
High-level Synthesis from the
Synchronous Language Esterel

2004 MDC Conference

Stephen A. Edwards

Columbia University

High-level Synthesis from the Synchronous Language Esterel – p. 1/27

Spot the Computer

High-level Synthesis from the Synchronous Language Esterel – p. 2/27

Technical Challenges

Real-time Complexity

Concurrency Legacy Languages
High-level Synthesis from the Synchronous Language Esterel – p. 3/27

Motivation: Rising Design Cost

1981: 100 designer-months for leading-edge chip
10k transistors, 100 transistors/month

2002: 30 000 designer-months
150M transistors, 5000 transistors/month

Design cost increased from $1M to $300M

1980 1985 1990 1995 2000 2005 2010

Transistors per chip

Transistors/designer-month

100

10k

1M

100M

10G

High-level Synthesis from the Synchronous Language Esterel – p. 4/27

Domain-Specific Languages

Little languages that fit the
problem

More succinct description
that are

1. Quicker to create

2. Easier to get right

More opportunities for
optimization and analysis

General-purpose languages
hindered by undecidability

Domain-specific languages
much simpler

High-level Synthesis from the Synchronous Language Esterel – p. 5/27

Languages for Device Drivers

Device drivers are those
pieces of software that you
absolutely need that never
seem to work

Big security/reliability hole:
run in Kernel mode

Responsible for 80% of all Windows crashes

Tedious, difficult-to-write

Ever more important as customized hardware
proliferates

High-level Synthesis from the Synchronous Language Esterel – p. 6/27

Ongoing Work

Develop language for network card drivers under
Linux (Chris Conway)

Sharing drivers between Linux and FreeBSD
(Tom Heydt-Benjamin)

Ultimate vision: compiler takes two programs:
device spec. and OS spec. and synthesizes
appropriate driver.

OS vendor makes sure OS spec. is correct;
Hardware designer makes sure hardware spec.
is correct.

High-level Synthesis from the Synchronous Language Esterel – p. 7/27

NE2000 Ethernet driver (fragment)

ioports ne2000 {
bits cr {

bit stop, sta, transmit;
enum:3 { 001=remRead, 010=remWrite,

011=sendPacket, 1**=DMAdone }
enum:2 { 00=page0, 01=page1, 10=page2 }

}
paged p {

page0 { cr.page0; } {
twobyte clda;
byte bnry;
bits tsr {

bit ptx,1,col,abt,crs,0,cdh,owc;
}

page1 { cr.page1; } {
byte:6 par;
byte curr;
byte:8 mar;

}

High-level Synthesis from the Synchronous Language Esterel – p. 8/27

The Esterel Real-Time Langauge

Synchronous language developed
by Gérard Berry in France

Basic idea: use global clock for
synchronization in software like
that in synchronous digital
hardware.

Challenge: How to combine
concurrency, synchronization, and
instantaneous communication

High-level Synthesis from the Synchronous Language Esterel – p. 9/27

An Overview of Esterel

Synchronous model of time: implicit global clock

Communication through wire-like signals

Two flavors of statement:

Combinational

Execute in one cycle

emit
present / if
loop

Sequential

Take multiple cycles

pause
await
sustain

High-level Synthesis from the Synchronous Language Esterel – p. 10/27

An Example

emit B;
Force signal present in this cycle

present C then Make D present if C is
emit D end;

High-level Synthesis from the Synchronous Language Esterel – p. 11/27

An Example

await A;
Wait for next cycle where A is present

emit B;
present C then

emit D end;
pause

Wait for next cycle

High-level Synthesis from the Synchronous Language Esterel – p. 12/27

An Example

loop Infinite Loop
await A;
emit B;
present C then

emit D end;
pause

end

High-level Synthesis from the Synchronous Language Esterel – p. 13/27

An Example

loop
await A;
emit B;
present C then

emit D end;
pause

end
|| Run Concurrently

loop
present B then

emit C end;
pause

end

High-level Synthesis from the Synchronous Language Esterel – p. 14/27

An Example

every R do
Restart on Rloop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

High-level Synthesis from the Synchronous Language Esterel – p. 15/27

An Example

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
|| Same-cycle bidirectional

communicationloop
present B then

emit C end;
pause

end
end

High-level Synthesis from the Synchronous Language Esterel – p. 16/27

An Example

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

Good for hierarchical FSMs

Bad at manipulating data

Esterel V7 variant proposed
to address this

High-level Synthesis from the Synchronous Language Esterel – p. 17/27

Why Consider Esterel for Hardware?

Semantics more abstract than RTL

More succinct: easier to write faster

High-level semantics enable optimizations

State assignment a hierarchical problem

Semantics enable efficient simulation

No event queue

Closer to an imperative program

Esterel’s semantics are deterministic

Simulation-synthesis mismatches eliminated

High-level Synthesis from the Synchronous Language Esterel – p. 18/27

Applications of Esterel

Systems with complex (non-pipelined)
control-behavior:

DMA controllers

Cache controllers

Communication protocols

(Not processors)

High-level Synthesis from the Synchronous Language Esterel – p. 19/27

Verilog More Verbose Than Esterel

case (cur_state) // synopsys parallel_case
IDLE: begin

if (pcsu_powerdown & !jmp_e &
!valid_diag_window) begin

next_state = STANDBY_PWR_DN;
end
else if (valid_diag_window | ibuf_full |

jmp_e) begin
next_state = cur_state;
end
else if(icu_miss&!cacheable) begin
next_state = NC_REQ_STATE ;
end
else if (icu_miss&cacheable) begin
next_state = REQ_STATE;
end
else next_state = cur_state ;

end

NC_REQ_STATE: begin
if(normal_ack| error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE: begin
if (normal_ack) begin
next_state = FILL_2ND_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_2ND_WD: begin
if(normal_ack) begin
next_state = REQ_STATE2;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE2: begin
if(normal_ack) begin
next_state = FILL_4TH_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_4TH_WD: begin
if(normal_ack| error_ack) begin
next_state = IDLE;
end
else next_state = cur_state ;

end

STANDBY_PWR_DN: begin
if(!pcsu_powerdown | jmp_e) begin
next_state = IDLE;
end
else next_state = STANDBY_PWR_DN;

end

default: next_state = 7’bx;

endcase

loop
await

case [icu_miss and
not cacheable] do

await [normal_ack or error_ack]
end
case [icu_miss and

cacheable] do
abort

await 4 normal_ack;
when error_ack

end
case [pcsu_powerdown and

not jmp_e and
not valid_diag_window] do

await [pcsu_powerdown and
not jmp_e]

end
end;
pause

end

High-level Synthesis from the Synchronous Language Esterel – p. 20/27

Basic Circuit Generation

loop
emit A; await C;
emit B; pause

end

A

C
B

entry

A

C

B

High-level Synthesis from the Synchronous Language Esterel – p. 21/27

Generating Fast Circuits

Esterel’s semantics match hardware. Translation
is straightforward.

Nice feature: state space is well-defined and
hierarchical (e.g., due to abort and concurrency).

Enables a hierarchical state
assignment/synthesis procedure.

High-level Synthesis from the Synchronous Language Esterel – p. 22/27

Hierarchical States

abort
[

await A; await B
||

await C
]

when D;
emit E;

pause;

[
await F

||
await G

]

High-level Synthesis from the Synchronous Language Esterel – p. 23/27

Five Simple FSMs

A B end

C end

pause

F end

G end

end

abort
[

await A; await B
||

await C
]

when D;
emit E;
pause;
[

await F
||

await G
]

High-level Synthesis from the Synchronous Language Esterel – p. 24/27

General Problem Statement

States in an Esterel program an arbitrary tree of
sequential and parallel state machines.

A B end C end

pause

F end G end

end

Assign states to local machines to optimize
global circuit.

High-level Synthesis from the Synchronous Language Esterel – p. 25/27

Results

SIS Xilinx
Example Literals Latches Levels Slices Period (ns)

V5 CEC hand V5 CEC hand V5 CEC hand V5 CEC hand V5 CEC hand
Figure 1a 23 15 15 6 (0) 5 5 4 3 3 7 4 4 4.7 4.6 4.4
dacexample 41 23 22 7 (0) 5 5 5 3 3 10 5 5 6.2 6.0 5.5
jacky1 39 22 20 5 (0) 4 4 4 3 3 6 5 4 5.4 6.1 5.0
runner 218 145 144 30 (24) 20 20 11 10 10 56 36 35 10.6 8.4 8.1
greycounter 240 173 142 34 (6) 18 15 11 13 9 40 34 17 12.4 13.4 8.9
scheduler 519 380 74 (52) 55 8 8 80 66 11.3 8.9
servos 407 287 60 (16) 47 10 10 105 66 16.7 13.4
abcd 167 165 17 (0) 13 7 8 43 43 12.8 12.5
tcint 508 414 95 (14) 60 17 9 115 81 10.8 10.9

20% smaller, run at comparable speeds.
Not the final word.

High-level Synthesis from the Synchronous Language Esterel – p. 26/27

The Columbia Esterel Compiler

Open-Source C++

Hardware generation

Software generation

http://www1.cs.columbia.edu/˜sedwards/cec/

High-level Synthesis from the Synchronous Language Esterel – p. 27/27

	Spot the Computer
	Technical Challenges
	Motivation: Rising Design Cost
	Domain-Specific Languages
	Languages for Device Drivers
	Ongoing Work
	NE2000 Ethernet driver (fragment)
	The Esterel Real-Time Langauge
	An Overview of Esterel
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	An Example
	Why Consider Esterel for Hardware?
	Applications of Esterel
	Verilog More Verbose Than Esterel
	Basic Circuit Generation
	Generating Fast Circuits
	Hierarchical States
	Five Simple FSMs
	General Problem Statement
	Results
	The Columbia Esterel Compiler

