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Boolean Functions as a Table

W X Y Z a b c d e f g

0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 0 0 1 1
1 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0

For n Boolean inputs and
m Boolean outputs,

Each of 2n rows lists the m
Boolean outputs for that row’s
input combination

Each possible input
combination appears in exactly
one row

It is a total function: 2n → 2m



Acyclic Networks of NAND2 Gates

https://www.electronics-tutorials.ws/logic/universal-gates.html

Directed Acyclic Graph of Two-input
NAND gates

Primary inputs: no incoming edges

All others: two incoming edges

Semantics: set value of each primary
input; in topological order, set each
node’s value to the NAND of the
values of its two incoming edges

Can compute any Boolean function

Deterministic: Assignment of each
node’s value depends only on the
primary inputs, not the particular
topological order chosen

https://www.electronics-tutorials.ws/logic/universal-gates.html


Deterministic Finite Automaton as a Table

After Hopcroft and Ullman, Introduction to Automata Theory,

Languages, and Computation, 1979

▶ List of states, some are accepting
▶ A start state
▶ List of inputs
▶ Complete table of transitions

(state, input)→ state

Deterministic if, for each state and
input, there’s exactly one next state



Synchronous Digital Logic

DAG with three types of nodes:

▶ NAND2: two incoming edges
▶ flip-flop: one incoming edge
▶ primary input: no incoming edges

Every cycle in the graph must pass
through a flip-flop

In each cycle, primary input nodes set
to new value, flip-flop nodes set to
input in last cycle (false in first)

NAND2 nodes evaluated in topological
order, ignoring flop-flop input edges

CL
STATE

NEXT STATE

INPUTS OUTPUTS

CLOCK



Turing Machine

https://aturingmachine.com/

▶ A tape of symbols
▶ A head that can read and write symbols and move left or right
▶ A state register
▶ A table of instructions: (state, symbol)→ (state, symbol, left/right)

Deterministic because there’s exactly one thing to do at each step

https://aturingmachine.com/


The Lambda Calculus
expr ::= expr expr

| λ variable . expr
| constant
| variable
| (expr)

•

σ σ

λx

•
x

•
x

c

d

→

dd

c

Kozen, Church-Rosser Made Easy, Fundamenta Informaticae, 103(1–4),
2010

two = λf . λx . f (f x)
three = λf . λx . f

(
f (f x)

)
five = λf . λx . f (f (f (f (f x))))
plus = λm.λn.λf .λx. m f (n f x)

plus three two

(
λm.λn.λf .λx. m f (n f x)

)
three two(

λn.λf .λx. three f (n f x)
)

two

λf .λx. three f (two f x)

λf .λx. f (f (f (two f x)))

λf .λx. f (f (f (f (f x))))

five

Expand plus
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Many reducible sub-expressions: Church-Rosser: all choices OK

((
λx .

(
(λw . λz . + w z) 1

)) (
(λx . x x) (λx . x x)

)) (
(λy . + y 1) (+ 2 3)

)

λx

λw

λz

+ w z

1

λx

x x

λx

x x

λy

+ y
1 + 2

3

β-reduction is confluent

L M1

M2 N

β∗

β∗ β∗

β∗

⇒ An expression’s normal form, if it
exists, is unique
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Kahn Process Networks

h

h

fg

Z

Y

T2

T1

X

Network of concurrent
processes communicate
through FIFOs

Blocking reads;
non-blocking writes

Sequence of data values
passed through each
FIFO is deterministic

process f ( in int u, in int v,
out int w) {

int i ; bool b = true ;
for (;;) {

i = b ? wait(u) : wait(w);
printf ("%i\n", i );
send(i , w);
b = !b;

}
}
process g( in int u, out int v,

out int w) {
int i ; bool b = true ;
for (;;) {

i = wait(u );
if (b) send(i , v );
else send(i , w);
b = !b;

}
}

process h( in int u, out int v,
int init ) {

int i ;
send(v, init );
for (;;) {

i = wait(u );
send(i , v );

}
}

channel int X, Y, Z, T1, T2;

f (Y, Z, X);
g(X, T1, T2 );
h(T1, Y, 0);
h(T2, Z, 1);



Discrete-Event Simulation: Verilog

module ex;
reg a, b;

always begin a = 1; #2;
b = 1; #3;
a = 0; #5;
b = 0; #7; end

always begin
@(a);
if (a) begin

$display("a"); #10; end
@(b);
if (b) $display("b");

end
endmodule

Arc Types
#2

delay
a

conditional

sensitizing
@(a)

event

0: a=0;

1: b=1;

2: a=1;

3: b=0;

5:

6: $display("a")

9:

10: if (b)
$display("b")

#2

#3

#5

#7

@(a)

@(a)

@(b)

@(b)

a

a

#10



Discrete-Event Simulation: Verilog

1. Select, remove, and
execute earliest pending
event e from queue

2. At an event @(), mark
successor as sensitive

3. On assignment v =,
schedule all events
sensitive to the variable

4. On delay #, schedule
successor in the future

Arc Types
#2

delay
a

conditional

sensitizing
@(a)

event

0: a=0;

1: b=1;

2: a=1;

3: b=0;

5:

6: $display("a")

9:

10: if (b)
$display("b")

#2

#3

#5

#7

@(a)

@(a)

@(b)

@(b)

a

a

#10



Nondeterminism in Verilog

module race;
reg a;

initial begin #10; a = 1;
#10; a = 0;
#10; a = 1; end

always @(a) $display("%0t first", $time);

always @(a) $display("%0t second", $time);

endmodule

10 first
10 second
20 second
20 first
30 first
30 second





Adam Kepecs, Cold Spring Harbor Laboratory [Lak et al., Neuron 84(1), 2014]



Bpod: An Open Hardware Platform for Behavioral Monitoring
and Control

Sanworks.io, spun out of Kepecs’ lab.
Teensy 3.6: ARM Cortex M4, 180 MHz



SSM: The Idea

Stimuli

Responses

Subject

Controller

Results

BEADL

training gate valve led =
let timeout = new 0
valve <- 1
delay (ms 100)
valve <- 0
after (s 10), timeout <- 1
wait gate || timeout
if updated timeout
failed <- failed + 1

else
led <- 1
after (ms 100), led <- 0
wait led



SSM: Wishlist
Deterministic formal semantics

Explicit model-time delays only; platform-independent timing above some
minimum delay (synchronous logic)

Sslang
Program

O
u

tp
u

t

In
p

u
t

100
@7

011
@5

01
@9

10
@6

6 975

“Bare metal” microcontroller
implementations: hardware
counter/timer drives timing,
timer interrupts for scheduling

Concurrency



0ms 50ms 100ms 150ms

Time modeled arithmetically Time in seconds
Can add, subtract, multiply, and
divide time intervals

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led = 0



0ms 50ms 100ms 150ms

Time modeled arithmetically

Time is quantized;
quantum not user-visible

Quantum might be
1 MHz, 16 MHz, etc.
Integer timestamps thwart Zeno

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led = 0



0ms 50ms 100ms 150ms

Time modeled arithmetically

Time is quantized;
quantum not user-visible

Program thinks processor is
infinitely fast: execution a
sequence of zero-time instants
(hence “synchronous”)

Every instruction that runs in an
instant sees the same
timestamp

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led = 0



0ms 50ms 100ms 150ms

Time modeled arithmetically

Time is quantized;
quantum not user-visible

Program thinks processor is
infinitely fast: execution a
sequence of zero-time instants
(hence “synchronous”)

Nothing happens in
most instants (hence “sparse”)
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loop

after ms 50,
led <− not (deref led)

wait led

led = 0
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SSM: Parallel Composition

A desired SSM library: input debounce

Nervous rats often jitter before making a decision; want a library that discards
“on” events shorter than x ms

⇒ Parallel composition?

Feedback loops?

Simultaneous events?

Contradictions?



Simultaneous Events

What should we do with simultaneous events?

We could simply legistate them away at the input, but they are easy to
generate internally.

What should this do?



Simultaneous Events

What should we do with simultaneous events?

We could simply legistate them away at the input, but they are easy to
generate internally.

Fork Add

Seems reasonable: output is double the input



Simultaneous Events

What should we do with simultaneous events?

We could simply legistate them away at the input, but they are easy to
generate internally.

Fork Merge

Should this be allowed? What should its output be?



Concurrent Code Executes in Syntactic Order for Determinism

add2 x = x <- deref x + 2 / / Add 2 as a side-effect

mult4 x = x <- deref x * 4 / / Multiply by 4 as a side-effect

main =
let a = new 1 / / Allocate a new mutable variable

par add2 a / / Runs first: a← 1 + 2 = 3
mult4 a / / Runs second: a← 3× 4 = 12

par mult4 a / / Runs third: a← 12× 4 = 48
add2 a / / Runs fourth: a← 48 + 2 = 50
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Concurrent Code May Block on wait

blink led period =
let timer = new () / / void/unit scheduled variable
loop
led <- not (deref led) / / Toggle led now
after period, timer <- () / / Wait for the period
wait timer

main led =
par blink led (ms 50)

blink led (ms 30)
blink led (ms 20) / / led toggles three times at time 600



FDL 2020: C API for SSM Runtime

Basic trick: Two priority queues

First queue for scheduled variable update events, prioritized by time

Second queue for code to be executed in the current instant; prioritized by
structure

A wait statement reminds the variable that something is waiting on it

When a variable is written, it schedules the waiting code in the second queue

An after statement deletes any existing outstanding event for the variable
before scheduling a new one



FDL 2020: C API for SSM Runtime
/ / Routine activation record management
rar_t *enter(size_t size, void (*step)(rar_t *), rar_t *caller,

uint32_t priority, uint8_t depth)
void call(rar_t *rar)
void fork(rar_t *rar)
void leave(rar_t *rar, size_t size)

/ / Variable management
void initialize_type(cv_type_t *var, type val) / / new
void assign_type(cv_type_t *var, uint32_t priority, type val) / / <-
void later_type(cv_type_t *var, uint64_t time, type val) / / after
bool event_on(cv_t *var)

/ / Trigger management (for wait statements)
void sensitize(cv_t *var, trigger_t *trigger)
void desensitize(trigger_t *trigger)



FDL 2020: C API Example

examp a =
let loc = new 0
wait a
loc <- 42
after ms 10, a <- 43
par foo 42 loc
par foo 40 loc

bar 42

rar_examp_t *enter_examp(rar_t *caller, uint32_t priority, unit8_t depth, cv_int_t *a) {
rar_examp_t *rar = (rar_examp_t *)

enter(sizeof(rar_examp_t), step_examp, caller, priority, depth);
rar->a = a; / / Store pass-by-reference argument
rar->trig1.rar = (rar_t *) rar; / / Initialize our trigger

}
void step_examp(rar_t *gen_rar) {

rar_examp_t *rar = (rar_examp_t *) gen_rar;
switch (rar->pc) {
case 0:

initialize_int(&rar->loc, 0); / / let loc = new 0
sensitize((cv_t *) rar->a, &rar->trig1); / / wait a
rar->pc = 1; return;

case 1:
if (event_on((cv_t *) rar->a)) { / / if @a then
desensitize(&rar->trig1); / / De-register our trigger

} else return;
assign_int(&rar->loc, rar->priority, 42); / / loc <- 42
later_int(rar->a, now+10000, 43); / / after 10ms, a <- 43
rar->pc = 2; / / Single routine call: foo 42 loc
call((rar_t *) enter_foo((rar_t *) rar, rar->priority, rar->depth, 42, &rar->loc));
return;

case 2: / / Concurrent call: par foo 40 loc; bar 42
{ uint8_t new_depth = rar->depth - 1; / / 2 children
uint32_t pinc = 1 << new_depth;
uint32_t new_priority = rar->priority;
fork((rar_t *) enter_foo((rar_t *) rar, new_priority, new_depth, 40, &rar->loc));
new_priority += pinc;
fork((rar_t *) enter_bar((rar_t *) rar, new_priority, new_depth, 42)); }

rar->pc = 3; return;
case 3: ; }
leave((rar_t *) rar, sizeof(rar_examp_t)); / / Terminate

}



TCRS 2023: SSM as a Lua Library
local ssm = require("ssm")

function ssm.pause(d)
local t = ssm.Channel {}
t:after(ssm.msec(d), { go = true })
ssm.wait(t)

end

function ssm.fib(n)
if n < 2 then

ssm.pause(1)
return n

end
local r1 = ssm.fib:spawn(n - 1)
local r2 = ssm.fib:spawn(n - 2)
local rp = ssm.pause:spawn(n)
ssm.wait { r1, r2, rp }
return r1[1] + r2[1]
end

local n = 10

ssm.start(function()
local v = ssm.fib(n)

print(("fib(%d) => %d"):format(n, v))
==prints “fib(10) => 55”

local t = ssm.as_msec(ssm.now())
print(("Completed in %.2fms"):format(t))
==prints “Completed in 10.00ms”

end)



MEMOCODE 2023: The RP2040

2 ARM Cortex M0+
processor cores,
133 MHz

264K SRAM

Off-chip QSPI flash
(e.g., 2 MB)

30 GPIO pins

2 Programmable
I/O Blocks (PIO)

US$1 quantity 1



MEMOCODE 2023: A PIO Block

4 “State Machines”

32-instruction
memory (shared)

9 instructions
(jump, wait, in,
out, etc.)

4 32-bit registers

Single-cycle
execution



MEMOCODE 2023: Sslang on an RP2040

PIO0

PIO0

Interrupt Routines

SSM RuntimeRP2040 Platform Runtime

Tick
loop

tick

SSM event queue

schedule
3

@4
2

@3
4

@1

PIO Input Queue

Peripheral ISR 5
@6

1
@5

8
@2

Input Queue

PIO ISR

Alarm ISR

System Timer
1 MHz
64 bit

set_alarm
IRQ

Semaphore

wait

post

Capture SM

16 MHz
32 bit

3 5 1

RX FIFO
DMA

Pins

IRQ0

Buffer SM

TX FIFO

Pins

Alarm SM

IRQ4

TX FIFO

16 MHz
32 bit

value

time

Sslang
Program

Latency: 10-20 µs Accuracy: 62.5 ns / 16 MHz



sleep delay =
let timer = new ()
after delay, timer <- ()
wait timer

waitfor var value =
while deref var != value

wait var

debounce delay input press =
loop
waitfor input 0
press <- ()
sleep delay
waitfor input 1
sleep delay

pulse period press output =
loop
wait press
output <- 1
after period, output <- 0
wait output

buttonpulse button led =
let press = new ()
par debounce (ms 10) button press

pulse (ms 200) press led

21 µs Button-to-LED latency



MEMOCODE 2023: 100 µs pulse: C vs Sslang Latency

Input

Output 
(C)

Output
(Sslang)

C: 1.80us 
reaction time

Sslang: 13.8us 
reaction time



MEMOCODE 2023: 100 µs pulse: C vs Sslang Falling edge

Input

Output 
(C)

C falling edge:
1.41 µs late, 960 ns jitter

Input

Output
(Sslang)

≈  1 / 16MHz

Sslang falling edge:
0 µs late, 62.6 ns jitter (16 MHz clock)


