
FishGym: A High-Performance Physics-based Simulation Framework
for Underwater Robot Learning

Wenji Liu1, Kai Bai1, Xuming He1, Shuran Song2, Changxi Zheng2 and Xiaopei Liu1

Abstract— Bionic underwater robots have demonstrated their
superiority in many applications. Yet, training their intelligence
for a variety of tasks that mimic the behavior of underwater
creatures poses a number of challenges in practice, mainly due
to lack of a large amount of available training data as well
as the high cost in real physical environment. Alternatively,
simulation has been considered as a viable and important
tool for acquiring datasets in different environments, but it
mostly targeted rigid and soft body systems. There is currently
dearth of work for more complex fluid systems interacting with
immersed solids that can be efficiently and accurately simulated
for robot training purposes. In this paper, we propose a new
platform called “FishGym”, which can be used to train fish-
like underwater robots. The framework consists of a robotic
fish modeling module using articulated body with skinning, a
GPU-based high-performance localized two-way coupled fluid-
structure interaction simulation module that handles both
finite and infinitely large domains, as well as a reinforcement
learning module. We leveraged existing training methods with
adaptations to underwater fish-like robots and obtained learned
control policies for multiple benchmark tasks. The training
results are demonstrated with reasonable motion trajectories,
with comparisons and analyses to empirical models as well as
known real fish swimming behaviors to highlight the advantages
of the proposed platform.

I. INTRODUCTION

Bio-inspired underwater robots often demonstrate strong
maneuverability, propulsion efficiency, and deceptive visual
appearance. These advantages have motivated a set of
academic studies on bio-inspired soft robots and biomimetric
fish-like robots in the past years [1]–[3]. It also opens up some
important applications, such as marine education, navigation
and rescue, seabed exploration, scientific surveying, etc. [4]–
[8]. However, due to lack of sufficient datasets and high
physical cost, training their intelligent behaviors in real
environments that at least mimic the bionic creatures or even
exceed their capabilities in accomplishing complex tasks is
still quite challenging.

Alternatively, simulation has been considered as a viable
and important tool for acquiring a large number of datasets in
different scenarios [9]–[12]. Most of the currently available
simulators for robot training mainly target rigid and soft body
systems [13]–[15]. Existing simulators for fluid environment
are either highly inaccurate (e.g., based on an empirical
model [16]), too restrictive to support different agents or
environments [17]–[19], or expensive to generate a large
amount of training data [19], [20]. There is currently a dearth
of simulation platform which is able to provide a versatile,

1 ShanghaiTech University, 2 Columbia University

Fig. 1. Two-fish schooling behaviors. With the empirical model (1st row),
the follower fish always stays in the same line as the leader fish. However,
with our physical simulator (2nd row), the follower fish can utilize the wake
vortex ring (blue) and gradually pass through the vortex ring to preserve
energy. This motion behavior cannot be acquired through a simple empirical
model, highlighting the advantages of the proposed FishGym platform.

efficient yet accurate results that could be used for training
control policies of underwater robots.

We propose FishGym1, a high-performance simulation
platform targeting the two-way interaction dynamics be-
tween fish-like underwater robots and the surrounding fluid
environment. The robots are modeled by the skeletons of
arbitrary topology with surface skinning, whose motion is
driven by the articulated rigid body dynamics [21], while
the fluid-structure interaction is achieved using a recently
proposed GPU-optimized lattice Boltzmann solver [22], [23],
where immersed boundary method [24], [25] is employed
for efficient two-way coupling. To support simulations in a
local fluid domain around the robot to enable training in an
infinitely large physical domain, we propose a modification of
the original lattice Boltzmann solver that enables simulations
in a local frame of reference with acceleration, with higher
flexibility in acquiring various training environments. The
whole simulation module is then coupled with a reinforcement
learning module implemented using PyTorch [26], [27].

To demonstrate the capability of the proposed simulator,
we evaluated existing reinforcement learning algorithm with
reward functions and training procedures tailored for underwa-
ter robots. We compare the learned control policies with that
from the empirical model on several underwater planning and
control tasks to assess the feasibility and advantages of our
framework. Analyses on the emerged behaviors also indicate
consistency with previous studies on fish motion in nature.
In summary, we have made the following contributions to
training bionic underwater robots:
• A GPU-accelerated lattice Boltzmann solver that enables

1https://github.com/fish-gym/gym-fish



high-performance fluid-structure interaction in a local
moving frame of reference to allow robot swimming in
an infinitely large domain;

• A high-performance simulation platform to help explore
training bionic underwater robots;

• A learning algorithm tailored for bionic under-water
robots that is able to acquire natural and efficient control
policies for swimming;

• A collection of benchmark tasks for underwater robot
to evaluate and compare different learning methods and
control policies.

II. RELATED WORK

We herein review the relevant work in the literature for
both simulation and learning algorithms before we dig into
the details of our whole framework.

A. Simulation environments in robotics

Robot training can be achieved following OpenAI
Gym [28], which is an open-source robot learning framework
with general definitions, and can be implemented for training
a variety of robots with different environments. However, both
the simulator and learning framework should be provided
separately. At present, the most commonly used physics
simulators in robot are based on rigid-body, soft-body and
cloth dynamics [13], [15]. In particular, for articulated rigid
body systems, DART [14] can be a good choice.

Fluid environment was traditionally provided by solving
Nävier-Stoke (NS) equation coupled with a rigid body simula-
tor [29]; but efficiency limited their application especially for
vortical flows. Recently, a new simulation environment for
underwater soft-body creatures appeared relying on the finite-
element method and projection dynamics [30]; however, its
choice of empirical formula [16] on hydrodynamics makes it
impossible to create complex flow environment involving
vortices and turbulence. The same issue also applies to
some marine vehicle simulators [31], [32] based on Fossen
model [33]. Very recently, Gan et al. [34] proposed a fluid
environment, but only for limited tasks and accuracy.

There is lack of versatile and efficient yet accurate fluid
simulation environment upon which more general underwater
robot training can be performed, and our proposed “FishGym”
tries to fill the gap by providing highly efficient GPU-based
simulator for two-way coupled fluid-structure interaction.
There are also some learning frameworks that can be used
based on OpenAI Gym, e.g., rllib [35], Coach [36] and
stable-baselines3 [26], and we adopted “stable-baselines3”
for training our fish-like underwater robots.

B. Fluid-structure interaction

Fluid simulation has been studied for decades. Two
different fields have intensively progressed its development. In
computational fluid dynamics (CFD), fluid simulation mostly
targets accuracy, and a set of fluid solvers are available, from
finite difference [37]–[39], to finite volume [40]–[42], as well
as to finite elements [43]–[45]. These algorithms are typically
very expensive, which are difficult for training underwater

robots. In computer graphics (CG), fluid simulation concerns
efficiency more than accuracy, and a large number of more
efficient yet less accurate solvers were proposed [46]–[52].
However, even though GPU acceleration has been used in
some of these solvers, efficiency is still not high enough.
When rigid body dynamics is coupled for fluid-structure
interaction [53]–[55], the efficiency can be even lower.

In recent years, lattice Boltzmann method (LBM) has
been considered as a very promising alternative to traditional
fluid solvers [56]–[60], exhibiting excellent efficiency and
accuracy (usually an order of magnitude faster than the NS
counterpart with comparable accuracy on GPU). Its pure local
dynamics without solving global equations greatly benefits
the highly parallel implementation [23], [59], [60]. When
LBM is coupled with immersed boundary (IB) method [60],
it can be easily used to simulate two-way coupled fluid-
structure interaction. In particular, Chen et al. [23] proposed
a GPU-optimized implementation of IB-LBM, which provides
a super-efficient solver for fluid-structure interaction, making
the originally expensive fluid simulation now affordable for
robot training purposes. Our proposed platform is based on
such a solver, with modifications to allow it for simulating
fish dynamics in a local moving domain for higher flexibility,
which is not supported in any previous works.

C. Reinforcement learning for robot control

Reinfocement learning (RL) is a branch of machine learning
which aims to train agents using data collected through
interaction with the surrounding environment. For real world
problems in robotics, model-free RL algorithms are often
used [61]. There are two main approaches of model-free
RL: policy optimization and Q-learning. Policy optimization
algorithms, like PPO [62] and A2C/A3C [63], are stable but
sample-inefficient. Q-learning methods, like DQN [64] and
C51 [65], are more sample-efficient but less stable. Both
of them have wide applications. For example, PPO was
used in multi-robot collision avoidance task [66], bipedal
robot locomotion [67] etc. DQN also proves to work well
on a certain type of tasks in real robots [68]–[70]. Recently,
SAC [71] emerges to combine the strengths of the above
two main approaches and has proved its capability in real
robot problems like Dexterous manipulation [72], mobile
robot navigation [73], robot arm control [74], multi-legged
robot [75], etc. Due to its sample efficiency and wide
applications, we adopt SAC in this paper.

III. FISHGYM FRAMEWORK

Our physics-based robot learning framework consists of
three components: 1) the robot model for which we focus
on fish-like robots, 2) the simulation method for predicting
fluid-robot interaction, and 3) the robot learning method that
leverages our simulation method. We now present their details.

A. Robot model

Motivated by the anatomy of the fish structure, we model a
fish robot’s locomotion by its skeletal structure, that is, bones
connected by joints. Covering the skeleton are flesh and skin.



Fig. 2. Illustration of modeled fishes with different skeletons and skins,
where the number of joints, the length of each skeleton edge as well as the
topology of the skeleton can vary for different types of fishes.

Provided a skeleton configuration (e.g., with a certain set of
joint angles), we use linear blend skinning [76] to determine
the fish’s surface shape. In our fluid-robot simulation, the fish
surface is assumed to be inelastic, and the flesh is treated
as a rigid body under the current skeleton configuration.
We make this assumption for the sake of computational
efficiency. By changing its joint angles, a fish robot can
adjust its skeleton pose, which in turn determines its surface
shape. Three examples of fish robots with different skeletal
structures are shown in Fig. 2.

The bone skeleton is driven by the articulated rigid body
dynamics [21]:

M(q)q̈ + C(q, q̇) = τint + τext, (1)
where q, q̇ and q̈ are respectively the vectors of generalized
positions, velocities and accelerations of all joints. M(q) is
the mass matrix, and C(q, q̇) accounts for the Coriolis and
centrifugal forces; details of these forces will be described
shortly. τint and τext are the vectors representing the gener-
alized internal forces (including the spring forces on joints
to enable elasticity, damping forces due to velocities, friction
forces, as well as the actuation given by the controller) and
the generalized external forces (caused by gravity, possible
collisions and the surrounding fluids) exerted on the multi-
body system. We employ DART [14] to solve the above
multi-body system, and for each time step, we control the
bone shape by applying generalized actuation forces on joints.
The skin surface is achieved by employing linear blending
method proposed by [76].

B. GPU-accelerated localized fluid-structure interaction

There exist many simulation methods that may predict fluid-
robot interaction [53]–[55]. These methods, however, require
a fixed simulation domain, inside which the underwater robot
moves. When the simulation domain is large, simulation
is costly. To reduce the cost, we assume that the fluid
further away from the robot by a certain distance will not
influence the robot motion. Thereby, we can fix the size of
the simulation domain centered around the fish robot and
allow the domain to move along with the fish. This setup
allows the fish robot to move in an infinite spatial domain
while keeping the simulation domain limited. But then, to
capture fluid dynamics correctly, we need to simulate fluid-
structure interaction in a moving frame of reference. Being
able to swim in an infinitely large domain is very important
for training fish-like underwater robots; Also crucial is the
simulation performance, as training the learning algorithm
will often run fluid simulations many times (see Section III-C).
We tackle both problems next.

Fig. 3. Comparison between fluid-structure interaction in a global static
fluid domain (left) and the non-inertial counterpart in a moving local fluid
domain (right), indicating the closeness of the paths with a known policy.

1) Formulation: Fluid in a fixed frame of reference is
often governed by the following NS equation:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u + F, (2)

where ρ, u, p and F represent the density, velocity, pressure
and external force fields, and ν is the kinematic viscosity. This
equation cannot be used to solve flows in a moving frame of
reference around the fish, which should be reformulated in a
frame of reference with acceleration. According to [77], by
transforming with time-dependent relative translation p and
rotation r (represented as Euler angles) between consecutive
frames, the NS equation in an accelerating frame of reference
results in an additional virtual force added to the system:

Fni = −p̈− r̈× x′ − ṙ× (ṙ× x′)− 2ṙ× u′, (3)
where all the physical quantities are measured in a moving
frame of reference. In case of any immersed solid, e.g., the
swimming robot, we apply Neumann boundary condition (i.e.,
slipping) as an approximation.

2) Simulation: To simulate the above dynamics in an
efficient manner, we discard the traditional NS solver; instead,
we employ a GPU-optimized LBM solver with immersed
boundary (IB) method [60] for fluid-structure interaction,
whose high efficiency has been demonstrated. The fish-like
robot surface is uniformly sampled before simulation, and the
external virtual force due to acceleration can be added into
the system very easily. The difficulty we need to address is
the domain boundary, which in theory should be set according
the large-domain simulation. However, in practice, we do not
know the exact values of the domain boundary, and when fish
moves with different velocities and accelerations, the flow can
go into and outside from any portion of the domain boundary.
Thus, we need a domain boundary treatment which can adapt
to this situation, and through a set of experiments, we found
that the method described in [78] satisfy this requirement and
has been employed in our IB-LB simulation. Fig. 3 compares
the accuracy between a full global fluid domain simulation
(left) where we directly use IB-LB method in [60] and the
proposed localized fluid-structure interaction (right). Both
methods produce nearly identical robot motion trajectories.

C. Reinforcement learning for fish-like robot control

Due to complex fish dynamic model, the control of fish-
like robot swimming cannot be simply achieved by a model-
based controller. In addition, since the control input is usually
high-dimensional and cannot be fully decoupled, the PID



controller cannot be used either. Thus, reinforcement learning
(RL) is a common choice to train complex control policies
for swimming. In this paper, we propose four benchmark
tasks that will be trained using RL in order to demonstrate
the power of the new simulator together with the learning
algorithms. These benchmark tasks are:

• Cruising. The robot fish tries to swim to reach a given
target location that is a distant away from the robot.

• Pose control. A robot fish tries to control its pose in
order to make a U-turn.

• Two-fish schooling. A robot fish follows a leader fish
as closely as possible, where the leader fish is controlled
to swim in a straight path.

• Path following. A robot fish follows a given arbitrary
path as closely and efficiently as possible.

In RL, an agent learns a policy for a specific task through
repeated interaction with the environment. Given a state si,
the RL tries to learn a parametric policy πθ , which is usually
represented by a fully-connected neural network, to produce
an action ai; The action can be taken by the agent to transit to
the next state si+1, where a reward ri is evaluated. The agent
iterates transitions until it satisfies one of the exit conditions,
e.g., finite time horizon, or success/failure of a given task.
A parametric policy πθ is learned by finding the optimal
parameters θ∗ that maximize the expected return:

J(θ) = Eτ∼pθ(τ)

[
T∑
t=0

γtrt

]
, (4)

where T is the maximum number of control time steps, γ
is the discounting factor, and τ is the sampled trajectory
containing a sequence of states and actions, i.e., τ =
(s0, a0, s1, a1, ..., si, ai, ..., st, at). The policy learning can be
achieved in two different ways. Depending on the available
resources, we can sample the trajectories from one single
task, or from multiple tasks to learn a global policy. However,
if the variety of tasks is large, it is time consuming especially
when the simulator is not fast enough. On the other hand, if
the tasks can be subdivided into small and simple sub-tasks,
we can gather all these sub-tasks together and sample from
them to learn a local policy, which is expected to be much
more generalizable given a relatively small training set, and
could be affordable for limited resources. We adopt both
approaches to train different tasks.

In the following, we specify in detail the specific designs
on how we train these benchmark tasks.

a) State: For all benchmark tasks, we consider the
following state variable:

s = (sd, sp, sr, stask),

where sd = (q, q̇) contains the dynamic states, with q the
vector of generalized joint positions, and q̇ is the vector of
generalized joint velocities; sp = (p, ṗ) contains translation,
where p is the relative translation vector between simulation
time steps, and ṗ is the relative velocity vector; sr = r
contains rotation (Euler angles); and stask contains task-
specific states. In practice, to reduce input dimension, all
state variables are expressed in a local coordinate system.

TABLE I
WEIGHTS USED IN THE REWARD OF EACH TASK

wv wp wr we wtask

Cruising 1 0 0.2 0.5 0
Pose Control 0 0 1 0 0

Two Fish Schooling 0 1 0 0.1 0
Path Following 1 0 0 0.5 1

b) Action: For all benchmark tasks, the action can be
generally defined as:

a = (σ,∆v),

where σ is the vector containing the actuation forces applied
to the joints, and ∆v is the change of the bladder’s volume
inside the robot fish, which controls buoyancy to enable going
up and down in a fluid.

c) Reward: The reward for training all benchmark tasks
can also be written in a general mathematical form as:

r = wprp + wvrv + wrrr + were + wtaskrtask,

where rp = exp(−‖p‖2) and rv = ‖ṗ‖2 drive the robot
towards its target position and velocity as fast as possible;
rr = 1 − ‖r‖2 drives the robot towards its target rotation
(pose); re = ‖τ‖2 measures the effort exhausted during the
swimming; rtask is a task-specific reward, which will be spec-
ified later; and wp, wv, wr, we, wtask are the corresponding
weights for different components in the reward. The weights
for each benchmark task are listed in Table. I. Our proposed
four benchmark tasks are trained using either global or local
policy learning approaches we described.

d) Global policy learning: For cruising, pose control
and two-fish schooling tasks, we use global policy learning
with a single input task, meaning that we train robot fish
separately for each task, where rtask = 0. Fig. 5 shows
the snapshots of the swimming results, where the first two
rows show cruising inside a shallow and a deep fluid; the
third row shows the pose control for U-turn, and the fourth
row shows the two-fish schooling result, which has not been
demonstrated in previous works.

Fig. 4. Illustration of local policy training for arbitrary path following.
Left: a local target is sampled given a random d and θ; right: when applying
learned policy for path following, we always select a local target ahead on
the desired path, which changes for each time step.

e) Local policy learning: Training robot fish following
an arbitrarily long path is more difficult, and global policy
learning could be resource demanding and time consuming. To
make the training easier while also retaining generalizability,
we use local policy learning instead. In fact, following an
arbitrarily long path can be viewed as following a sequence
of short and straight local paths along nearly the tangent
direction of the global path given a robot location, greatly
simplifying the training process. During training, we randomly
sample local paths (parameterized by (d, θ), see Fig. 4 (left),
where d is the distance to the local path and θ is the angle
to the target; note that we restrict the robot fish to swim in



Fig. 5. The control results for benchmark tasks using our trained policies
and two-way coupled fluid-structure interaction solver. Top row: cruising in
a shallow fluid; second row: cruising in a deep fluid (with buoyancy control);
third row: pose control with a U-turn; fourth row: two-fish schooling; bottom
row: path following with an arbitrarily specified path.

a horizontal 3D plane) and form a set of trajectories that
are representative of the local conditions of a global path;
then we can train the local policy once and apply it to any
specified path at any time step, similar in idea to [79]. In
our local policy learning, the task specific state is defined as
stask = d, and the task specific reward rtask is:

rtask = ‖ḋ‖2 + exp(−‖d‖2), (5)
which encourages fast and stable convergence to the local
path. Here, d is a vector containing relative distance to the
path. The training is initialized randomly by the technique
proposed in [80], and on each trial, random initial velocity is
enforced on the robot fish and random angles and velocities
are set on the joints. Once learned, we apply the policy every
some time steps based on the input state and a local target
location that is 0.5m ahead on the local path, see Fig. 4
(right), and Fig. 5 (bottom) shows a path following result.

IV. PLATFORM AND EVALUATION

In the following, we first describe our setup on simulation
and evaluate our fluid simulation platform with our learning
algorithms for robot fish swimming in multiple aspects.

A. Platform setup

a) Simulation: In most our training tasks, all the fish
robots have a density of 1080kg/m3, and we used local non-
inertial fluid-structure interaction solver for simulating robot
fish dynamics, with a grid resolution of 100× 100× 100 and
a physical time step of 0.004s. The solver costs around 3.5

seconds for simulating one physical second on an NVidia
TitanXp GPU with 12G memory. For two-fish schooling,
we extended the local domain horizontally to simultaneously
include two fishes, with a grid resolution of 150× 50× 100
and the same physical time step, which costs around 4 seconds
for simulating one physical second on the same GPU.

b) Training: The policy network consists of two layers,
each containing 256 units, with an ReLU activation function.
For each task, the policy is trained using SAC [71]. We
train each policy for a total of 2000 simulation rollouts, each
of which contains 50 time steps, where a candidate policy
executes a new action at each time step. We train the policy
network with a batch size of 256. The model parameters are
updated for each step, and one gradient step is performed
after each rollout. We train all policies on a machine with
an NVidia TitanXP GPU, and the training process usually
starts to converge after 6 hours (1000 episodes), and have a
smooth convergence within 10 hours. The training could be
several times faster if we use the most state-of-the-art GPUs,
such as NVidia GeForce RTX3090.

B. Comparison for different types of robot fishes

Our platform can support robot fishes designed with
different skeleton connectivity and skin shapes. Fig. 6 shows
the training results for three types of robot fishes swimming
along an arbitrarily given path. The average distances from
the path (around 7 meters long) are as close as 0.03m, 0.05m,
0.08m, respectively, indicating the capability of our platform
in supporting a variety of robot fishes.

C. Comparison for different simulation models

In the literature, a simple empirical model was proposed as
the simulator for robot fish swimming [16], which has been
used until now [30], [81], [82]. It models the instantaneous
force on the surface of the robot due to viscous fluid as:

F = −k
∫
S

(n · v)nds, (6)

where n is the unit outward normal; v is the relative velocity
between the surface and the fluid (since there is no fluid
simulation, the fluid velocity is assumed to be zero), and k
is a constant manually tuned for different robot fishes and
the surrounding fluids. Note that for a specific system, k can
only be determined either by real measurement data or from
other physically more accurate simulators.

To examine the similarity and difference between the
empirical model and our physical simulator for robot fish
swimming, we conduct two test cases with analyses below.

a) Path following: Path following is a primitive task for
robot control. Here, we compare the similarity and difference
of path following using an empirical model and our physical
simulator. Since there is no clue on how to tune the parameter
k in an empirical model, we arbitrarily choose one and learn
a policy.

Fig. 7 (left) shows the control result, indicating serious
drifting when turning, while our physical simulator does not
require any parameter turning (we directly specify the physical
parameter for the fluid as ρ=1000kg/m3 and ν=0.00089m2/s



Fig. 6. Different types of robot fishes trained using local policy learning
for arbitrary path following. Top: koi robot fish; middle: flatfish robot fish
with a different skeleton topology (with branching during modeling); bottom:
eel robot fish with a long concatenated skeleton.

Fig. 7. Comparison for path following using (left) empirical model with an
arbitrarily chosen parameter and (right) our physical simulator. Note that due
to improper boundary force, serious drifting happens for empirical model
when turning. The numbers indicate the order during path following.

with a zero-velocity initialization to match that used in the
empirical model), leading to a reasonable path following
result as shown in Fig. 7 (right). Note that the mean path
deviation for the empirical model with an arbitrary parameter
is as large as 0.5m, while our physical simulator only has
a mean path deviation of 0.03m. The empirical model can
be much improved if we collect data from our simulator
and fit the parameter k, leading to a very similar result in a
static fluid environment but runs much faster. However, in
some cases where we cannot assume static fluid background,
empirical model can completely fail no matter how we fit the
parameter k, and we demonstrate this case in the following
two-fish schooling task.

b) Two-fish schooling: Fish schooling describes a com-
mon phenomenon where fishes tend to swim in a group and
one fish follows the other. It has been revealed by scientists
that due to the vortex ring generated behind the leader fish, the
follower fish tries to utilize the vortex ring to reduce drag and
pass through it in order to catch up with the leader fish more
efficiently [19], [20]. We demonstrate this behavior in Fig. 1
(bottom row). Due to more accurate modeling to capture
complex fluid flows, the training can successfully obtain a
policy that utilizes the vortex ring, see Fig. 1 (bottom), while
empirical model, on the other hand, fails to learn such a
policy due to lack of a real fluid-structure interaction.

Fig. 8. Control behaviors of a koi-like robot fish for different fluid densities.
Top: ρ = 1000; bottom: ρ = 10.

D. Comparison for different fluid settings
In contrast to the empirical model, our simulator can freely

set physical parameters, leading to different control behaviors
for a trained robot fish. Here, we change the fluid density
(with a higher density ρ = 1000 and a lower density ρ = 10,
see Fig. 8) for simulation and train with the same learning
parameters to achieve a cruising task. It is observed that the
robot fish in a higher density fluid seems to move with less
swing amplitude, while the one in a lower density fluid has a
larger swing amplitude to generate greater propulsion force,
which is consistent with the physical expectations.

E. Effects of reward weighting
In this experiment we investigate effects of different reward

weighting. Table II summarizes the total energy cost by
varying weights wv and we in the cruising task, where
wv encourages fish to reach the target position while we
encourages fish to save its energy. A good balance between
energy preservation and the time to accomplish the task can
be made, e.g., wv = 1.0 and we = 0.5.

TABLE II
IMPACT OF OF WEIGHTS IN THE REWARD

wv we Total Energy Cost Total Time (sec.)
0.00 1.00 0.0413 10.0
0.20 1.00 12.354 5.2
1.00 1.00 15.046 4.6
1.00 0.50 17.705 4.2
1.00 0.00 40.969 4.2

V. CONCLUSION

In this paper, we propose a new open-to-use simulation
platform for training underwater fish-like robots. The whole
platform consists of a new modeling for fish-like underwater
robot, a GPU-based non-inertial high-performance fluid-
structure interaction solver (as a training environment), and
reinforcement learning algorithms with both global and local
policy learning. Four different benchmark tasks were proposed
and trained with our platform, with expected results. We
compared and analyzed the new training platform in terms of
different results in multiple aspects to evaluate the advantages.

There are also some limitations. First, the fish model is a
reduced model that may deviate from the real robot design,
and is now hence difficult to directly transfer to a real robot
once learned. Second, since we use local simulation, the
platform is unable to training fish robot with a more complex
external environment, e.g., a large vortex. Finally, the grid
resolution around the fish is not fine enough (otherwise, it
will become very slow for training), and the accuracy is not
sufficiently high. Supporting simulation in more complex fluid
environment and developing more efficient training method
with higher accuracy deserve our future work.



REFERENCES

[1] R. Du, Z. Li, K. Youcef-Toumi, and P. V. y Alvarado, Robot fish:
Bio-inspired fishlike underwater robots. Springer, 2015.

[2] D. A. Paley and N. M. Wereley, Bioinspired Sensing, Actuation, and
Control in Underwater Soft Robotic Systems. Springer, 2021.

[3] P. Duraisamy, R. Sidharthan, and M. Santhanakrishnan, “Design,
modeling, and control of biomimetic fish robot: A review,” Journal of
Bionic Engineering, vol. 16, pp. 967–993, 11 2019.

[4] V. Kopman and M. Porfiri, “Design, modeling, and characterization of
a miniature robotic fish for research and education in biomimetics and
bioinspiration,” IEEE/ASME Transactions on mechatronics, vol. 18,
no. 2, pp. 471–483, 2012.

[5] G. Picardi, M. Chellapurath, S. Iacoponi, S. Stefanni, C. Laschi, and
M. Calisti, “Bioinspired underwater legged robot for seabed exploration
with low environmental disturbance,” Science Robotics, vol. 5, no. 42,
2020.

[6] F. Berlinger, M. Gauci, and R. Nagpal, “Implicit coordination for 3d
underwater collective behaviors in a fish-inspired robot swarm,” Science
Robotics, vol. 6, no. 50, 2021.

[7] G. Li, X. Chen, F. Zhou, Y. Liang, Y. Xiao, X. Cao, Z. Zhang, M. Zhang,
B. Wu, S. Yin et al., “Self-powered soft robot in the mariana trench,”
Nature, vol. 591, no. 7848, pp. 66–71, 2021.

[8] R. K. Katzschmann, J. DelPreto, R. MacCurdy, and D. Rus, “Explo-
ration of underwater life with an acoustically controlled soft robotic
fish,” Science Robotics, vol. 3, no. 16, 2018.

[9] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z.
Kolter, “End-to-end differentiable physics for learning and control,”
Advances in neural information processing systems, vol. 31, pp. 7178–
7189, 2018.

[10] S. Lee, M. Park, K. Lee, and J. Lee, “Scalable muscle-actuated human
simulation and control,” ACM Transactions On Graphics, vol. 38, no. 4,
pp. 1–13, 2019.

[11] S. James, M. Freese, and A. J. Davison, “Pyrep: Bringing v-rep to
deep robot learning,” arXiv preprint arXiv:1906.11176, 2019.

[12] K. Bergamin, S. Clavet, D. Holden, and J. R. Forbes, “Drecon:
data-driven responsive control of physics-based characters,” ACM
Transactions On Graphics, vol. 38, no. 6, pp. 1–11, 2019.

[13] E. Coumans, “Bullet physics simulation,” in ACM SIGGRAPH 2015
Courses, ser. SIGGRAPH ’15. New York, NY, USA: Association for
Computing Machinery, 2015.

[14] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa,
M. Stilman, and C. K. Liu, “Dart: Dynamic animation and robotics
toolkit,” Journal of Open Source Software, vol. 3, no. 22, p. 500, 2018.

[15] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2012, pp. 5026–5033.

[16] D. Terzopoulos, X. Tu, and R. Grzeszczuk, “Artificial fishes: Au-
tonomous locomotion, perception, behavior, and learning in a simulated
physical world,” Artif. Life, vol. 1, no. 4, pp. 327–351, 1994.

[17] J. Song, Y. Zhong, H. Luo, Y. Ding, and R. Du, “Hydrodynamics of
larval fish quick turning: A computational study,” Proceedings of the
Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science, vol. 232, p. 095440621774327, 12 2017.

[18] J. Song, Y. Zhong, R. Du, L. Yin, and Y. Ding, “Tail shapes lead to
different propulsive mechanisms in the body/caudal fin undulation
of fish,” Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science, vol. 235, p.
095440622096768, 11 2020.

[19] S. Verma, G. Novati, and P. Koumoutsakos, “Efficient collective
swimming by harnessing vortices through deep reinforcement learning,”
Proceedings of the National Academy of Sciences, vol. 115, no. 23,
pp. 5849–5854, 2018.

[20] G. Novati, S. Verma, D. Alexeev, D. Rossinelli, W. van Rees, and
P. Koumoutsakos, “Synchronisation through learning for two self-
propelled swimmers,” Bioinspiration and Biomimetics, vol. 12, p.
036001, 2017.

[21] R. Weinstein, J. Teran, and R. Fedkiw, “Dynamic simulation of
articulated rigid bodies with contact and collision,” IEEE Transactions
on Visualization and Computer Graphics, vol. 12, no. 3, pp. 365–374,
2006.

[22] W. Li, Y. Chen, M. Desbrun, C. Zheng, and X. Liu, “Fast and scalable
turbulent flow simulation with two-way coupling,” ACM Transactions
on Graphics, vol. 39, no. 4, Jul. 2020.

[23] Y. Chen, W. Li, R. Fan, and X. Liu, “Gpu optimization for high-
quality kinetic fluid simulation,” IEEE Transactions on Visualization
and Computer Graphics, 2021.

[24] Z. Li, J. Favier, U. D’Ortona, and S. Poncet, “An immersed boundary-
lattice boltzmann method for single-and multi-component fluid flows,”
Journal of Computational Physics, 2016.

[25] J. Wu and C. Shu, “An improved immersed boundary-lattice boltzmann
method for simulating three-dimensional incompressible flows,” Journal
of Computational Physics, 2010.

[26] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and
N. Dormann, “Stable baselines3,” GitHub repository, 2019.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, pp. 8026–8037, 2019.

[28] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[29] J. Tan, Y. Gu, G. Turk, and C. Liu, “Articulated swimming creatures,”
ACM Transactions on Graphics, vol. 30, p. 58, 2011.

[30] S. Min, J. Won, S. Lee, J. Park, and J. Lee, “Softcon: Simulation
and control of soft-bodied animals with biomimetic actuators,” ACM
Transactions on Graphics (TOG), vol. 38, no. 6, pp. 1–12, 2019.

[31] P. Cieślak, “Stonefish: An advanced open-source simulation tool
designed for marine robotics, with a ros interface,” in OCEANS 2019-
Marseille. IEEE, 2019, pp. 1–6.

[32] M. M. M. Manhães, S. A. Scherer, M. Voss, L. R. Douat, and
T. Rauschenbach, “Uuv simulator: A gazebo-based package for
underwater intervention and multi-robot simulation,” in OCEANS 2016
MTS/IEEE Monterey. IEEE, 2016, pp. 1–8.

[33] T. I. Fossen, Handbook of marine craft hydrodynamics and motion
control. John Wiley & Sons, 2011.

[34] C. Gan, J. Schwartz, S. Alter, M. Schrimpf, J. Traer, J. D. Freitas,
J. Kubilius, A. Bhandwaldar, N. Haber, M. Sano, K. Kim, E. Wang,
D. Mrowca, M. Lingelbach, A. Curtis, K. Feigelis, D. M. Bear,
D. Gutfreund, D. Cox, J. J. DiCarlo, J. McDermott, J. B. Tenenbaum,
and D. L. K. Yamins, “Threedworld: A platform for interactive multi-
modal physical simulation,” 2020.

[35] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. Gonzalez, M. Jordan, and I. Stoica, “Rllib: Abstractions for
distributed reinforcement learning,” in International Conference on
Machine Learning. PMLR, 2018, pp. 3053–3062.

[36] I. Caspi, G. Leibovich, G. Novik, and S. Endrawis, “Reinforcement
learning coach,” 2017.

[37] S. Godunov and I. Bohachevsky, “Finite difference method for
numerical computation of discontinuous solutions of the equations
of fluid dynamics,” Matematičeskij sbornik, vol. 47, no. 3, pp. 271–
306, 1959.

[38] M. M. Rai and P. Moin, “Direct simulations of turbulent flow using
finite-difference schemes,” Journal of computational physics, vol. 96,
no. 1, pp. 15–53, 1991.

[39] P. K. Smolarkiewicz and L. G. Margolin, “Mpdata: A finite-difference
solver for geophysical flows,” Journal of Computational Physics, vol.
140, no. 2, pp. 459–480, 1998.

[40] R. Eymard, T. Gallouët, and R. Herbin, “Finite volume methods,”
Handbook of numerical analysis, vol. 7, pp. 713–1018, 2000.

[41] H. K. Versteeg and W. Malalasekera, An introduction to computational
fluid dynamics: the finite volume method. Pearson education, 2007.

[42] A. Pinelli, I. Naqavi, U. Piomelli, and J. Favier, “Immersed-boundary
methods for general finite-difference and finite-volume navier–stokes
solvers,” Journal of Computational Physics, vol. 229, no. 24, pp. 9073–
9091, 2010.

[43] E. L. Wilson and M. Khalvati, “Finite elements for the dynamic analysis
of fluid-solid systems,” International Journal for Numerical Methods
in Engineering, vol. 19, no. 11, pp. 1657–1668, 1983.

[44] V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes
equations: theory and algorithms. Springer Science & Business Media,
2012, vol. 5.

[45] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast
iterative solvers: with applications in incompressible fluid dynamics.
Numerical Mathematics and Scie, 2014.

[46] J. Stam, “Stable fluids,” ACM SIGGRAPH 99, vol. 1999, 11 2001.
[47] B. Kim, Y. Liu, I. Llamas, and J. R. Rossignac, “Flowfixer: Using bfecc

for fluid simulation,” Eurographics Workshop on Natural Phenomena,
2005.



[48] M. Becker and M. Teschner, “Weakly compressible SPH for free surface
flows,” in Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation, 2007.

[49] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner,
“SPH fluids in computer graphics,” Eurographics 2014 - State of the
Art Reports, 2014.

[50] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin, “The
affine particle-in-cell method,” ACM Transactions on Graphics, 2015.

[51] J. Zehnder, R. Narain, and B. Thomaszewski, “An advection-reflection
solver for detail-preserving fluid simulation,” ACM Transactions on
Graphics, 2018.

[52] Z. Qu, X. Zhang, M. Gao, C. Jiang, and B. Chen, “Efficient and
conservative fluids using bidirectional mapping,” ACM Transactions
on Graphics, 2019.

[53] B. M. Klingner, B. E. Feldman, N. Chentanez, and J. F. O’brien, “Fluid
animation with dynamic meshes,” in ACM SIGGRAPH 2006 Papers,
2006, pp. 820–825.

[54] X. Lv, Q. Zou, Y. Zhao, and D. Reeve, “A novel coupled level set and
volume of fluid method for sharp interface capturing on 3d tetrahedral
grids,” Journal of Computational Physics, vol. 229, no. 7, pp. 2573–
2604, 2010.

[55] M. Dai and D. P. Schmidt, “Adaptive tetrahedral meshing in free-
surface flow,” Journal of computational Physics, vol. 208, no. 1, pp.
228–252, 2005.

[56] X. Liu, W.-M. Pang, J. Qin, and C.-W. Fu, “Turbulence simulation
by adaptive multi-relaxation lattice boltzmann modeling,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 20, no. 02, pp.
289–302, feb 2014.

[57] D. Lycett-Brown, K. H. Luo, R. Liu, and P. Lv, “Binary droplet
collision simulations by a multiphase cascaded lattice Boltzmann
method,” Physics of Fluids, vol. 26, p. 023303, 2014.

[58] A. De Rosis, “Nonorthogonal central-moments-based lattice Boltzmann
scheme in three dimensions,” Physical Review E, vol. 95, no. 1, p.
013310, 2017.

[59] W. Li, K. Bai, and X. Liu, “Continuous-scale kinetic fluid simulation,”
IEEE Transactions on Visualization and Computer Graphics, vol. 25,
no. 09, pp. 2694–2709, sep 2019.

[60] W. Li, Y. Chen, M. Desbrun, C. Zheng, and X. Liu, “Fast and scalable
turbulent flow simulation with two-way coupling,” ACM Transactions
on Graphics, vol. 39, no. 4, Jul. 2020.

[61] R. Nian, J. Liu, and B. Huang, “A review on reinforcement learning:
Introduction and applications in industrial process control,” Computers
& Chemical Engineering, vol. 139, p. 106886, 2020.

[62] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[63] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International conference on machine
learning. PMLR, 2016, pp. 1928–1937.

[64] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[65] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional
perspective on reinforcement learning,” in International Conference on
Machine Learning. PMLR, 2017, pp. 449–458.

[66] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep
reinforcement learning,” in 2018 IEEE International Conference on
Robotics and Automation. IEEE, 2018, pp. 6252–6259.

[67] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth,
and K. Sreenath, “Reinforcement learning for robust parameterized
locomotion control of bipedal robots,” arXiv preprint arXiv:2103.14295,
2021.

[68] Y. Kato, K. Kamiyama, and K. Morioka, “Autonomous robot navigation
system with learning based on deep q-network and topological maps,”
in 2017 IEEE/SICE International Symposium on System Integration.
IEEE, 2017, pp. 1040–1046.

[69] J. Xin, H. Zhao, D. Liu, and M. Li, “Application of deep reinforcement
learning in mobile robot path planning,” in 2017 Chinese Automation
Congress. IEEE, 2017, pp. 7112–7116.

[70] L. Chen, Y. Zhao, H. Zhao, and B. Zheng, “Non-communication
decentralized multi-robot collision avoidance in grid map workspace
with double deep q-network,” Sensors, vol. 21, no. 3, p. 841, 2021.

[71] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018,
pp. 1861–1870.

[72] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic
algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[73] J. C. de Jesus, V. A. Kich, A. H. Kolling, R. B. Grando, M. A. d.
S. L. Cuadros, and D. F. T. Gamarra, “Soft actor-critic for navigation
of mobile robots,” Journal of Intelligent & Robotic Systems, vol. 102,
no. 2, pp. 1–11, 2021.

[74] C.-C. Wong, S.-Y. Chien, H.-M. Feng, and H. Aoyama, “Motion
planning for dual-arm robot based on soft actor-critic,” IEEE Access,
vol. 9, pp. 26 871–26 885, 2021.

[75] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” arXiv preprint
arXiv:1812.11103, 2018.

[76] N. Magnenat-Thalmann, R. Laperrire, and D. Thalmann, “Joint-
dependent local deformations for hand animation and object grasping,”
in In Proceedings on Graphics interface’88. Citeseer, 1988.

[77] H. Asmuth, “Development of overset strategies for lbm-based flow
solvers,” Thesis, Technische Universität Hamburg, 2016.

[78] G. Zhao-Li, Z. Chu-Guang, and S. Bao-Chang, “Non-equilibrium
extrapolation method for velocity and pressure boundary conditions
in the lattice boltzmann method,” Chinese Physics, vol. 11, no. 4, pp.
366–374, 2002.

[79] X. B. Peng, G. Berseth, K. K. Yin, and M. Van De Panne, “Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement
learning,” ACM Transactions on Graphics, vol. 36, no. 4, 2017.

[80] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based character
skills,” ACM Transactions on Graphics, vol. 37, no. 4, 2018.

[81] R. Grzeszczuk, D. Terzopoulos, and G. Hinton, “Neuroanimator: Fast
neural network emulation and control of physics-based models,” in
Proceedings of the 25th annual conference on Computer graphics and
interactive techniques, 1998, pp. 9–20.

[82] W. Si, S.-H. Lee, E. Sifakis, and D. Terzopoulos, “Realistic biomechan-
ical simulation and control of human swimming,” ACM Transactions
on Graphics (TOG), vol. 34, no. 1, pp. 1–15, 2014.


	Introduction
	Related Work
	Simulation environments in robotics
	Fluid-structure interaction
	Reinforcement learning for robot control

	FishGym Framework
	Robot model
	GPU-accelerated localized fluid-structure interaction
	Formulation
	Simulation

	Reinforcement learning for fish-like robot control

	Platform and Evaluation
	Platform setup
	Comparison for different types of robot fishes
	Comparison for different simulation models
	Comparison for different fluid settings
	Effects of reward weighting

	Conclusion
	References

