
A Short Introduction to Autoconf

Stephen A. Edwards

January 11, 1996

Autoconf [1] is a tool for producing standalone shell
scripts that automatically configure software source code
packages to adapt to many UNIX-like systems.

Autoconf generates an executable Bourne (/bin/sh)
shell [2] script called configure. Typically,
configure generates a customized Makefile from
a template Makefile.in, customized to each package
being compiled. Such a flow is shown in Figure 1.

Makefile.in
configure*

Makefile

autoconf*
configure.in

Figure 1: A typical autoconf flow. Names of executa-
bles have a trailing asterisk.

Configure, rather than trying to determine exactly
what system it is on, tries instead to determine character-
istics of the system that are needed for correct compila-
tion. Thus, a configure script can often work on sys-
tems for which it wasn’t specifically designed. For exam-
ple, instead of trying to decide whether it is running on
a Solaris 5.4 machine and concluding that ANSI header
files are present, configure checks for <stdlib.h>
and other ANSI header files directly. Another advantage
to this approach is the ability to look for “extra” programs,
such as bison, which are not usually part of commercial
operating systems.

1 The Makefile.in file

Configure generates Makefile from
Makefile.in by substituting all at-sign-enclosed
words (e.g., @srcdir@) for strings in the substituion list
defined by configure.in. Typical strings include

@srcdir@ Location of the source code, often .
@prefix@ Directory in which to install

architecture-independent files, by
default /usr/local/

@CC@ The name of the C compiler
@DEFS@ A list of -D flags for

the C compiler, e.g.,
-DHAVE STDC_HEADERS=1
-DHAVE_DIRENT_H=1

@CFLAGS@ Additional flags for the C compiler,
e.g., -g)

2 The configure.in file

Autoconf processes configure.in by running it
through the m4 [3] macro preprocessor to produce the
configure script. Thus, the configure.in file
is a series of m4 macro calls with shell commands
interspersed.

All autoconf macros start with AC_, and are all upper-
case.

Here are some usefule autoconf macros:

� AC_DEFINE(variable [,value])

Define C preprocessor variable variable. If value is
given, set variable to that variable. This definition
shows up in the @DEFS@ list in Makefile.in.

� AC_SUBST(variable)

Substitute for the string @variable@ in
Makefile.in. The replacement string is the
shell variable with the same name. For example, the
following within configure.in

AC_SUBST(vislibdir)
vislibdir="/projects/vis/vis"

1

would replace @vislibdir@ in Makefile.in
with /projects/vis/vis. The first line is an
m4macro call, the second is a Bourne shell command
that sets a variable.

� AC_ARG_WITH(package, help-string, [, action-if-
given [,action-if-not-given]]))

Add a command-line argument to configure of
the form --with-textitpackage=arg. Execute the
shell commands action-if-given and action-if-not-
given depending on whether the argument was pro-
vided. The shell variable withval is set to arg
when specified.

Here’s a partial example. Note the use of the quote
characters [and] to specify a multi-line comment.

AC_ARG_WITH(comp-mode,
[--with-comp-mode=<mode>

Specify a compilation mode:
optimize or debug],

[comp_mode=$withval],
[comp_mode=optimize])

case "$comp_mode" in
debug)

CFLAGS=-g ;;
optimize | *)

CFLAGS=-O
AC_DEFINE(NDEBUG) ;;

esac

� AC_CHECK_HEADERS(header-file-list)

This macro checks for the presence of a list of named
header files, defining C preprocessor macros. For ex-
ample, AC_CHECK_HEADERS(bsd/sgtty.h)
checks if #include <bsd/sgtty.h> finds
a header. If so, HAVE_BSD_SGTTY_H is
#defineed.

� AC_EGREP_CPP

This macro runs the C preprocessor on a small input
file, pipes the result through egrep, and runs one of
two shell commands based on the results. Useful for
checking whether something is defined in a header
file.

There are many, many more autoconf macros, includ-
ing ones to cache the result of expensive tests (for later
runs of configure), to print explanatory messages, to
check for generic or specific programs (such as the C com-
piler), to check for libraries and functions within, and
many strange-case-specific macros (e.g., things that figure
out which of the many “time” header files to include).

References

[1] The GNU project. autoconf. Available from
ftp://prep.ai.mit.edu/pub/gnu.
Documentation under the emacs info sys-
tem (try C-h i). Also available as HTML at
http://www-cad.eecs.berkeley.edu/
˜sedwards/autoconf.html.

[2] Steve Bourne./bin/sh. The old standard shell. See,
e.g., Brian W. Kernigan and Rob Pike. The UNIX Pro-
gramming Environment. Prentice-Hall 1984.

[3] m4. One of the standard UNIX utilities. The
GNU project has a version, available from
ftp://prep.ai.mit.edu/pub/gnu.

2

