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Sensor Representation Action

What causes all the motions?

X Casual relationship between
v — action and motion
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Using active exploration to retrieve useful information
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Push a large box to sense its weight



Flip over a book to see its title
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Planing Swim Lift up the box Read the book
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Can robots learn to the do the same?
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Dynamic Scene Representation DensePhysNet TossingBot
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Dynamic Scene Representation
CoRL 2020
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Representation Action

Learning 3D Dynamic Scene Representations for
Robot Manipulation

Zhenjia Xu, Zhanpeng He, Jiajun Wu, Shuran Song
CoRL 2020

https://dsr-net.cs.columbia.edu/



Interaction for Perception

Goal:
Learning a Scene Representation with Interactions

Objects’
Instance Identity
3D geometry
Dynamics

How to do it?
Learning to predict object movement
under robot’s interaction




Interaction for Perception

Why does it work?
We know that the points on the same rigid
object should move together. Formally,
they should be described by the same
SE(3) transformation.

Therefore, by analyzing the motion of the
whole scene, the system will be able to
identify the each individual rigid object that
would best explain the motion.




Prior work: SE3-Net

Masks represent the networks S understandlng of object instances
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Predicting
K SE(3) transformation for K different masks

Se3-nets: Learning rigid body motion using deep neural networks
A Byravan, D Fox, ICRA, 2017



SE3-Net - Issues

Motion prediction for visible surface only
(Cannot handle occluded or new surfaces )
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Single step prediction (no history)

1. The mask only describe object that moved in this step

2. The representation cannot encode object permanence (once the object is occluded it
disappears from the representation)

3. The representation cannot consistently track object identity over time



Dynamic Scene Representation (DSR)

DSR-Net A

Amodal 3D representation:

Encode objects’ complete 3D
shape, regardless of occlusion



Dynamic Scene Representation (DSR)

— DSR-Net —

Warped Scene using Motion

history aggregation

v Multiple object v Object Permanence v Continuity



DSR-Net
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DSR-Net in Action

Real-World Novel object

Mask and Motion Prediction



Evaluation

We want to see whether DSR-Net is able to
1. Accurately predict object motion under different robot interactions;
2. Aggregate the history and encodes object permanence and continuity;

3. Improve the performance of down-stream manipulation tasks.



Evaluation

We want to see whether DSR-Net is able to

1. Accurately predict object motion under different robot interactions;



Result - Motion Prediction

SE3Pose-Net
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Evaluation

We want to see whether DSR-Net is able to

2. Aggregate the history and encodes object permanence and continuity;



Object Permanence

Object Permanence: is the understanding that objects continue

to exist even if they disappear from view due to occlusion.




Object Permanence Result (Real)

DSR
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Object Permanence Result (Real)
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Object Permanence Result (Real)
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Camera View NoWarp Single



Object Permanence Result (Real)
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DSR

#

4 -,
S gl
»

Occluded Cup

NoWarp Single



Object Continuity

Object Continuity: Representation can recognize individual

object instance and irack their identity over time.
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Object Continuity Result

Objects are visually indistinguishable from depth input
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t=1 t =2 t=3 t=4 t=05
The continuity achieved by using history aggregation, instead of visual appearance.



Evaluation

We want to see whether DSR-Net is able to

3. Improve the performance of manipulation tasks.



Robot Manipulation: Planner Pushing
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Action1 Action2 Action 3

Target state



Robot Manipulation: Planner Pushing

SE3Pose-Net

DSR-Net



Robot Manipulation: Planner Pushing
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Robot Manipulation: Planner Pushing

clusion

DSR-Net SE3Pose-Net
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Sensor Representation Action

Dynamic Scene Representation:

Better 3D scene representation describes

object instances, amodel 3D geometry, and their
motion under interaction.

How about other object properties?

Code + Data Mass? Friction”? Other physical properties?
https://dsr-net.cs.columbia.edu/




Why 1t is hard?

To learn physical properties though vision?

Magnesium Aluminum
92¢g 142 g

Cannot be inferred from
appearance alone



Why 1t is hard?

To learn physical properties though vision?

Magnesium Aluminum
92¢g 142 g

Interactions used in DSR
Cannot be inferred from Not salient under (quasi-static pushing)

appearance alone quasi-static interactions is not enough



Why 1t is hard?

h o=

Need multiple interactions
to decouple the properties
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DensePhysNet: Learning Dense Physical Object Representations via Multi-step Dynamic

Interactions (RSS2019)
Zhenjia Xu, Jiajun Wu, Andy Zeng, Joshua B. Tenenbaum, Shuran Song



DensePhysNet

Action

Predictive

Model Future State

Current State

Hypothesis:
To accurately predict the future states, the system will need to acquire
an implicit understanding of objects’ physical properties and how they
iInfluence objects’ motion.



DensePhysNet

Key: Find the right set of

Action Interactions that would reveal the
objects’ physical properties.

Future State

Current State

Hypothesis:
To accurately predict the future states, the system will need to acquire
an implicit understanding of objects’ physical properties and how they
iInfluence objects’ motion.




Dvnamic Interactions

Sliding Collision



Dynamic Interactions

Camera
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DensePhysNet
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DensePhysNet

Action

Predictive
Moael

(implicit understanding
of objects’ physical
properties)

Future

Current State State




How to Evaluation DensePhysNet?

Action
Predictive
t
Model Future State
Current State



How to Evaluation DensePhysNet?

Action

Predictive Future State

A

How accurate it can predict future?

Model

Current State

Although DensePhysNet is Is trained as a predictive model, its
predictive power is not the only thing we care about.



How to Evaluation DensePhysNet?

Action

Predictive

Model Future State

Current State

Although DensePhysNet is Is trained as a predictive model, its
predictive power is not the only thing we care about.

What we really care is whether the representation learns objects’
physical properties.




Predictive Model

’ Kernels

Action Action encoder
(push at x,y,z,0)

i

Image Visual Multl—
encoder  representation aggrega .
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. . 4|1. Classify Materials

/12. Decoding the Exact Physical
Properties (e.g., mass , friction)

Physical

Depth representatiog




Material classification

Since the system only
use depth these three
block are visually
indistinguishable.

Real-time video (system use depth only)



Material classification

T

Real-time video (system use depth only)
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Mask

t-SNE visualization
(Color indicates object)



Decoding Physical Properties

Test in Simulation

g

Representation

Linear regressor

Mass

Friction
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Error of Friction Error of Mass
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Exploration Steps Exploration Steps

= Random Average DensePhysNet

More interaction Helps!
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How about Interaction Types

AVERAGE ERROR

Slow Push Sliding Collision Sliding+Collision
(Quasi-static)

Dynamic interaction  Multiple interaction
Helps! Helps!



Application in Manipulation



Application in Manipulation

Learned predictive model
for known manipulation tasks

Action:
- —>|DensePhyNet|—>§direction g |
x . :speed y

Updating the physical representation



Application in Manipulation

DSR-Net cannot do this,
since It cannot explicitly
decode object physical

property
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Application in Manipulation

Decoded properties + physics engine
for novel manipulation tasks

U Decode Properties

—|DensePhyNet— mass: mgy

friction: f5
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Application in Manipulation

Decoded properties + physics engine
for novel manipulation tasks

0.18
0.174
0.135
A, Decode Properties
0.09 P |
; —|DensePhyNet— mass: mgy
_ _ _ _ ‘ friction: f5
0.045
(+)
0
Forward [1] Inverse [1] Push-net [2] Slide only Ours
[1] Agrawal et al. NeurlPS, 2016 , M
[2] Li et al. RSS 2018 \ -
o b J Novel Task PhySICS
Error comparison y Engine
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)

More Interactions for

A model that learns physical object

representations from self-supervised
interactions. richer representations?

* Diverse set of interactions
* Dynamic interactions
to reveal different physical properties
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Sensor Representation Action

TossingBot: Learning to Throw Arbitrary Objects with Residual Physics



Throwing is Useful



Throwing is Useful

People frequently use throwing to improve our efficiency.
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Throwing is Useful

To improve speed and reachabllity

TossingBot

Mean Picks Per Hour:

Side View




What the system need to learn?



What the system need to learn?

Grasp wrt Center of Mass Varying Dynamics



Key ldeas

Acquire Pre-throw Conditions Handle Object Dynamics

Learned jointly

|

Grasping Throwing

unpredictable

learned from experience



Key ldeas

Acquire Pre-throw Conditions

Learned jointly

Grasping

|

Throwing

unpredictable

learned from experience

Handle Object Dynamics

Residual Physics

Physics Deep Learning

Initial estimate data-driven residual

NV

+ 6 — Vfinal

* V. generalizes to new target locations
- O: learns to compensate obj. dynamics
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Training Process

2X Speed

Random Initialization 14 Hrs Real-world Training

Grasping: 5% Grasping: 87%
Throwing: 0% Throwing: 85%



What does TossingBot learn?

' Grasping
: Score
: (Learning Module )
- | Throwing
RGB-D Physics-based Velocity

Heightmap Controller




What does TossingBot learn?

Nearest Neighbor In
Feature Space

Camera View



What does TossingBot learn?

Nearest Neighbor In
Feature Space

Camera View
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Sensor Representation Action
Object Instance
Amodal 3D Shape Push
Mass Sliding
Friction Colliding

Mass distribution

_ Throwing
Aerodynamics

Accurate Throwing
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Sensor Representation Action

Summary:

* Discover objects properties beyond visual appearance

* Automatically acquire training data using action+future states

» Better representation to inform action planning



What’s Next?

Sensor Representation Action




What’s Next?

Sensor Representation Action
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What’s Next?

Sensor Representation Action

Sensor Fusion

Tactile



What’s Next

Sensor Representation Action

Sliding

Action Selection

Which action will
provide most useful
information?
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Passive Observers
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