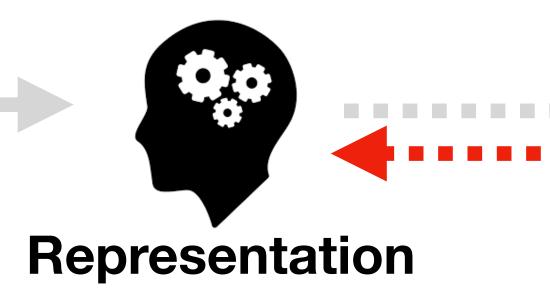
Application in Manipulation

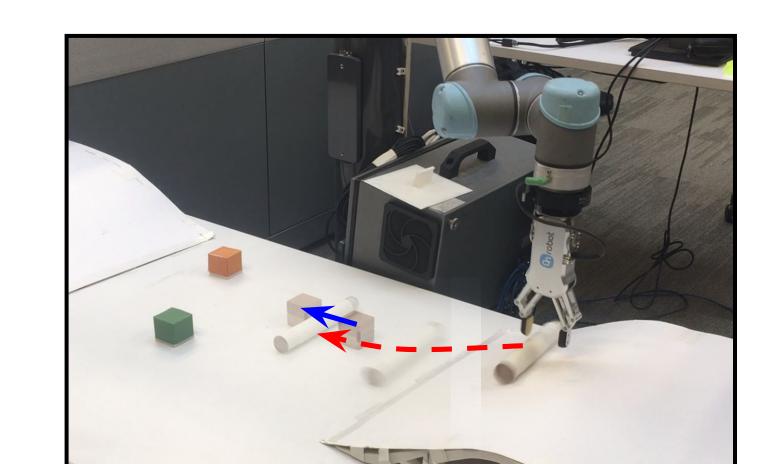


Error comparison

Decoded properties + physics engine for **novel** manipulation tasks

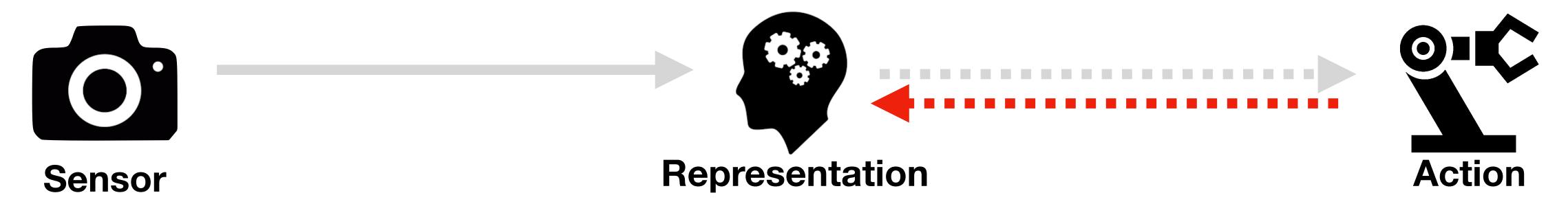




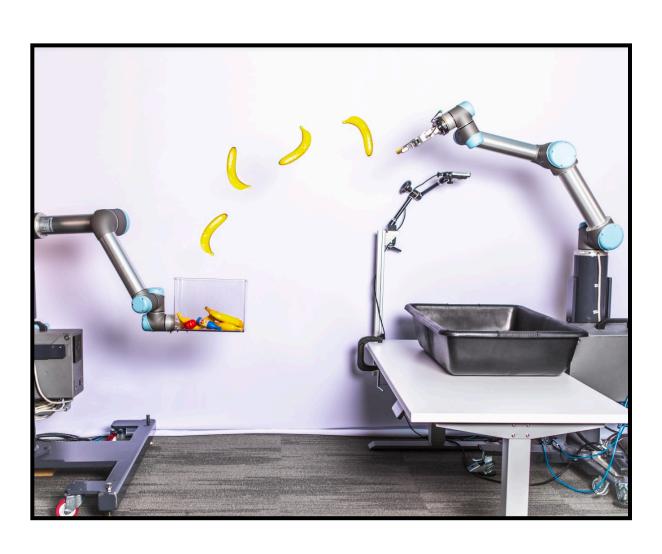


A model that learns physical object representations from self-supervised interactions.

- Diverse set of interactions
- Dynamic interactions
 to reveal different physical properties







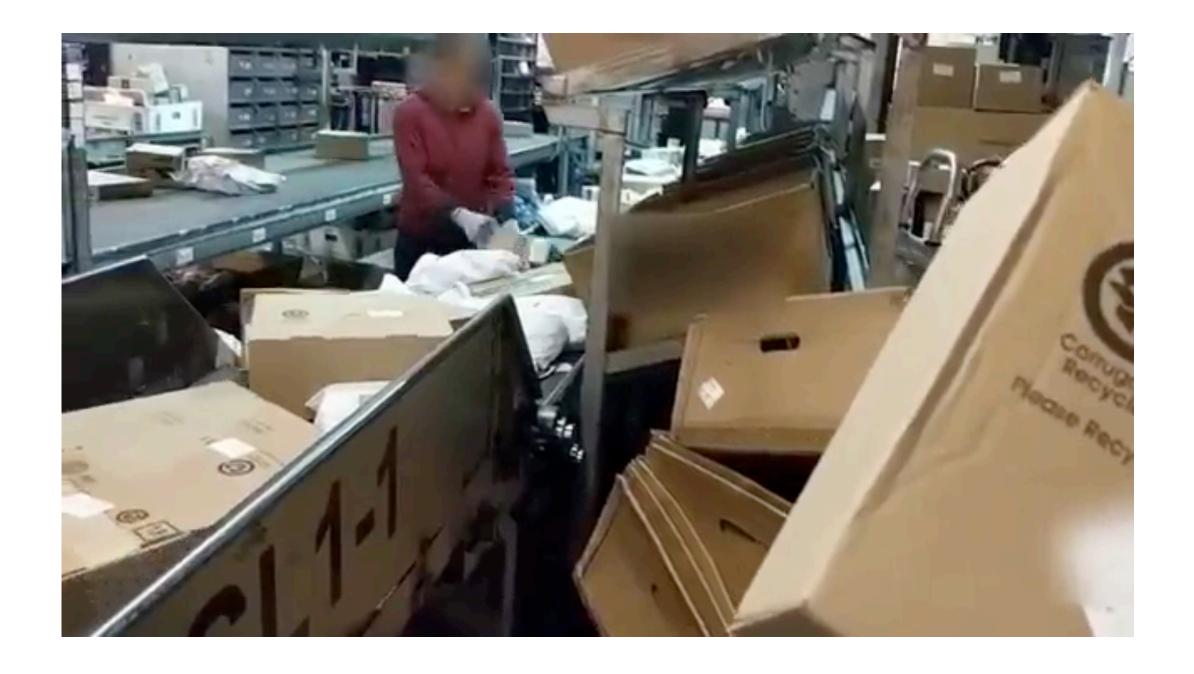
TossingBot: Learning to Throw Arbitrary Objects with Residual Physics

Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, Thomas Funkhouser

Throwing is Useful

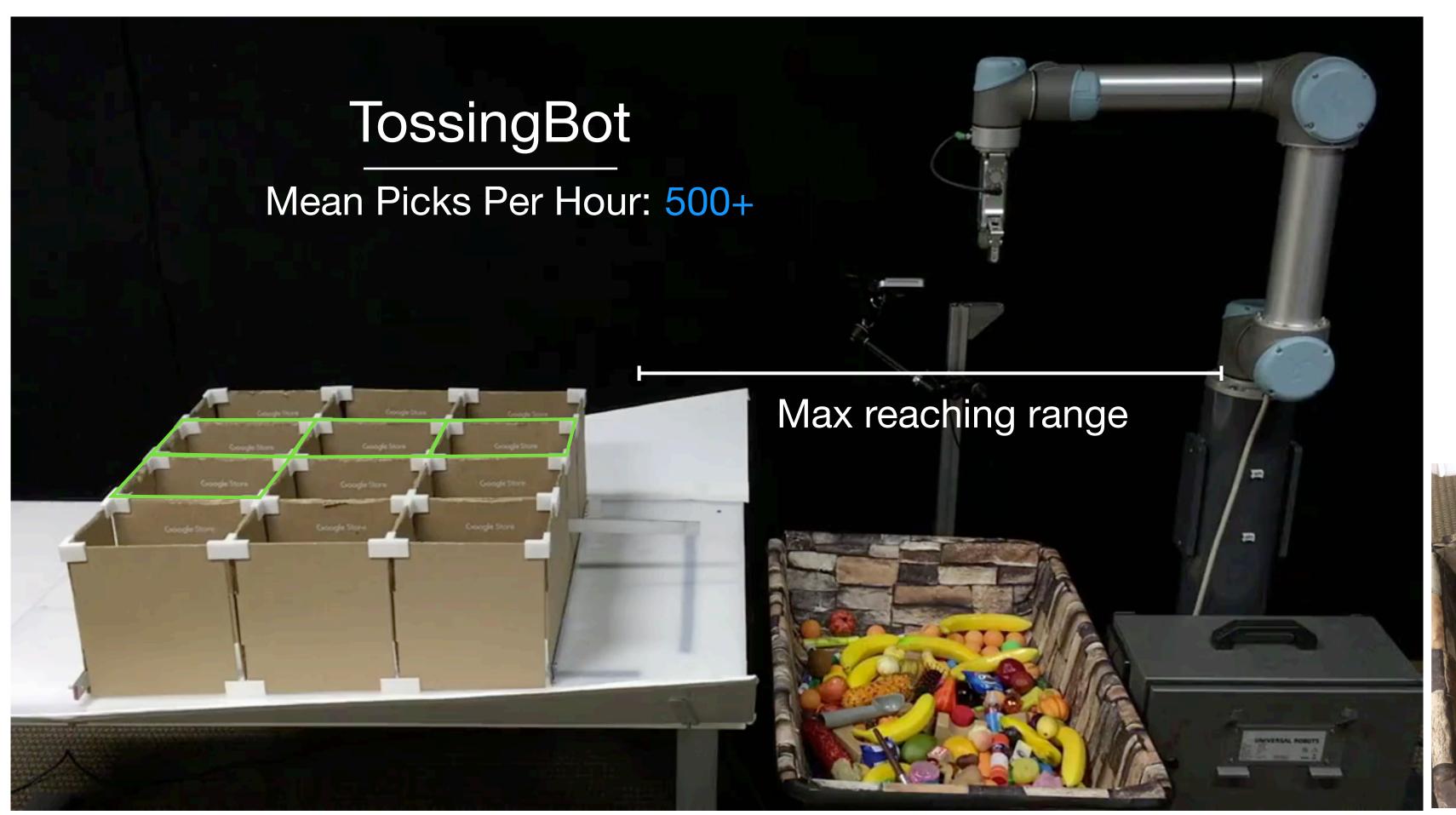
Throwing is Useful

People frequently use throwing to improve our efficiency.



Throwing is Useful

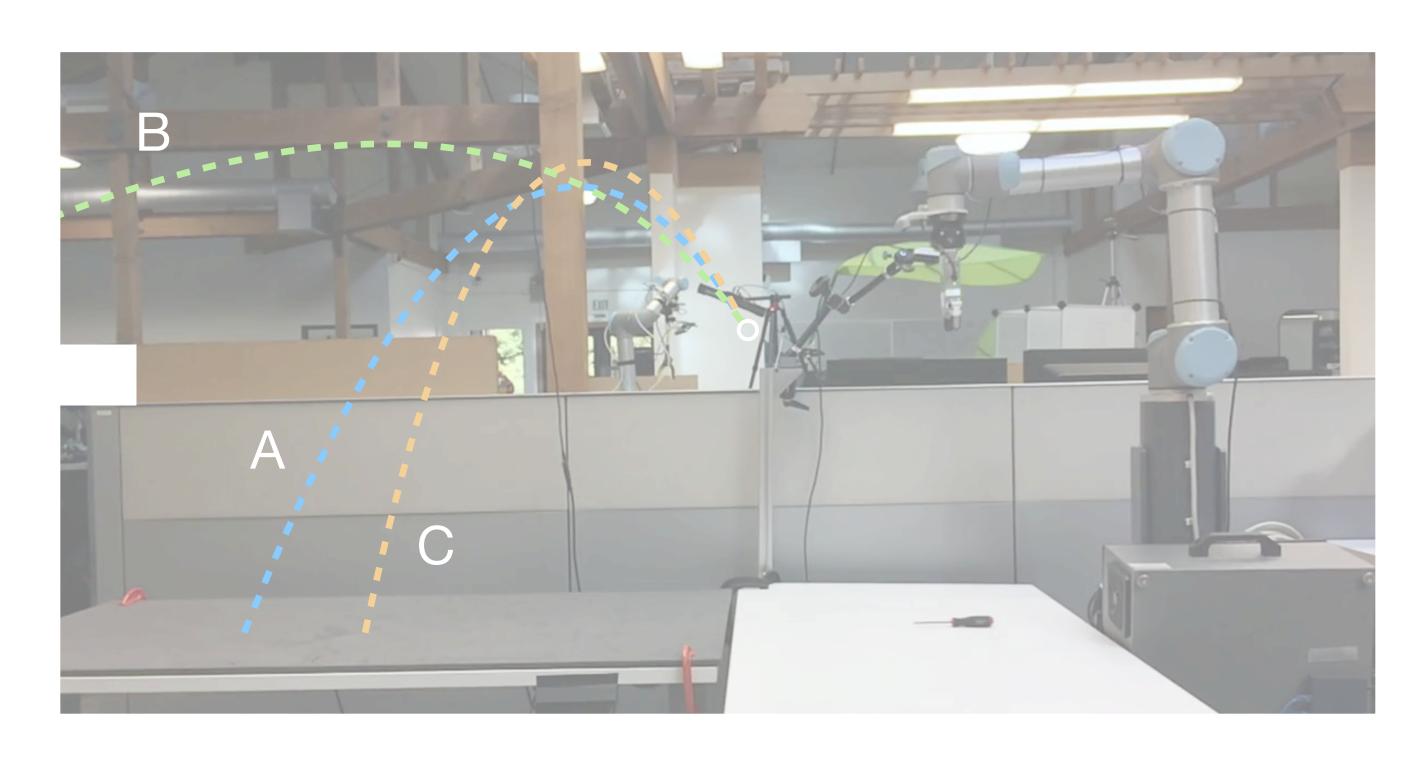
To improve speed and reachability

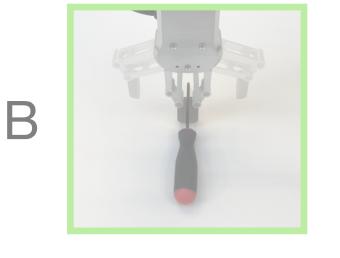


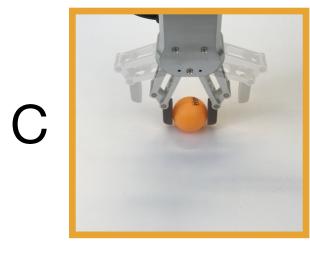
Side View

What the system need to learn?

What the system need to learn?







Grasp wrt Center of Mass

Varying Dynamics

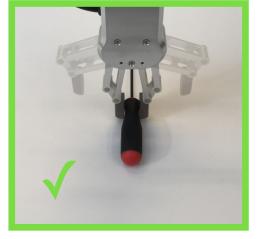
Key Ideas

Acquire Pre-throw Conditions

Learned jointly

Handle Object Dynamics

Grasping Throwing



stable unpredictable

stable

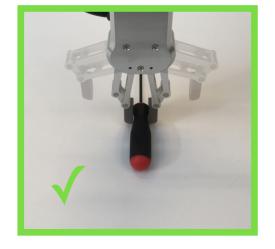
learned from experience

Key Ideas

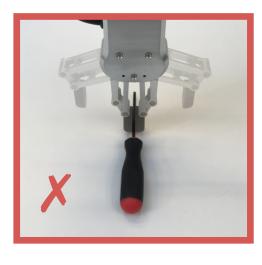
Acquire Pre-throw Conditions

Learned jointly

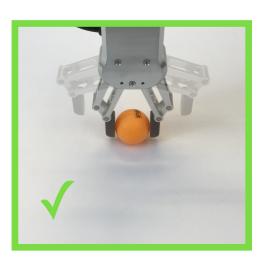
Grasping Throwing



stable



unpredictable



stable

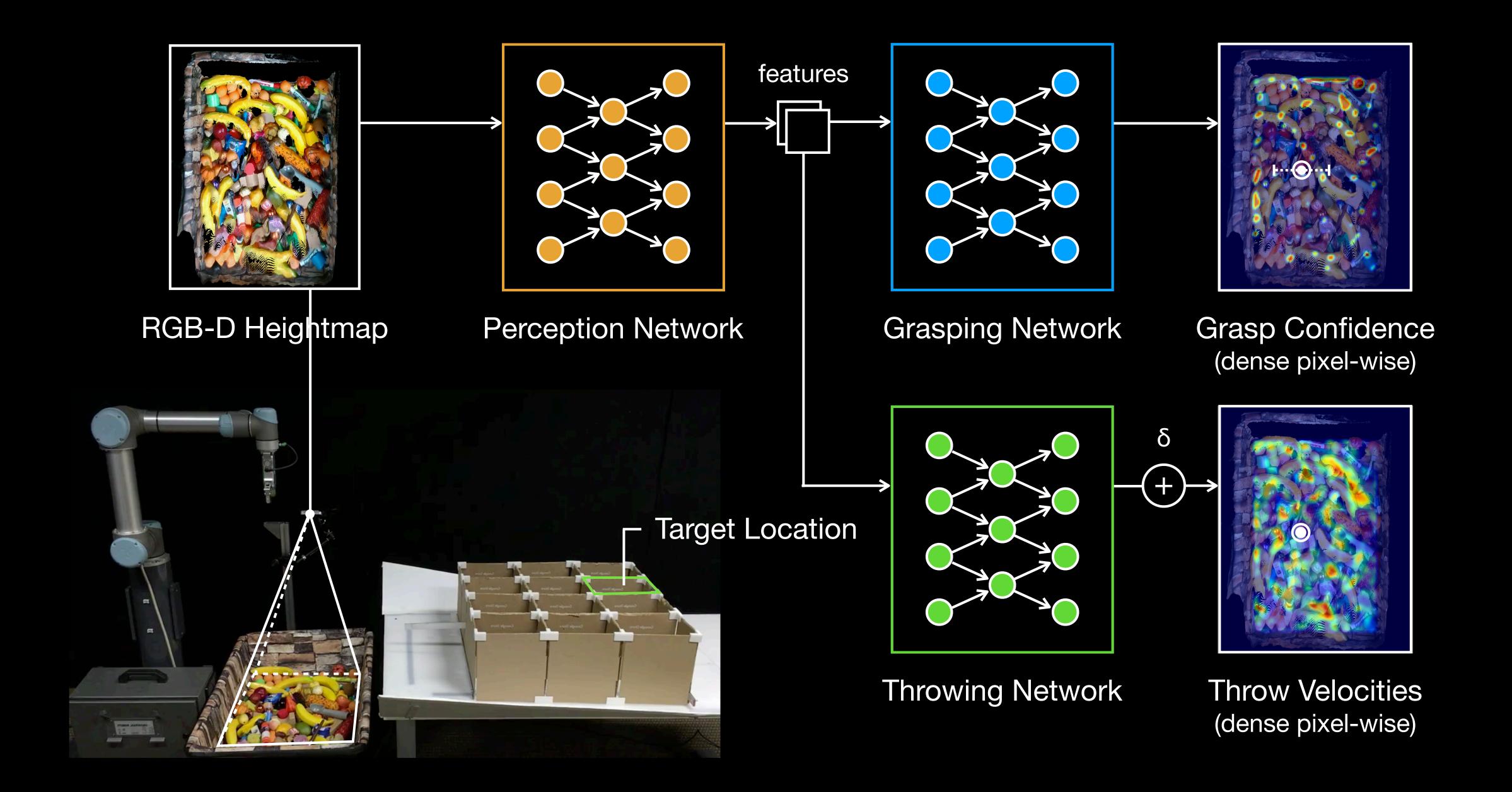
learned from experience

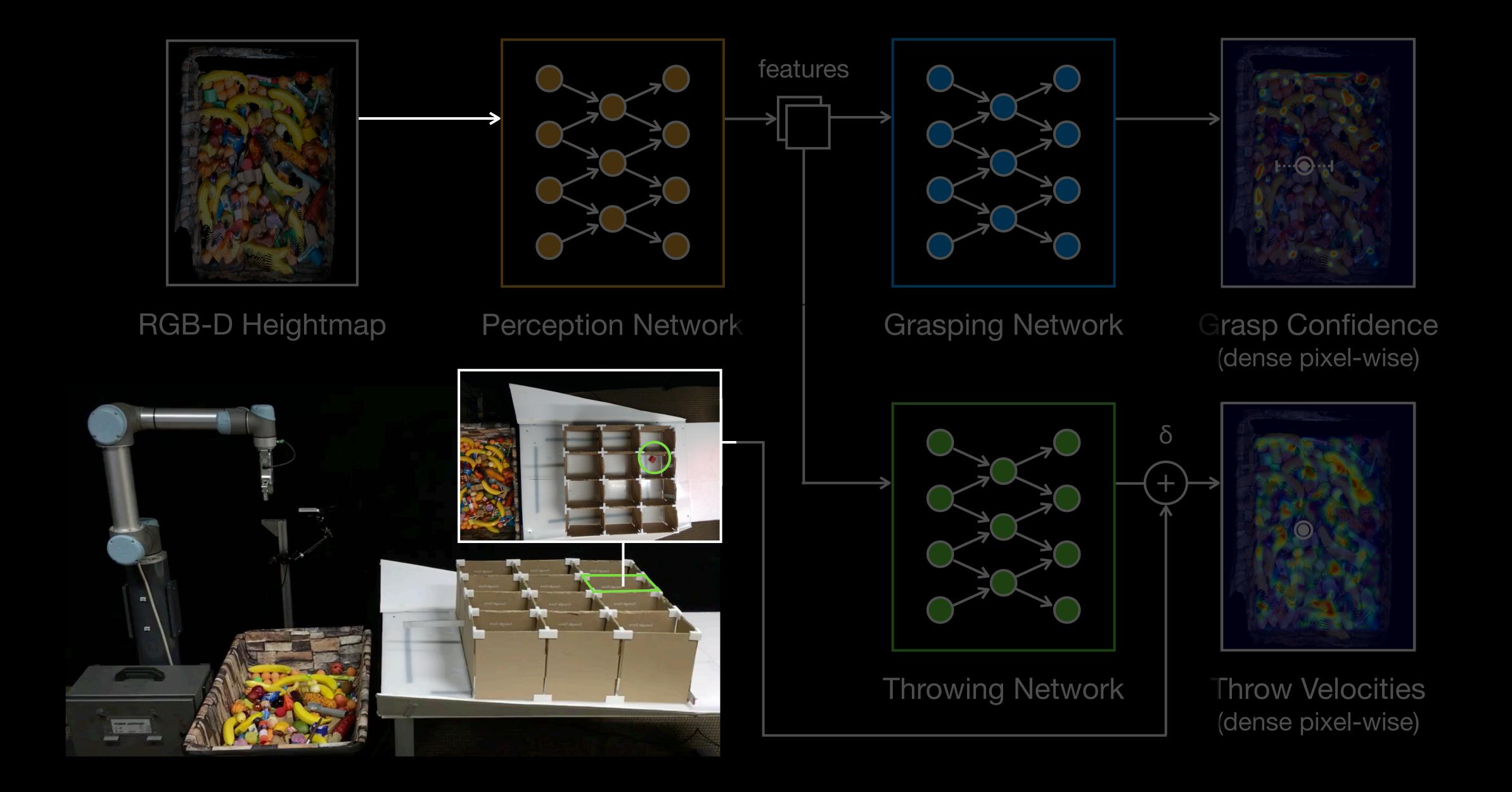
Handle Object Dynamics

Residual Physics

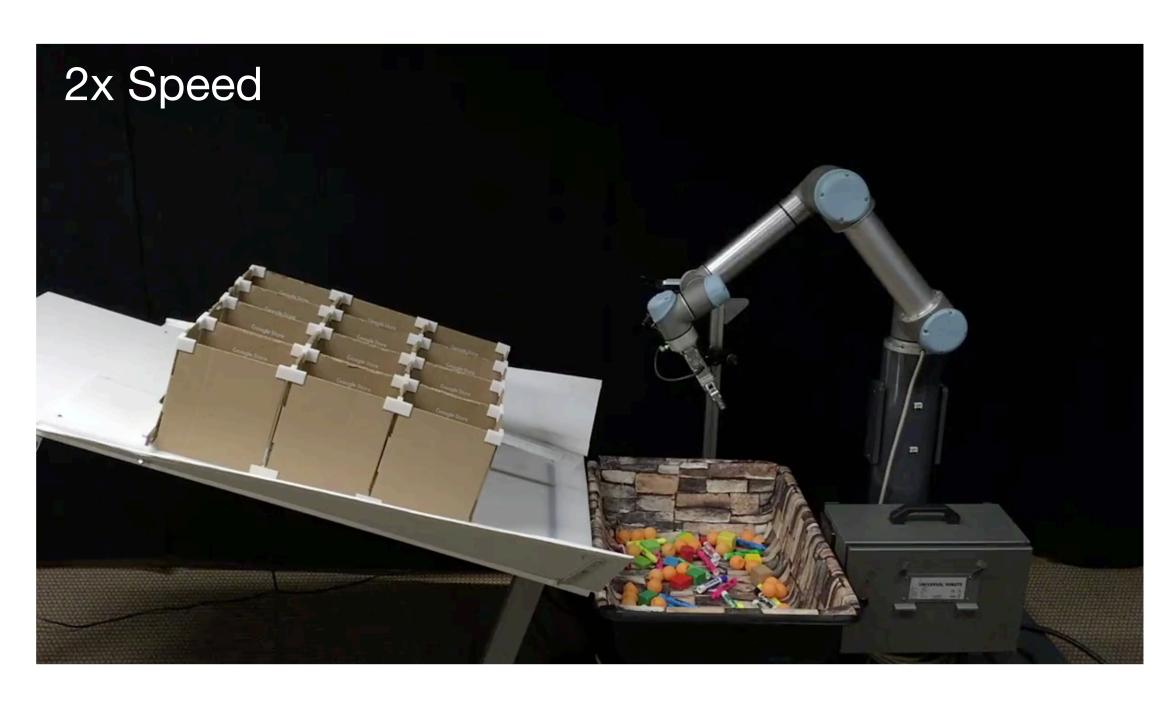


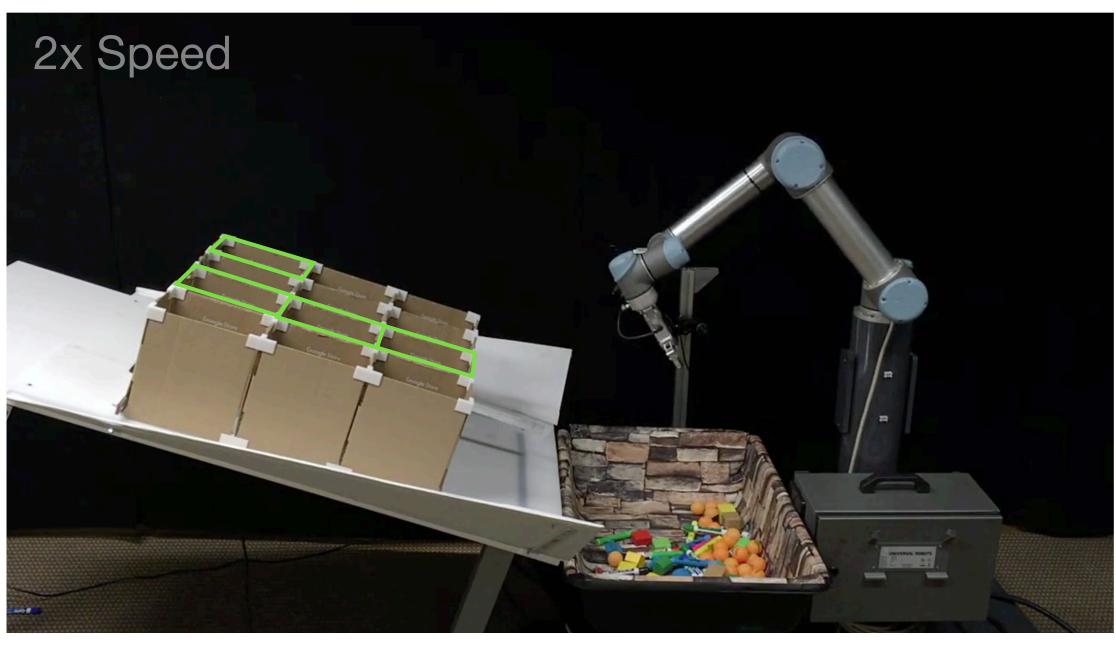
- v: generalizes to new target locations
- δ: learns to compensate obj. dynamics





Training Process





Random Initialization

Grasping: 5%

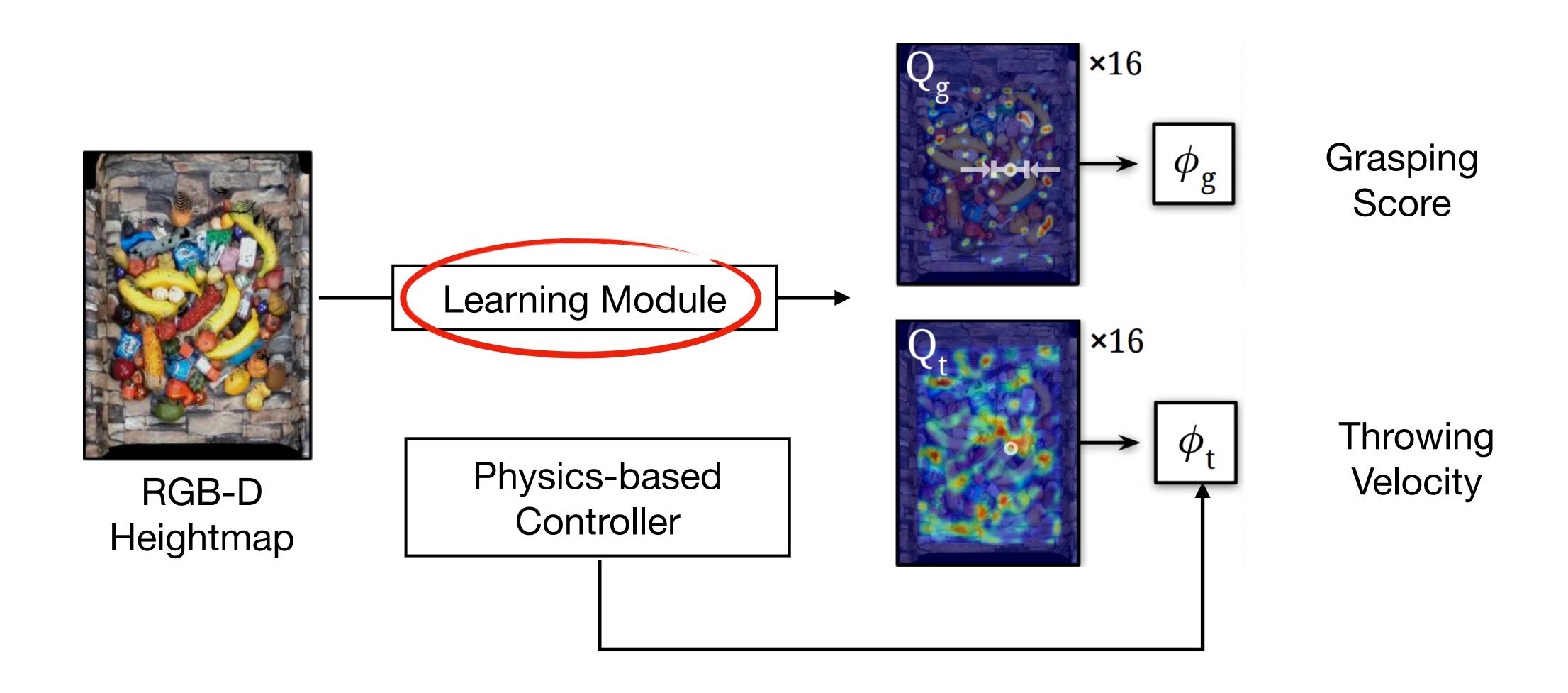
Throwing: 0%

14 Hrs Real-world Training

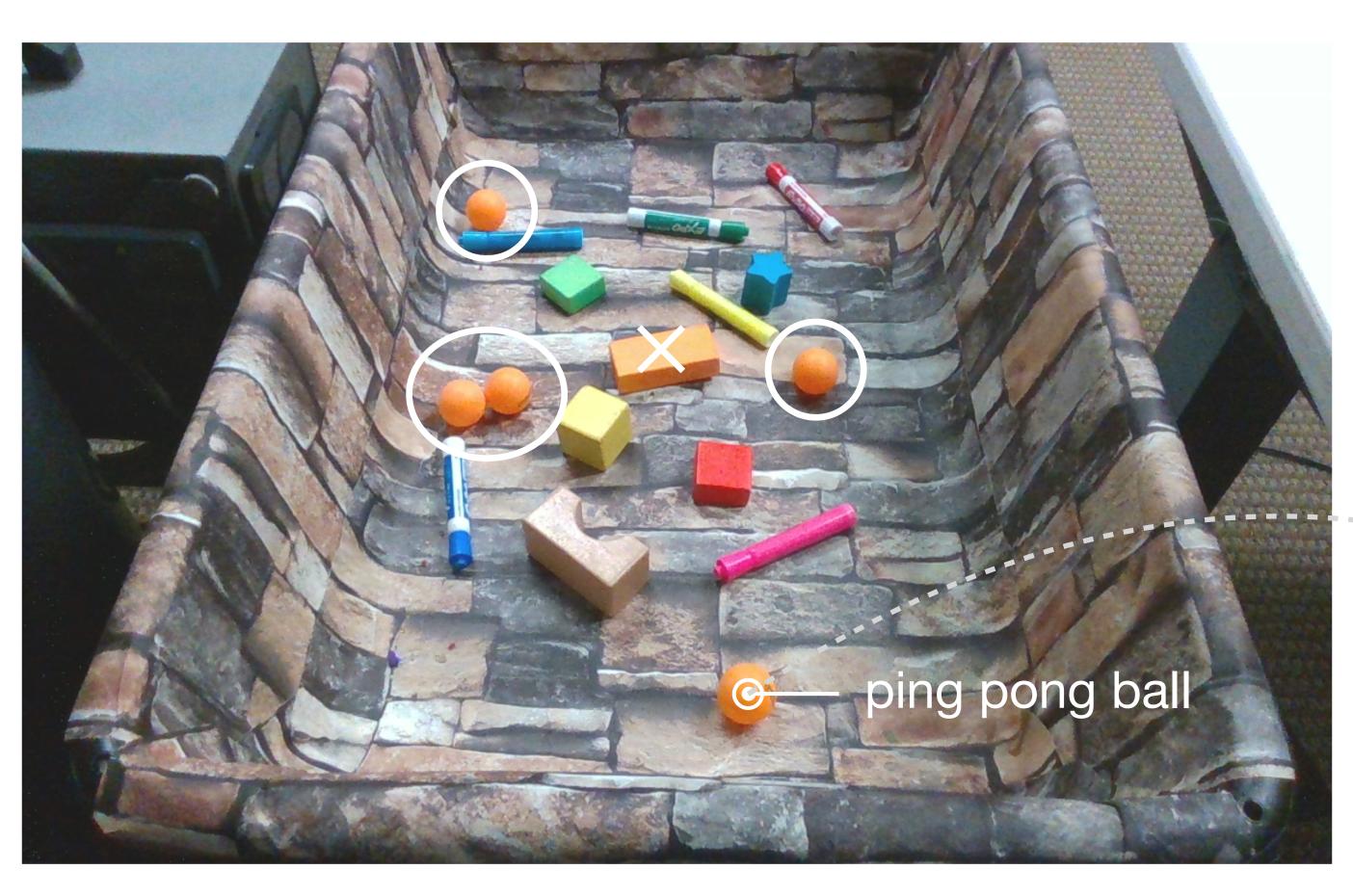
Grasping: 87%

Throwing: 85%

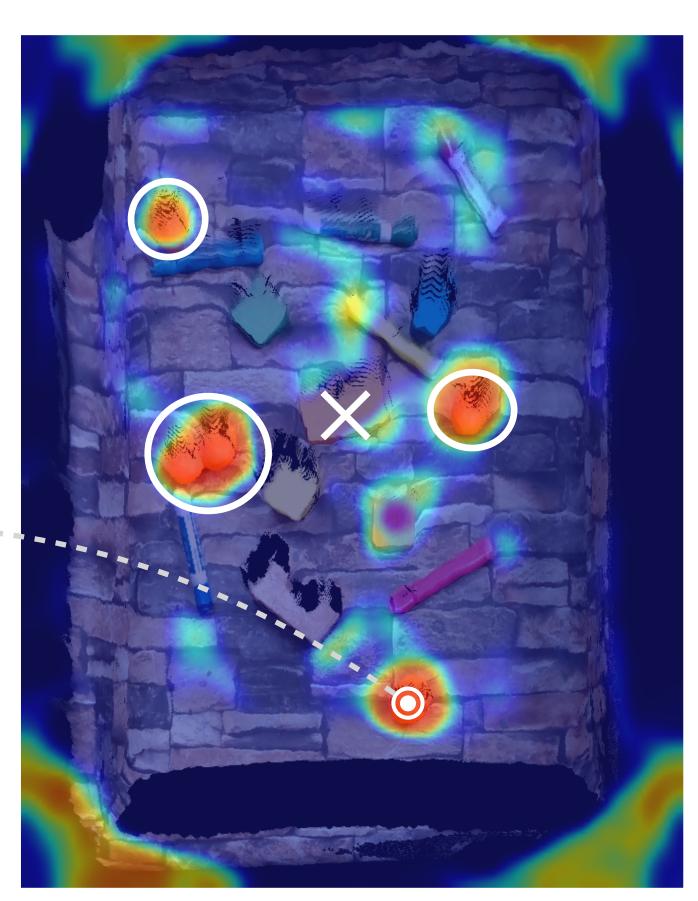
What does TossingBot learn?



What does TossingBot learn?



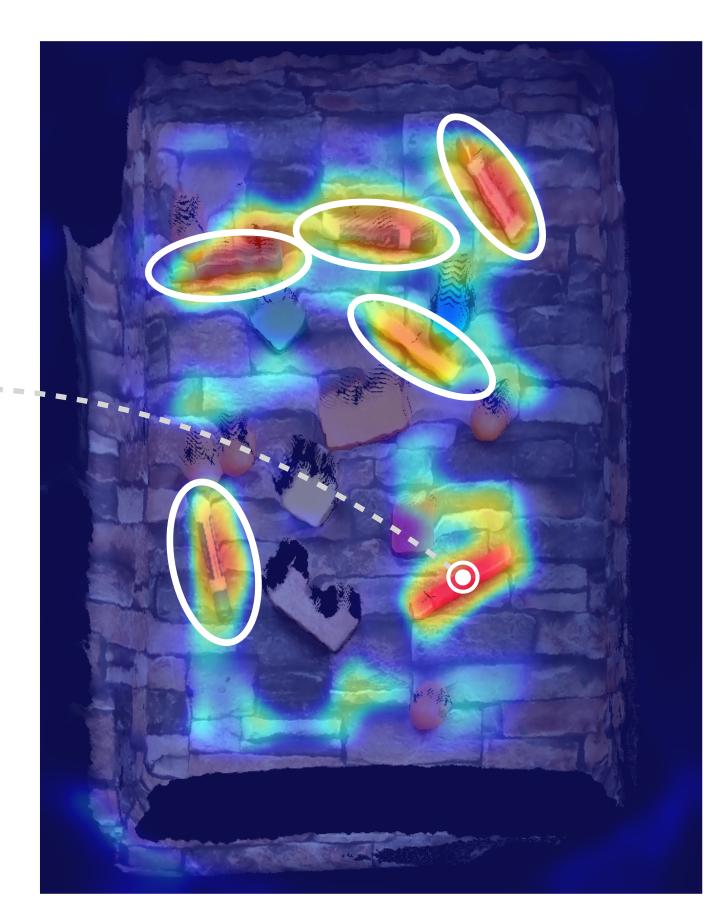
Camera View



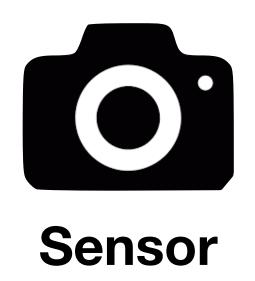
Nearest Neighbor in Feature Space

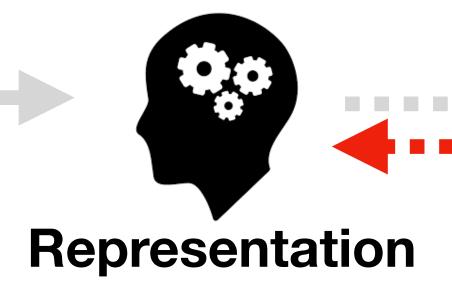
What does TossingBot learn?

Camera View

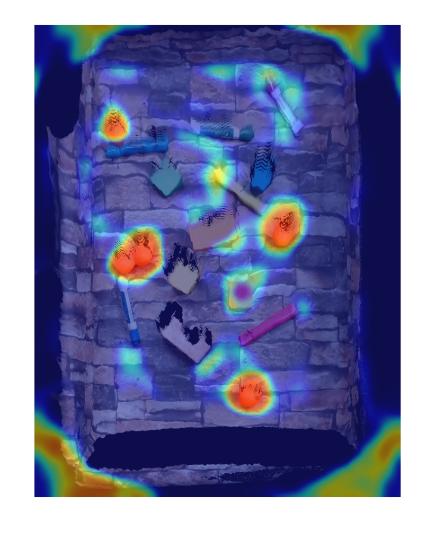


Nearest Neighbor in Feature Space

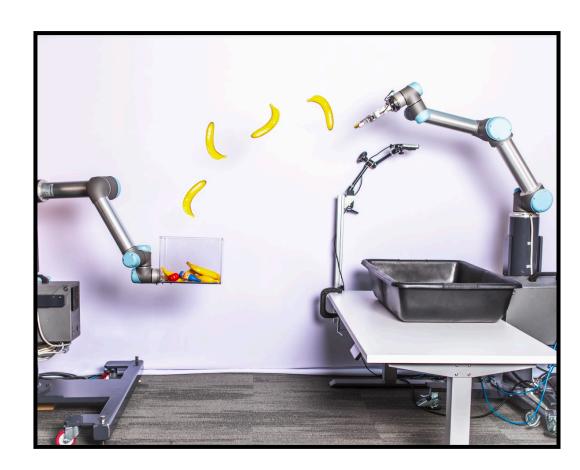


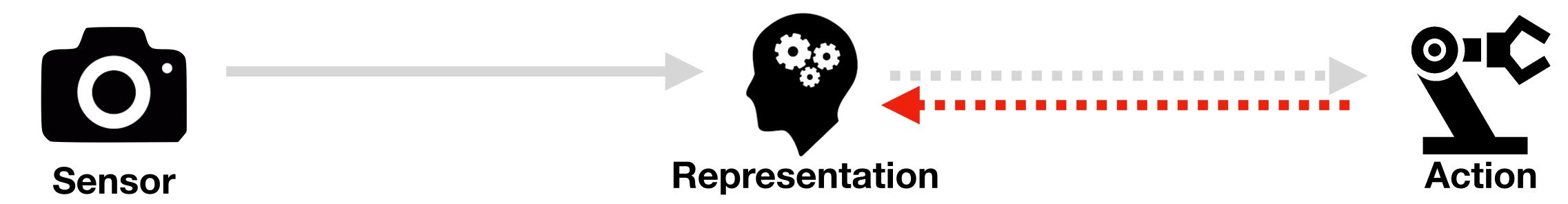


Object Instance Amodal 3D Shape



Mass distribution Aerodynamics

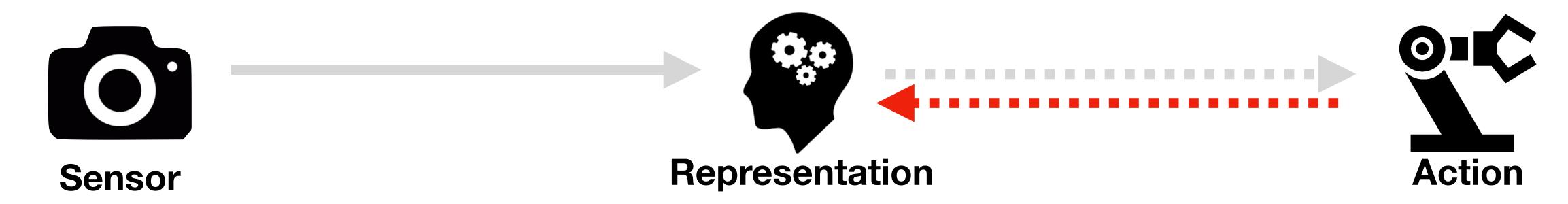




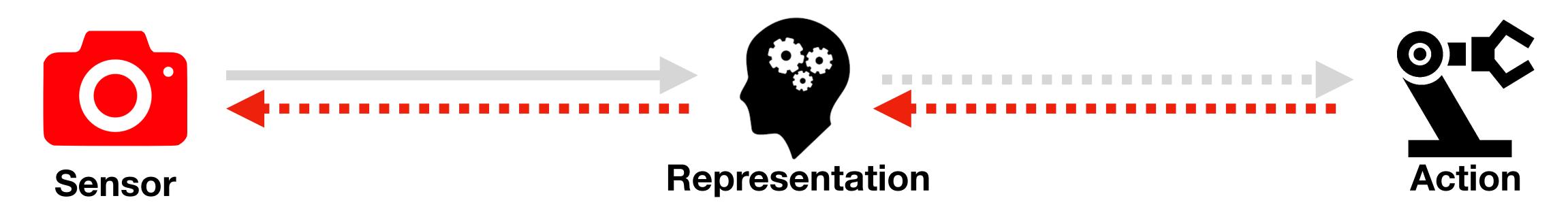
Summary:

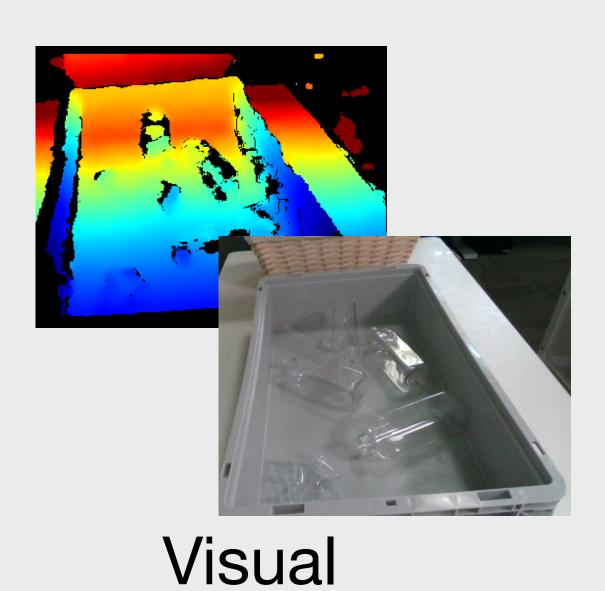
- Discover objects properties beyond visual appearance
 - e.g., object-instance, shape, mass, friction, aero-dynamics ...
- Automatically acquire training data using action+future states
 - e.g., predictive model (motion), landing location
- Better representation to inform action planning
 - e.g., pushing, sliding, tossing

What's Next?

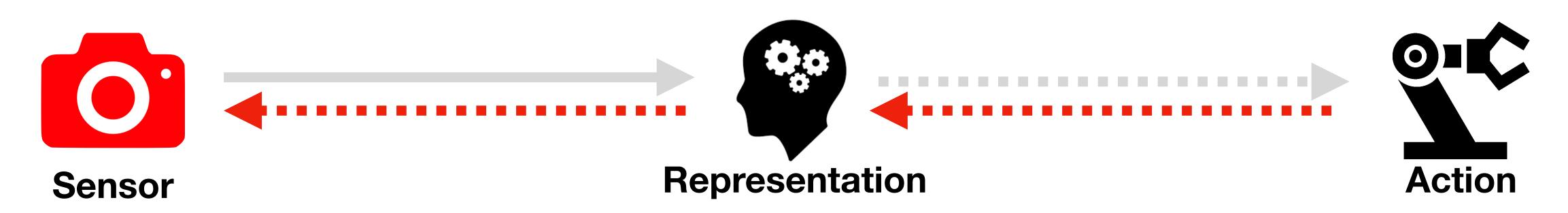


What's Next?

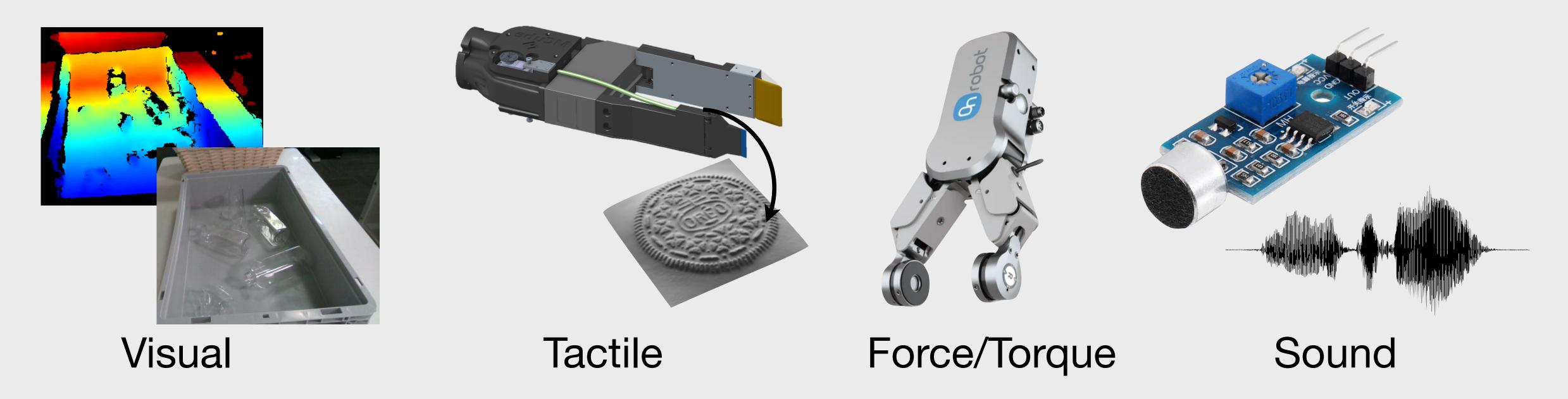




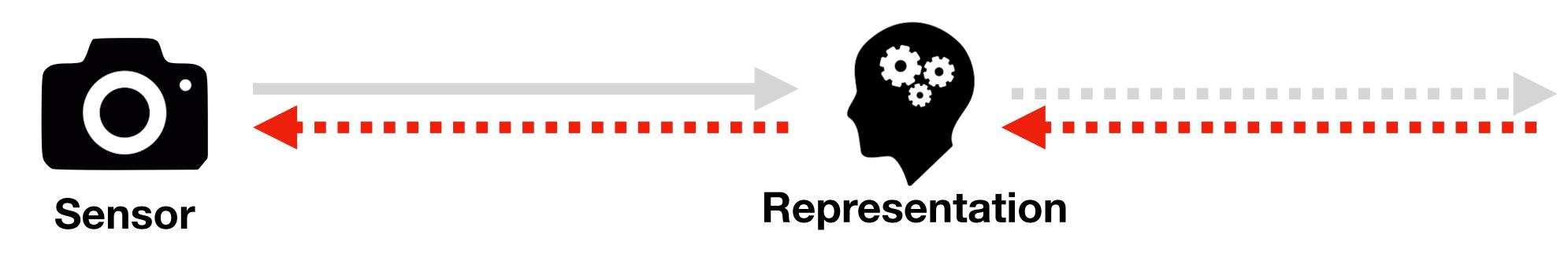
What's Next?



Sensor Fusion



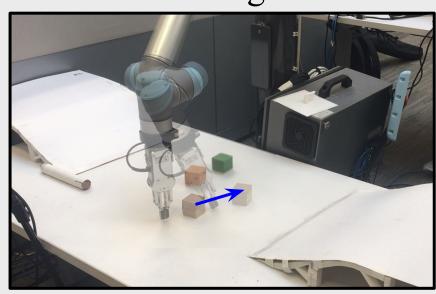
What's Next



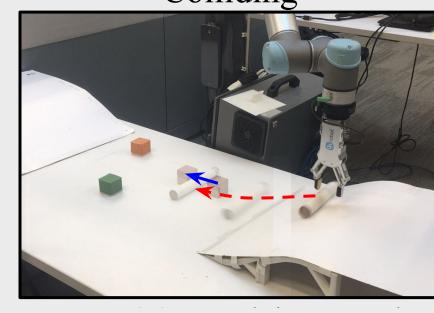
Action Selection

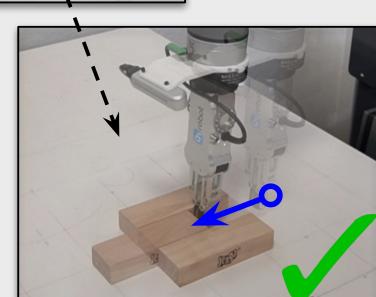
Which action will provide most useful information?





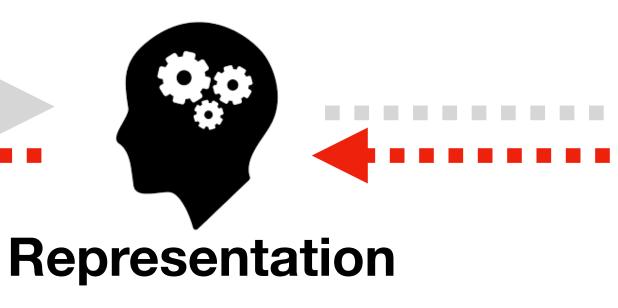
Colliding

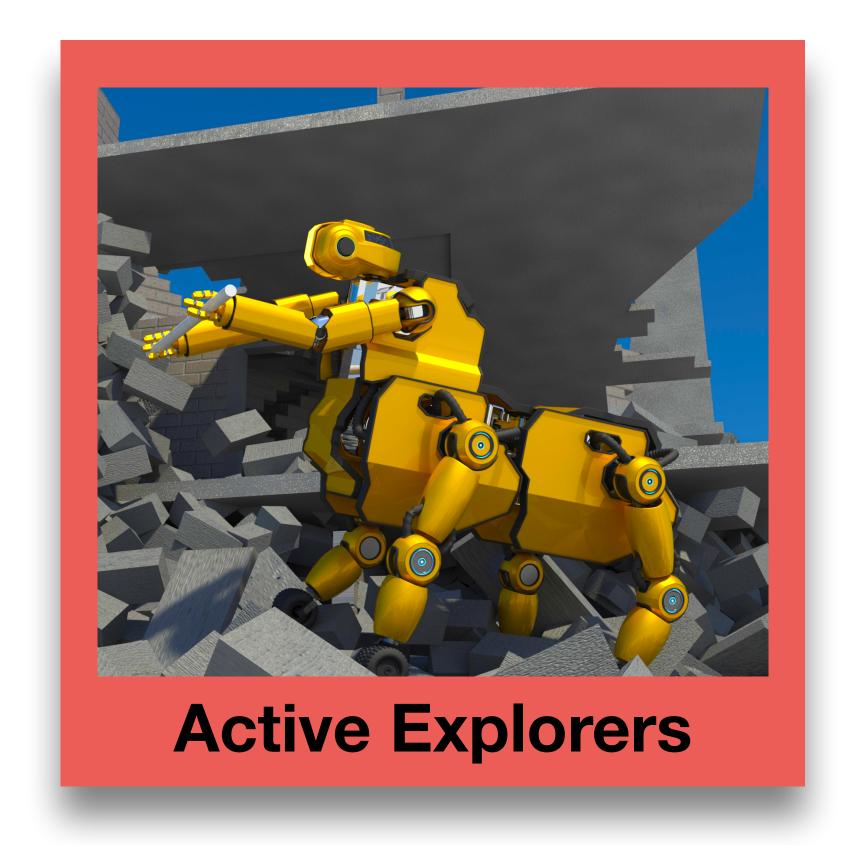


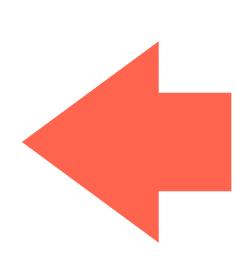






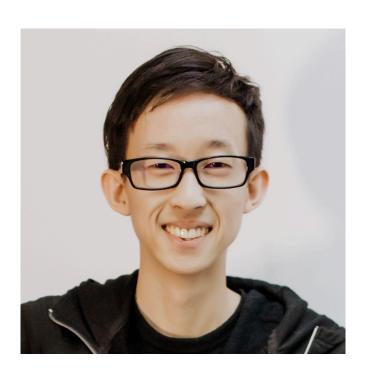






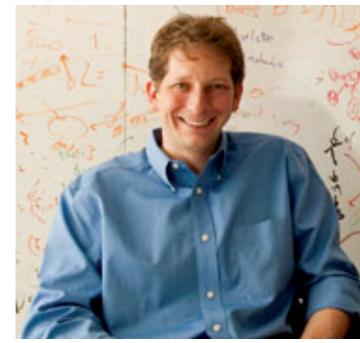
Acknowledgements

Jiajun Wu

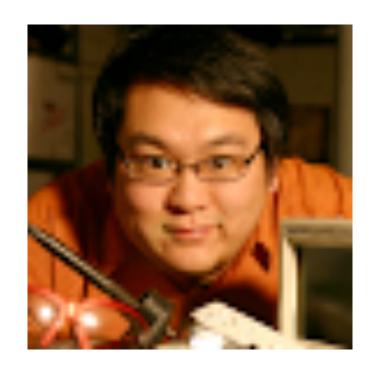


Andy Zeng

Zhanpeng He



Joshua B. Tenenbaum



Johnny Lee

Thomas Funkhosuer Alberto Rodríguez

Thank You!