Active Scene Understanding with Robot Interactions

Shuran Song

Collaborators

Zhenjia Xu

Zhanpeng He

Andy Zeng

Jiajun Wu

Joshua B. Tenenbaum

Johnny Lee

Thomas A. Funkhosuer

Alberto Rodríguez

See, Understand, Act

See, Understand, Act

Scene Representations

Object Detection

Bed nightstand

SlidingShapes

ECCV 2014, CVPR 2016

Pose Estimation

NOCS CVPR2019

Scene Representations

Object Detection

ECCV 2014, CVPR 2016

Pose Estimation

NOCS CVPR2019

Geometry Estimation

(transparent object)

ClearGrasp ICRA2020

Semantic Scene Completion

Computer Vision Benchmarks

Static images

PASCAL VOC

ImageNet

The state of the s

SUN RGB-D

Moment in Time

CrowdPose

Computer Vision Benchmarks

- Static images
- Passive video

ImageNet

NYU depth

Moment in Time

CrowdPose

What causes all the motions?

- Casual relationship between action and motion
- X Inform action planing

CrowdPose

Passive Observers

Using active exploration to retrieve useful information

Push a large box to sense its weight

Action DippingInformation TemperaturePlaning Swim

Pushing
Weight
Lift up the box

Flipping
Title
Read the book

Action

Dipping

Information Temperature

Planing

Swim

Pushing

Weight

Lift up the box

Flipping

Title

Read the book

Active Scene Understanding

Active Scene Understanding

Dynamic Scene RepresentationCoRL 2020

DensePhysNet RSS2019

TossingBot RSS2019

Active Scene Understanding

Dynamic Scene RepresentationCoRL 2020

Learning 3D Dynamic Scene Representations for Robot Manipulation

Zhenjia Xu, Zhanpeng He, Jiajun Wu, Shuran Song CoRL 2020

https://dsr-net.cs.columbia.edu/

DensePhysNet RSS2019

TossingBot RSS2019

Interaction for Perception

Goal:

Learning a Scene Representation with Interactions

Objects'
Instance Identity
3D geometry
Dynamics

How to do it?

Learning to predict object movement under robot's interaction

Interaction for Perception

Why does it work?

We know that the points on the same rigid object should move together. Formally, they should be described by the **same** SE(3) transformation.

Therefore, by analyzing the motion of the whole scene, the system will be able to identify the each individual rigid object that would best explain the motion.

Prior work: SE3-Net

Masks represent the networks's understanding of object instances

Predicting K SE(3) transformation for K different masks

Output point-wise scene flow (supervision)

Se3-nets: Learning rigid body motion using deep neural networks A Byravan, D Fox, ICRA, 2017

SE3-Net - Issues

- 1. The mask only describe object that moved in this step
- 2. The representation cannot encode object **permanence** (once the object is occluded it disappears from the representation)
- 3. The representation cannot consistently track object identity over time

Dynamic Scene Representation (DSR)

Amodal 3D representation: Encode objects' complete 3D shape, regardless of occlusion

Dynamic Scene Representation (DSR)

✓ Multiple object ✓ Object Permanence ✓ Continuity

DSR-Net

DSR-Net in Action

Real-World **Novel** object

Evaluation

We want to see whether DSR-Net is able to

- 1. Accurately predict object motion under different robot interactions;
- 2. Aggregate the history and encodes object permanence and continuity;
- 3. Improve the performance of down-stream manipulation tasks.

Evaluation

We want to see whether DSR-Net is able to

- 1. Accurately predict object motion under different robot interactions;
- 2. Aggregate the history and encodes object permanence and continuity;
- 3. Improve the performance of down-stream tasks.

Result - Motion Prediction

Color image

SE3-Net

DSR-Net

SE3Pose-Net

Result - Motion Prediction

MSE of scene flow prediction on visible surface

Evaluation

We want to see whether DSR-Net is able to

- 1. Accurately predict object motion under different robot interactions;
- 2. Aggregate the history and encodes object permanence and continuity;
- 3. Improve the performance of down-stream tasks.

Object Permanence

Object Permanence: is the understanding that objects continue to exist even if they disappear from <u>view</u> due to <u>occlusion</u>.

Step 1

Camera View

NoWarp

Single

Step 1

Step 1

NoWarp Single

Step 2

Camera View

Object Continuity

Object Continuity: Representation can recognize individual object instance and track their identity over time.

Object Continuity Result

$$t = 3$$

Object Continuity Result

Objects are visually indistinguishable from depth input

The continuity achieved by using history aggregation, instead of visual appearance.

Evaluation

We want to see whether DSR-Net is able to

- 1. Accurately predict object motion under different robot interactions;
- 2. Aggregate the history and encodes object permanence and continuity;
- 3. Improve the performance of manipulation tasks.

Target state

DSR-Net

SE3Pose-Net

t = 3

DSR-Net

SE3Pose-Net

Final State Comparison

Active Scene Understanding

Code + Data https://dsr-net.cs.columbia.edu/

Dynamic Scene Representation:

Better 3D scene representation describes object instances, amodel 3D geometry, and their motion under interaction.

How about other object properties?

Mass? Friction? Other physical properties?

Why it is hard?

To learn physical properties though vision?

Cannot be inferred from appearance alone

Why it is hard?

To learn physical properties though vision?

Cannot be inferred from appearance alone

Not salient under quasi-static interactions

Interactions used in DSR (quasi-static pushing) is not enough

Why it is hard?

Cannot be inferred from appearance alone

Not salient under quasistatic interactions Need multiple interactions to decouple the properties

Active Scene Understanding

DensePhysNet: Learning Dense Physical Object Representations via Multi-step Dynamic Interactions (RSS2019)

Zhenjia Xu, Jiajun Wu, Andy Zeng, Joshua B. Tenenbaum, Shuran Song

DensePhysNet

Hypothesis:

To accurately predict the future states, the system will need to acquire an implicit understanding of objects' physical properties and how they influence objects' motion.

DensePhysNet

Hypothesis:

To accurately predict the future states, the system will need to acquire an implicit understanding of objects' <u>physical properties</u> and how they influence objects' motion.

Dynamic Interactions

Sliding Collision

Dynamic Interactions

Sliding Collision

DensePhysNet

DensePhysNet

How to Evaluation DensePhysNet?

How to Evaluation DensePhysNet?

Although DensePhysNet is is trained as a predictive model, its predictive power is not the only thing we care about.

How to Evaluation DensePhysNet?

Although DensePhysNet is is trained as a predictive model, its predictive power is not the only thing we care about.

What we really care is whether the representation learns objects' physical properties.

Predictive Model

Material classification

Since the system only use depth these three block are visually indistinguishable.

Real-time video (system use depth only)

Material classification

Real-time video (system use depth only)

(Color indicates object)

Decoding Physical Properties

Test in Simulation

More interaction Helps!

How about Interaction Types

Application in Manipulation

Application in Manipulation

Learned <u>predictive model</u> for **known** manipulation tasks

Updating the physical representation

Application in Manipulation

Learned predictive model for known manipulation tasks

DSR-Net cannot do this, since it cannot explicitly decode object physical property

Application in Manipulation

Learned predictive model for known manipulation tasks

Decoded properties + physics engine for **novel** manipulation tasks

Application in Manipulation

Error comparison

Decoded properties + physics engine for **novel** manipulation tasks

A model that learns physical object representations from self-supervised interactions.

- Diverse set of interactions
- Dynamic interactions
 to reveal different physical properties

TossingBot: Learning to Throw Arbitrary Objects with Residual Physics

Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, Thomas Funkhouser

Throwing is Useful

Throwing is Useful

People frequently use throwing to improve our efficiency.

Throwing is Useful

To improve speed and reachability

Side View

What the system need to learn?

What the system need to learn?

Grasp wrt Center of Mass

Varying Dynamics

Key Ideas

Acquire Pre-throw Conditions

Learned jointly

Handle Object Dynamics

Grasping Throwing

stable unpredictable

stable

learned from experience

Key Ideas

Acquire Pre-throw Conditions

Learned jointly

Grasping Throwing

stable

unpredictable

stable

learned from experience

Handle Object Dynamics

Residual Physics

- v: generalizes to new target locations
- δ: learns to compensate obj. dynamics

Training Process

Random Initialization

Grasping: 5%

Throwing: 0%

14 Hrs Real-world Training

Grasping: 87%

Throwing: 85%

What does TossingBot learn?

What does TossingBot learn?

Camera View

Nearest Neighbor in Feature Space

What does TossingBot learn?

Camera View

Nearest Neighbor in Feature Space

Object Instance Amodal 3D Shape

Mass distribution Aerodynamics

Summary:

- Discover objects properties beyond visual appearance
 - e.g., object-instance, shape, mass, friction, aero-dynamics ...
- Automatically acquire training data using action+future states
 - e.g., predictive model (motion), landing location
- Better representation to inform action planning
 - e.g., pushing, sliding, tossing

What's Next?

What's Next?

What's Next?

Sensor Fusion

What's Next

Action Selection

Which action will provide most useful information?

Colliding

Acknowledgements

Jiajun Wu

Andy Zeng

Zhanpeng He

Joshua B. Tenenbaum

Johnny Lee

Thomas Funkhosuer Alberto Rodríguez

Thank You!