
ESUIF: An Open Esterel Compiler
Stephen A. Edwards

Department of Computer Science
Columbia University

www.cs.columbia.edu/˜sedwards

Not Another One. . .

My research agenda is to push Esterel compilation
technology further.

We still don’t have a technique that builds fast code for
large programs.

No decent Esterel compiler available in source form.

Brief History of Esterel Compilers

Automata-based

V1, V2, V3 (INRIA/CMA) [Berry, Gonthier 1992]

Still the best for small programs with few states

Does not scale

Netlist-based

V4, V5 (INRIA/CMA)

Scales very nicely

Produces code that runs hundreds of times slower for
sequential programs

Only executables available (www.esterel.org)

Brief History of Esterel Compilers

Control-flow-graph based

My work: EC [DAC 2000, TransCAD 2002]

Produces very efficient code for acyclic programs only

Discrete-event based

SAXO-RT [Weil et al. 2000]

Produces very efficient code for acyclic programs only

Being improved at Esterel Technologies?

Both proprietary; unlikely to be released.

Neither currently copes with statically cyclic programs.

ESUIF

New, open-source compiler being developed at Columbia

Based on SUIF 2 system from Stanford University

Much more modular: implemented as many little passes

Common database represents program throughout

SUIF 2 Database

Main component of the SUIF 2 system

User-customizable object-oriented database

Written in C++

Not highly efficient, but very flexible

SUIF 2 Database

Database schema written in their own “hoof” format

C++ implementation automatically generated

concrete MyClass {

int x;

}

⇒

class MyClass : public SuifObject

{

public:

int get_x();

void set_x(int the_value);

˜MyClass();

void print(...);

static const Lstring

get_class_name();

}

Three Intermediate Representations

AST-like representation from front end

Primitives: abort, emit, present, suspend, etc.

Lower-level “C-like” representation

Primitives: if-then-else, try, resume, parallel, etc.

C code

Primitives: if, goto, expressions

SUIF 2 includes a complete C schema

My New Intermediate
Representation

Intermediate Representation Goals

Linear, textual, imperative style fits the SUIF 2 philosophy

Gonthier’s IC format used in V3–V5 is graph-based and
difficult to visualize. Analysis requires depth-first search.

Straightforward translation into C code; simple semantics

IC format requires complicated depth-first search to
linearize. Handling of “completion codes” is subtle.

Compound statements express traps, preemption, and
concurrency

Tree structure present in IC, but must be rediscovered.

Intermediate Representation
var := expr

if (expr) { stmts } else { stmts }

Label:

goto Label

break n

continue

try { stmts } catch 2 { stmts } ...

resume { stmts } catch 1 { stmts } ...

parallel { resumes } catch 1 { stmts } ...

fork Label1, Label2, ...

join

Intermediate Representation
var := expr

if (expr) { stmts } else { stmts }

Label:

goto Label

Self-explanatory

Signals represented as variables.

Restrictions on where a goto may branch.

Intermediate Representation
break n

continue

try { stmts } catch 2 { stmts } ...

resume { stmts } catch 1 { stmts } ...

parallel { resumes } catch 1 { stmts } ...

Numerically-encoded “exceptions”

Based on Esterel’s completion codes

0=terminate 1=pause 2,3,. . . =exit

Implementing Exceptions

trap T1 in
exit T1

handle T1
do
c := 1

end

try {

break 2

} catch 2 {

c := 1

}

goto Catch2;

goto Catch0;

Catch2:

c = 1;

Catch0:

try becomes a few labels.

break becomes a goto.

Resume/Continue

abort

pause
pause

when A

resume {

break 1

break 1

} catch 1 {

break 1

if (!A)

continue

}

goto E

C: switch (s) {

case 0: goto St0;

case 1: goto St1;

}

E: s = 0; goto Ca1; St0:

s = 1; goto Ca1; St1:

goto Ca0;

Ca1:

so = 0; goto Ca1o; St0o:

if (!A) goto C;

Ca0:

resume becomes a multi-way branch plus some labels.

continue sends control to the multi-way branch.

Resume/Continue

First cycle:

goto E

C: switch (s) {

case 0: goto St0;

case 1: goto St1;

}

E: s = 0; goto Ca1; St0:

s = 1; goto Ca1; St1:

goto Ca0;

Ca1:

so = 0; goto Ca1o;

St0o: if (!A) goto C;

Ca0:

Second cycle:

goto E

C: switch (s) {

case 0: goto St0;

case 1: goto St1;

}

E: s = 0; goto Ca1; St0:

s = 1; goto Ca1; St1:

goto Ca0;

Ca1:

so = 0; goto Ca1o;

St0o: if (!A) goto C;

Ca0:

Parallel and Exit

trap T1 in
trap T2 in

exit T1
||

exit T2

handle T2 do emit B end
handle T1 do emit A end

try {
try {

parallel {
resume {

break 3 }
resume {

break 2 }
} catch 1 {

break 1; continue }
} catch 2 { B := 1 }

} catch 3 { A := 1 }

Parallel

pause;
pause
||

pause

parallel {

resume {

break 1

break 1

}

resume {

break 1

}

} catch 1 {

break 1

continue

}

Parallel Behavior

parallel {

resume {

break 1

break 1

}

resume {

break 1

}

} catch 1 {

break 1

continue

}

parallel {

resume {

break 1

break 1

}

resume {

break 1

}

} catch 1 {

break 1

continue

}

A Minor Point on Completion Codes

Berry’s encoding reduces the exit code if it is not handled.

try {

break 5

} catch 2 { ... }

generates break 4 in Berry’s encoding. I treat it as
break 5.

I assign each trap its own completion code; they pass
unchanged.

Simpler semantics vs. the danger of larger codes.

Irrelevant in HW, probably not a problem for SW.

Conclusions

New ESUIF compiler

Based on SUIF 2 infrastructure

Open-source, under development

Intermediate Representation

Numeric exception codes

Simple translation into assignments and branches

Future Work on HW & SW Synthesis

• HW/SW synthesis from control dependence

Clever concurrent representation produces efficient
hardware and facilitates “sequentializing” SW.

• SW synthesis by static unrolling of cyclic programs

Unrolling SW à la Bourdoncle coupled with constant
propagation should quickly execute cyclic programs.

• SW synthesis with dynamic event-based scheduling

Unrolling is expensive if done statically; a scheduler
can do it dynamically with little overhead.

