
ESUIF: An Open Esterel Compiler
Stephen A. Edwards

Department of Computer Science
Columbia University

www.cs.columbia.edu/˜sedwards



Not Another One. . .
My research agenda is to push Esterel compilation
technology further.

We still don’t have a technique that builds fast code for
large programs.

No decent Esterel compiler available in source form.



Brief History of Esterel Compilers
Automata-based

V1, V2, V3 (INRIA/CMA) [Berry, Gonthier 1992]

Still the best for small programs with few states

Does not scale

Netlist-based

V4, V5 (INRIA/CMA)

Scales very nicely

Produces code that runs hundreds of times slower for
sequential programs

Only executables available (www.esterel.org)



Brief History of Esterel Compilers
Control-flow-graph based

My work: EC [DAC 2000, TransCAD 2002]

Produces very efficient code for acyclic programs only

Discrete-event based

SAXO-RT [Weil et al. 2000]

Produces very efficient code for acyclic programs only

Being improved at Esterel Technologies?

Both proprietary; unlikely to be released.

Neither currently copes with statically cyclic programs.



ESUIF
New, open-source compiler being developed at Columbia

Based on SUIF 2 system from Stanford University

Much more modular: implemented as many little passes

Common database represents program throughout



SUIF 2 Database
Main component of the SUIF 2 system

User-customizable object-oriented database

Written in C++

Not highly efficient, but very flexible



SUIF 2 Database
Database schema written in their own “hoof” format

C++ implementation automatically generated

concrete MyClass {

int x;

}

⇒

class MyClass : public SuifObject

{

public:

int get_x();

void set_x(int the_value);

˜MyClass();

void print(...);

static const Lstring

get_class_name();

}



Three Intermediate Representations
AST-like representation from front end

Primitives: abort, emit, present, suspend, etc.

Lower-level “C-like” representation

Primitives: if-then-else, try, resume, parallel, etc.

C code

Primitives: if, goto, expressions

SUIF 2 includes a complete C schema



My New Intermediate Representation



Intermediate Representation
var := expr

if (expr) { stmts } else { stmts }

Label:

goto Label

break n

continue

try { stmts } catch 2 { stmts } ...

resume { stmts } catch 1 { stmts } ...

parallel { resumes } catch 1 { stmts } ...

fork Label1, Label2, ...

join



Intermediate Representation
var := expr

if (expr) { stmts } else { stmts }

Label:

goto Label

Self-explanatory

Signals represented as variables.

Restrictions on where a goto may branch.



Intermediate Representation
break n

continue

try { stmts } catch 2 { stmts } ...

resume { stmts } catch 1 { stmts } ...

parallel { resumes } catch 1 { stmts } ...

Numerically-encoded “exceptions”

Based on Esterel’s completion codes

0=terminate 1=pause 2,3,. . . =exit



Implementing Exceptions

trap T1 in
exit T1

handle T1 do
c := 1

end

try {

break 2

} catch 2 {

c := 1

}

goto Catch2;

goto Catch0;

Catch2:

c = 1;

Catch0:

try becomes a few labels.

break becomes a goto.



Resume/Continue
abort

pause

pause

when A

resume {

break 1

break 1

} catch 1 {

break 1

if (!A) continue

}

goto E

C: switch (s) {

case 0: goto St0;

case 1: goto St1;

}

E: s = 0; goto Ca1; St0:

s = 1; goto Ca1; St1:

goto Ca0;

Ca1:

so = 0; goto Ca1o; St0o:

if (!A) goto C;

Ca0:

resume becomes a multi-way branch plus some labels.

continue sends control to the multi-way branch.



Resume/Continue
First cycle:

goto E

C: switch (s) {

case 0: goto St0;

case 1: goto St1;

}

E: s = 0; goto Ca1; St0:

s = 1; goto Ca1; St1:

goto Ca0;

Ca1:

so = 0; goto Ca1o;

St0o: if (!A) goto C;

Ca0:

Second cycle:

goto E

C: switch (s) {

case 0: goto St0;

case 1: goto St1;

}

E: s = 0; goto Ca1; St0:

s = 1; goto Ca1; St1:

goto Ca0;

Ca1:

so = 0; goto Ca1o;

St0o: if (!A) goto C;

Ca0:



Parallel and Exit
trap T1 in
trap T2 in

exit T1
||

exit T2

handle T2 do emit B end
handle T1 do emit A end

try {

try {

parallel {

resume {

break 3 }

resume {

break 2 }

} catch 1 {

break 1; continue }

} catch 2 { B := 1 }

} catch 3 { A := 1 }



Parallel

pause;
pause
||

pause

parallel {

resume {

break 1

break 1

}

resume {

break 1

}

} catch 1 {

break 1

continue

}



Parallel Behavior

parallel {

resume {

break 1

break 1

}

resume {

break 1

}

} catch 1 {

break 1

continue

}

parallel {

resume {

break 1

break 1

}

resume {

break 1

}

} catch 1 {

break 1

continue

}



A Minor Point on Completion Codes
Berry’s encoding reduces the exit code if it is not handled.

try {

break 5

} catch 2 { ... }

generates break 4 in Berry’s encoding.

I assign each trap its own completion code; they pass
unchanged.

Simpler semantics vs. the danger of larger codes.

Irrelevant in HW, probably not a problem for SW.



Code Generation Ideas



Static Unrolling
Can always evaluate cyclic programs by computing least
fixed point through iteration:

lfp(F ) = F n(⊥)

Suggests three-valued evaluation is necessary. What
does that mean with control-flow?



Theorem
Suggested by Berry:

If F is monotonic, has a unique least fixed point that is
maximal (i.e., lfp(F ) v y implies y = lfp(F )), and is
defined on a finite CPO, then it can be computed using

lfp(F ) = F n(x)

where x is two-valued and n is the height of the domain.

Proof: ⊥ v x (trivial), so F (⊥) v F (x), F 2(⊥) v F 2(x),
. . . , F n(⊥) v F n(x). However, since F n(⊥) = lfp(F ) is
maximal, we must have lfp(F ) = F n(x).



Implications of Theorem
Our functions are such that if x is two-valued then F (x) is
two-valued. This implies the sequence

x, F (x), F 2(x), . . . , F n(x) (1)

is also two-valued. Therefore, the computation can be
carried out using purely two-valued variables.

Note that (1) is not necessarily increasing.



Implications of Theorem
Approach:

Program must be proven causal using some other
mechanism

Evaluate program through relaxation: start with arbitrary
initial guess and evaluate to convergence.

Evaluation carried out with two-valued variables

Iteration strategy can be accelerated using Bourdoncle or
my thesis.



Implications of Theorem
Unroll program according to connectivity.

Constant propagate to simplify.

Execute result: two-valued logic only.



Program Dependence Graph

if (C1)

if (C2)

S4;

else

L: S5;

S6;

else

if (C3)

goto L;

S7;

entry

C1

C2

S4

S6

S7

exit

C3

S5

exit

entry

C1

C2 C3

S4
S5

S6

S7



Program Dependence Graph
entry

C1

C2

S4

S6

S7

exit

C3

S5

exit

entry

C1

C2 C3

S4
S5

S6

S7

entry

S7 C1

F3

C2

S4

C3

F6

F4

S6

F2

S5

entry

C1

C2

C3

S4

S5 S6

S7



Program Dependence Graph
Also applicable to software generation

Transform to PDG, then generate code that executes
PDG.

Some PDGs can be synthesized directly; others require
additional predicates when sequentialized [Ferrante et al.,
Steensgaard]

Heuristics needed to keep number of predicates
minimized.



Discrete-Event Approaches
Pioneered by Weil et al. [CASES 2000]

Efficient, but scheduler is fixed at compile time.

Does not handle statically cyclic programs.

Techniques such as French et al. [DAC 1995] schedule as
much as possible beforehand, but retain some dynamic
behavior.



Discrete-Event Approaches
Dealing with schizophrenia and causality appear to
require code duplication.

Actually not really: just need to execute some code more
than once.

Discrete-event scheduler ideal: have it invoke certain
subroutines multiple times.

Small loss of efficiency in return for no code size increase.



Conclusions
New ESUIF compiler

Based on SUIF 2 infrastructure

Open-source, under development

Intermediate Representation

Numeric exception codes

Simple translation into assignments and branches

Code Generation ideas

Static unrolling with two-valued evaluation

Program dependence graph approach

Discrete-event Approaches


