A Short Introduction to Autoconf

Stephen A. Edwards

January 11, 1996

Autoconf [1] is atool for producing standalone shell
scripts that automatically configure software source code
packages to adapt to many UNIX-like systems.

Autoconf generates an executable Bourne (/ bi n/ sh)
shell [2] script caled confi gure. Typically,
confi gur e generates a customized Makefi |l e from
atemplate Makefi | e. i n, customized to each package
being compiled. Such aflow isshownin Figure 1.

. . autoconf*
configure.i n—¢
1 *
Makefile.in SO OUr e \ikefile

Figure 1: A typical aut oconf flow. Names of executa-
bles have a trailing asterisk.

Conf i gur e, rather than trying to determine exactly
what system it is on, tries instead to determine character-
istics of the system that are needed for correct compila
tion. Thus, aconf i gur e script can often work on sys-
tems for which it wasn’t specifically designed. For exam-
ple, instead of trying to decide whether it is running on
a Solaris 5.4 machine and concluding that ANSI header
filesare present, conf i gur e checksfor <st dl i b. h>
and other ANSI header files directly. Another advantage
tothisapproachisthe ability to look for “extra’ programs,
such asbi son, which are not usually part of commercial
operating systems.

1 TheMakefil e.i nfile

Confi gure generates Makefil e from
Makefile.in by substituting al at-sign-enclosed
words (e.g., @r cdi r @ for stringsin the substituion list
defined by conf i gur e. i n. Typical stringsinclude

@rcdir@ Location of the source code, often .

@refix@ Directory in which to install
architecture-independent files, by
default/ usr/ | ocal /

@co The name of the C compiler

@EFS@ A liss of -D flags for
the C compiler, eg.,

- DHAVE STDC HEADERS=1
- DHAVE DI RENT_H=1
@FLAGS@ Additional flags for the C compiler,

eg.-9)

2 Theconfigure.infile

Autoconf processes configure.in by running it
through the m4 [3] macro preprocessor to produce the
confi gure script. Thus, the confi gure.in file
is a series of M} macro cals with shell commands
interspersed.

All autoconf macros start with AC _, and are all upper-
case.

Here are some useful e autoconf macros:

e AC DEFI NE(variable[,value])

Define C preprocessor variable variable. If valueis
given, set variable to that variable. This definition
shows up in the @EFS@listin Makefil e.in.

e AC SUBST(variable)

Subgtitute for the string @ariable@ in
Makefile.in. The replacement string is the
shell variable with the same name. For example, the
following withinconfi gure.in

AC_SUBST(vi sl ibdir)
vi slibdir="/projects/vis/vis"

would replace @i sl i bdi r @in Makefile.in
with / proj ect s/ vi s/ vis. Thefirst line is an
m4 macro call, the second isaBourne shell command
that setsa variable.

AC_ARG W TH(package, help-string, [, action-if-
given [,action-if-not-given]]))

Add a command-line argument to conf i gur e of
the form - - wi t h- textitpackage=arg. Execute the
shell commands action-if-given and action-if-not-
given depending on whether the argument was pro-
vided. The shell variable wi t hval is set to arg
when specified.

Here's a partial example. Note the use of the quote
characters[and] to specify amulti-line comment.

AC_ARG W TH(conp- node,

[--wth-conmp-node=<npde>
Specify a conpil ati on node:
optim ze or debug],

[conp_node=$wi t hval],

[comp_node=optim ze])

case "$conp_node" in

debug)
CFLAGS=-g ;;
optimze | *)
CFLAGS=-0O

AC_DEFI NE(NDEBUG) ; ;
esac

AC_CHECK_HEADERS(header-file-list)

Thismacro checksfor the presenceof alist of named
header files, defining C preprocessor macros. For ex-
ample, AC_CHECK HEADERS(bsd/sgtty. h)
checks if #i nclude <bsd/sgtty. h> finds
a header. If so, HAVE _BSD SGITY_H is
#def i need.

AC_EGREP_CPP

This macro runs the C preprocessor on a small input
file, pipes the result through egrep, and runs one of
two shell commands based on the results. Useful for
checking whether something is defined in a header
file

There are many, many more autoconf macros, includ-

ing ones to cache the result of expensive tests (for later
runs of conf i gur e), to print explanatory messages, to
check for generic or specific programs(such asthe C com-
piler), to check for libraries and functions within, and
many strange-case-specific macros (e.g., thingsthat figure
out which of the many “time” header files to include).

References

(4

(2]

(3]

The GNU project. aut oconf. Available from
ftp://prep.ai.nit.edu/pub/gnu.
Documentation under the emacs info sys
tem (try G-h i). Also available as HTML at
http://ww cad. eecs. ber kel ey. edu/
“sedwar ds/ aut oconf. htm .

SteveBourne./ bi n/ sh. Theold standard shell. See,
e.g., Brian W. Kernigan and Rob Pike. The UNIX Pro-
gramming Environment. Prentice-Hall 1984.

md. One of the standard UNIX utilities. The
GNU project has a version, available from
ftp://prep.ai.nit.edu/pub/gnu.

