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Spot the Computer
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Technical Challenges

Real-time Complexity

Concurrency Legacy Languages
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Motivation: Rising Design Cost

1981: 100 designer-months for leading-edge chip
10k transistors, 100 transistors/month

2002: 30 000 designer-months
150M transistors, 5000 transistors/month

Design cost increased from $1M to $300M

1980 1985 1990 1995 2000 2005 2010

Transistors per chip

Transistors/designer-month

100

10k

1M

100M

10G

High-level Synthesis from the Synchronous Language Esterel – p. 4/27



Domain-Specific Languages

Little languages that fit the
problem

More succinct description
that are

1. Quicker to create

2. Easier to get right

More opportunities for
optimization and analysis

General-purpose languages
hindered by undecidability

Domain-specific languages
much simpler
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Languages for Device Drivers

Device drivers are those
pieces of software that you
absolutely need that never
seem to work

Big security/reliability hole:
run in Kernel mode

Responsible for 80% of all Windows crashes

Tedious, difficult-to-write

Ever more important as customized hardware
proliferates
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Ongoing Work

Develop language for network card drivers under
Linux (Chris Conway)

Sharing drivers between Linux and FreeBSD
(Tom Heydt-Benjamin)

Ultimate vision: compiler takes two programs:
device spec. and OS spec. and synthesizes
appropriate driver.

OS vendor makes sure OS spec. is correct;
Hardware designer makes sure hardware spec.
is correct.
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NE2000 Ethernet driver (fragment)

ioports ne2000 {
bits cr {

bit stop, sta, transmit;
enum:3 { 001=remRead, 010=remWrite,

011=sendPacket, 1**=DMAdone }
enum:2 { 00=page0, 01=page1, 10=page2 }

}
paged p {

page0 { cr.page0; } {
twobyte clda;
byte bnry;
bits tsr {

bit ptx,1,col,abt,crs,0,cdh,owc;
}

page1 { cr.page1; } {
byte:6 par;
byte curr;
byte:8 mar;

}
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The Esterel Real-Time Langauge

Synchronous language developed
by Gérard Berry in France

Basic idea: use global clock for
synchronization in software like
that in synchronous digital
hardware.

Challenge: How to combine
concurrency, synchronization, and
instantaneous communication
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An Overview of Esterel

Synchronous model of time: implicit global clock

Communication through wire-like signals

Two flavors of statement:

Combinational

Execute in one cycle

emit
present / if
loop

Sequential

Take multiple cycles

pause
await
sustain
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An Example

emit B;
Force signal present in this cycle

present C then Make D present if C is
emit D end;
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An Example

await A;
Wait for next cycle where A is present

emit B;
present C then

emit D end;
pause

Wait for next cycle

High-level Synthesis from the Synchronous Language Esterel – p. 12/27



An Example

loop Infinite Loop
await A;
emit B;
present C then

emit D end;
pause

end
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An Example

loop
await A;
emit B;
present C then

emit D end;
pause

end
|| Run Concurrently

loop
present B then

emit C end;
pause

end
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An Example

every R do
Restart on Rloop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end
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An Example

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
|| Same-cycle bidirectional

communicationloop
present B then

emit C end;
pause

end
end
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An Example

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

Good for hierarchical FSMs

Bad at manipulating data

Esterel V7 variant proposed
to address this
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Why Consider Esterel for Hardware?

Semantics more abstract than RTL

More succinct: easier to write faster

High-level semantics enable optimizations

State assignment a hierarchical problem

Semantics enable efficient simulation

No event queue

Closer to an imperative program

Esterel’s semantics are deterministic

Simulation-synthesis mismatches eliminated
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Applications of Esterel

Systems with complex (non-pipelined)
control-behavior:

DMA controllers

Cache controllers

Communication protocols

(Not processors)
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Verilog More Verbose Than Esterel

case (cur_state) // synopsys parallel_case
IDLE: begin

if (pcsu_powerdown & !jmp_e &
!valid_diag_window) begin

next_state = STANDBY_PWR_DN;
end
else if (valid_diag_window | ibuf_full |

jmp_e) begin
next_state = cur_state;
end
else if(icu_miss&!cacheable) begin
next_state = NC_REQ_STATE ;
end
else if (icu_miss&cacheable) begin
next_state = REQ_STATE;
end
else next_state = cur_state ;

end

NC_REQ_STATE: begin
if(normal_ack| error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE: begin
if (normal_ack) begin
next_state = FILL_2ND_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_2ND_WD: begin
if(normal_ack) begin
next_state = REQ_STATE2;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE2: begin
if(normal_ack) begin
next_state = FILL_4TH_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_4TH_WD: begin
if(normal_ack| error_ack) begin
next_state = IDLE;
end
else next_state = cur_state ;

end

STANDBY_PWR_DN: begin
if(!pcsu_powerdown | jmp_e ) begin
next_state = IDLE;
end
else next_state = STANDBY_PWR_DN;

end

default: next_state = 7’bx;

endcase

loop
await

case [icu_miss and
not cacheable] do

await [normal_ack or error_ack]
end
case [icu_miss and

cacheable] do
abort

await 4 normal_ack;
when error_ack

end
case [pcsu_powerdown and

not jmp_e and
not valid_diag_window] do

await [pcsu_powerdown and
not jmp_e]

end
end;
pause

end
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Basic Circuit Generation

loop
emit A; await C;
emit B; pause

end

A

C
B

entry

A

C

B
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Generating Fast Circuits

Esterel’s semantics match hardware. Translation
is straightforward.

Nice feature: state space is well-defined and
hierarchical (e.g., due to abort and concurrency).

Enables a hierarchical state
assignment/synthesis procedure.

High-level Synthesis from the Synchronous Language Esterel – p. 22/27



Hierarchical States

abort
[

await A; await B
||

await C
]

when D;
emit E;

pause;

[
await F

||
await G

]
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Five Simple FSMs

A B end

C end

pause

F end

G end

end

abort
[

await A; await B
||

await C
]

when D;
emit E;
pause;
[

await F
||

await G
]
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General Problem Statement

States in an Esterel program an arbitrary tree of
sequential and parallel state machines.

A B end C end

pause

F end G end

end

Assign states to local machines to optimize
global circuit.
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Results

SIS Xilinx
Example Literals Latches Levels Slices Period (ns)

V5 CEC hand V5 CEC hand V5 CEC hand V5 CEC hand V5 CEC hand
Figure 1a 23 15 15 6 (0) 5 5 4 3 3 7 4 4 4.7 4.6 4.4
dacexample 41 23 22 7 (0) 5 5 5 3 3 10 5 5 6.2 6.0 5.5
jacky1 39 22 20 5 (0) 4 4 4 3 3 6 5 4 5.4 6.1 5.0
runner 218 145 144 30 (24) 20 20 11 10 10 56 36 35 10.6 8.4 8.1
greycounter 240 173 142 34 (6) 18 15 11 13 9 40 34 17 12.4 13.4 8.9
scheduler 519 380 74 (52) 55 8 8 80 66 11.3 8.9
servos 407 287 60 (16) 47 10 10 105 66 16.7 13.4
abcd 167 165 17 (0) 13 7 8 43 43 12.8 12.5
tcint 508 414 95 (14) 60 17 9 115 81 10.8 10.9

20% smaller, run at comparable speeds.
Not the final word.
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The Columbia Esterel Compiler

Open-Source C++

Hardware generation

Software generation

http://www1.cs.columbia.edu/˜sedwards/cec/
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