An Overview of the Electronic Design Automation (EDA) Field

Stephen A. Edwards

Department of Computer Science
Columbia University
www.cs.columbia.edu/~sedwards

Electronic Design Automation

EDA: Software engineers use to design integrated circuits

Most tools focus on large digital ICs:

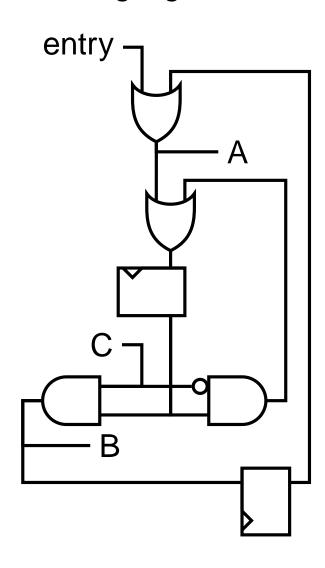
- Microprocessors (Intel, Sun, Motorola)
- Graphics chips (nVidia, S3)
- Digital signal processors (TI, Motorola)

Design complexity the biggest challenge (millions of transistors).

Typical Design Flow

Overall flow: Translate high levels of abstraction to low levels

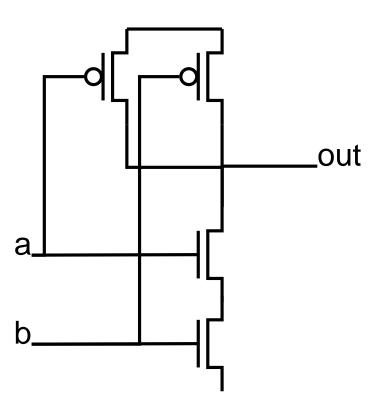
- 1. Register-transfer level Verilog or VHDL
- 2. Gate-level netlist
- 3. Transistor-level netlist
- 4. Polygons describing "masks" for transistors and wires


Register-transfer level Verilog

Like a C or Java program:

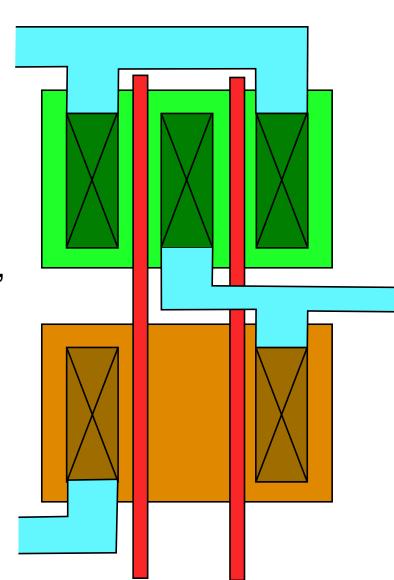
```
module gcd(r, ready, clk, reset, a, b);
  output r[7:0], ready; reg r[7:0];
  input clk, reset, a[7:0], b[7:0];
  always @(posedge clk) begin
    ready = 0;
    if (a == b) begin
      r = a; ready = 1;
    end else if (a \le b) b = b - a;
    else a = a - b;
  end
end module
```

Gate-level netlists


Collection of logic gates and flip-flops connected by wires.

Transistor-level netlists

Collection of MOS transistors (two types) connected by wires.


Transistor netlist for a single NAND gate:

Polygon Layout

Collection of polygons (lists of 2D points) on different masks (metal, gate, etc.).

Layout for a single NAND gate:

Types of EDA/IC companies

Chip designers

Intel, Motorola, TI, nVidia, S3, IBM

Chip fabricators

TSMC, LSI Logic, NEC

Fab equipment suppliers

Applied materials

EDA tool vendors

Cadence, Synopsys, Magma, (Avanti)

EDA Tools

Logic synthesis

- Translates high-level languages into netlists
- Synopsys main supplier

Place-and-route tools

- Takes netlists and decides where to put each wire and transistor
- Cadence main supplier

EDA Tools

Simulation tools

- Takes a description of a circuit (netlist) and simulates its behavior
- Critical to get a chip right the first time
- Synopsys and Cadence both

Verification tools

- Design rule/electrical rule checkers. Are the netlist and polygons right?
- Equivalence checkers: do the polygons match the netlist?
 Does the netlist match the original?

Large EDA Conferences

Design Automation Conference (DAC)

- Yearly, in early June, different US locations
- Large technical program plus enormous tradeshow

International Conference on Computer-Aided Design (ICCAD)

- Yearly, early November, San Jose, California
- Large technical program

Design Automation and Test in Europe (DATE)

- Yearly, March, alternates between Munchen and Paris
- Smaller, European version of DAC

Other Academic Resources

Journals:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TransCAD)

ACM Transactions on Design Automation for Electronic Systems (TODAES)

Workshops:

Many small workshops and conferences (logic synthesis, low-power design, FPGAs, low-power, verification, etc.)

Professional Organization:

IEEE SIGDA (Special Interest Group on Design Automation). Sponsors DAC, ICCAD, etc.