
Deterministic Receptive Processes
are Kahn Processes

Stephen A. Edwards & Olivier Tardieu

Department of Computer Science,
Columbia University

www.cs.columbia.edu/˜{sedwards,tardieu}

{sedwards,tardieu}@cs.columbia.edu

Motivation

SHIM project: “Software/Hardware Integration Medium”

Want an asynchronous concurrent deterministic formalism
for embedded systems.

I found two:

Kahn’s process networks (1974)

Josephs’s Deterministic Receptive Processes (2003)

Are they “the same”?

Deterministic Merge

a

b
o

Each a or b input produces an o output ⇔
The number of o’s is the sum of the number
of a’s and b’s.

a b

o

ε

ao

bo

aaoo

aoao

aboo

aobo

baoo

boao

bboo

bobo

aaaooo

aaoaoo

aaooao

aoaaoo

aoaoao

aabooo

aaoboo

aaoobo

aoaboo

aoaobo

abaooo

aboaoo

abooao

aobaoo

aoboao

abbooo

aboboo

aboobo

aobboo

aobobo

baaooo

baoaoo

baooao

boaaoo

boaoao

babooo

baoboo

baoobo

boaboo

boaobo

bbaooo

bboaoo

bbooao

bobaoo

boboao

bbbooo

bboboo

bboobo

bobboo

bobobo

Deterministic Receptive Processes

In Mark Josephs’s formalism,

ε

ao

bo

aaoo

aoao

aboo

aobo

baoo

boao

bboo

bobo

← these traces are failures because the
process fails to produce more outputs
afterwards.

The set of failure traces characterizes
one of Josephs’s deterministic receptive
processes.

This process is deterministic and
receptive according to Josephs

Josephs’s Receptive Processes

Receptive Process Theory. Acta Informatica, 1992.

Process: (I, O, F)

I ∩O = ∅ input/output alphabets

Set of failure traces: F ⊆ (I ∪ O)∗

Divergences: F↑ = {s : {t ∈ O∗ : st ∈ F} is infinite}

“When an infinite sequence of outputs is possible”

Traces: F̂ = {s : ∃t ∈ O∗ . st ∈ F}

“When zero or more outputs are pending”

Receptive Process Axioms

s ∈ F↑ ⇒ st ∈ F↑ Anything follows a divergence

F↑ ⊆ F Divergences are failures

ε ∈ F̂ Traces start from nothing

st ∈ F̂ ⇒ s ∈ F̂ Traces prefix-closed

s ∈ F̂ ∧ t ∈ I∗ ⇒ st ∈ F̂ Input always possible = receptive

(io)∗i

(io)∗

(io)∗ii(i|o)∗ divergences F↑
failures F

traces F̂

Nondeterministic Receptive Process

(i(o|p))∗i

(i(o|p))∗

(i(o|p))∗ii(i|o|p)∗ divergences F↑
failures F

traces F̂

Problem: process can choose whether to output o or p.

Deterministic Receptive Processes

Josephs, An analysis of determinacy. . . , ASYNC 2003.

Four additional rules: one about inputs, three about
outputs.

(∀v, w . x = vw ⇒ svi 6∈ F↑) ∧

i ∈ I ∧ sxiu ∈ F ⇒ sixu ∈ F

“An input that arrives early does not matter unless it
causes divergence.”

Deterministic Receptive Processes

o ∈ O ∧ t ∈ (I ∪ (O \ {o}))∗ ∧

so ∈ F̂ ∧ st ∈ F \ F↑ ⇒ false

o ∈ O ∧ t ∈ (I ∪ (O \ {o}))∗ ∧

so ∈ F̂ ∧ st ∈ F̂ ⇒ sto ∈ F̂

o ∈ O ∧ t ∈ (I ∪ (O \ {o}))∗ ∧

so ∈ F̂ ∧ stou ∈ F \ F↑ ⇒ sotu ∈ F

“If an output can occur now, it must be emitted before the
process stops to wait for inputs.”

“An output may always be delayed.”

“Delaying an output does not affect long-term behavior.”

Kahn’s Networks

Alternating sequence of 0s and 1s along center channel

Emits a 1 then copies input to output

h

Copies
alternately

g f Merges by
alternating

Emits a 0 then copies input to output

h

Kahn’s Processes

“A Simple Language for Parallel Programming”

process f(in int u, in int v, out int w)

{

int i; bool b = true;

for (;;) {

i = b ? wait(u) : wait(v);

printf("%i\n", i);

send(i, w);

b = !b;

}

}
f

u

v

w

Kahn’s Formalism

Channels convey sequences of data values.

Sequences partially ordered: aa v aaa, but aa 6v ab.

Each process a function on finite and infinite sequences

f : Dω
1
×Dω

2
× · · · ×Dω

n → Dω

f is monotonic, x v y ⇒ f(x) v f(y), and continuous
f(tX) = tf(X).

Continuity guarantees the function of a system
F = (f1, f2, . . . , fk) has a unique least fixed point
F (X) = X. This is the (only) behavior of the system.

Deterministic Merge

As a Kahn process,
a

b
o

(ε, ε) = ε (a, ε) = o (aa, ε) = oo

(ε, b) = o (a, b) = oo (aa, b) = ooo

(ε, bb) = oo (a, bb) = ooo (aa, bb) = oooo · · ·

(ε, bbb) = ooo (a, bbb) = oooo (aa, bbb) = ooooo

(ε, bbbb) = oooo (a, bbbb) = ooooo (aa, bbbb) = oooooo

...

Clearly monotonic and continuous, hence deterministic.

Cannot be described in Kahn’s sequential language.

A constructive proof that Deterministic
Receptive Processes behave like

Kahn processes

Projection

Projection selects a single event from a trace:

ε ↓ e = ε

as ↓ e =

{

a(s ↓ e) if a = e, and
s ↓ A otherwise.

i1i2o1o2i1o2o1i2i1o1o2 ↓ i1 = i1i1i1

i1i2o1o2i1o2o1i2i1o1o2 ↓ i2 = i2i2

Input and Output Functions

I(f) = (f ↓ i1, f ↓ i2, . . . , f ↓ ip)

O(f) = (f ↓ o1, f ↓ o2, . . . , f ↓ oq)

Example: f = i1i2o1o2i1o2o1i2i1o1o2

I(f) = (i1i1i1, i2i2)

O(f) = (o1o1o1, o2o2o2)

The Central Lemma

The input/output relationship of a deterministic receptive
process P = (I, O, F) with no divergence is monotonic,
i.e., for f1, f2 ∈ F , if I(f1) v I(f2) then O(f1) v O(f2).

Proof by contradiction. Assume I(f1) v I(f2) but
O(f1) 6v O(f2).

Reorder the events in f1 and f2 so that inputs appear first
and the two share a common prefix.

There must be at least one more output that occurs less
often in f2 and hence in the reordered traces, but this
contradicts the axiom of compulsory emission. QED.

An Illustration

f1 = i1o1i2o2i2o2i1

f2 = i1i2i2o2i1o2i1i2

I(f1) = (i1i1, i2) v I(f2) = (i1i1i1, i2i2i2)

O(f1) = (o1, o2o2) 6v O(f2) = (ε, o2o2)

Move inputs earlier (safe because no divergence)

Must be emitted in f ′

2
f ′

1
= i1 i1 i2 i2 o1 o2 o2

f ′

2
= i1 i1 i2 i2 i1 i2 o2 o2

f ′

2
cannot be a failure because the output o1 must

eventually be emitted. Contradiction.

Technical point

Josephs only talks about finite traces

Kahn needs infinite traces because he takes limits

Unsurprising result: define the behavior of Josephs’s
process as being its limit and everything works.

Conclusion

Kahn and Josephs deterministic for roughly same reason

Big difference: Josephs models “don’t-cares” as
divergences—no obvious analog in Kahn’s model

Josephs’s axioms more complex, but more operational

Not in the paper: we have found a more fundamental
definition that makes Josephs’s axioms lemmas.

Ongoing work: developing the SHIM model and system
built around a Kahn/Josephs-like model of computation.

