BEADL: A New Real-Time Language for
Behavioral Experiments

Stephen A. Edwards

Columbia University

Octopi Workshop
Chalmers University of Technology
Gothenburg, Sweden
December 2018

Delay

correct - ™ reward
a 4 1 } B
. 9. | ; i 3
3 3 : A, : 1Probe trial a
1 —r] — @ © L
. . b- ‘ p- e 3
a _ 4 a . . g
. ® J = no reward (‘Q\/ /\/‘
binaural contrast error -~ 4 . =

Center Port |

Stimulus | ,,,,,,,,, |
ST R
MT
Choice Port | |-

Rewarded

Water valve l

Adam Kepecs, Cold Spring Harbor Laboratory
[Lak et al., Neuron 84(1), 2014]

Bpod: An Open Hardware Platform for Behavioral
Monitoring and Control

Sanworks.io, spun out of Kepecs' lab.
Teensy 3.6: ARM Cortex M4, 180 MHz

sma = NewStateMatrix();

sma = AddState(sma, 'Name’,
’Timer’,S.ITI,...
’StateChangeConditions’, {’Tup’
’OutputActions’,{});

%Pre task states

sma = AddState(sma, ’Name’,’PreState’,...
’Timer’,S.GUI.PreCue,...

'ITI, ...

’StateChangeConditions’,{’Tup’,’CueDelivery’},...

’OutputActions’, {’BNCState’,1});

%Cue

sma=AddState(sma, 'Name’, ’CueDelivery’,...
’Timer’,S.GUI.CueDuration,...
’StateChangeConditions’,{’Tup’, ’Delay’},...
’OutputActions’, {’SoftCode’,S.Cue})

%Delay

sma=AddState(sma, 'Name’,
’Timer’,S.Delay,...
’StateChangeConditions’,{’Tup’,
’OutputActions’,{});

%Extra Cue for L3-SecondaryCue

sma=AddState(sma, 'Name’, ’'ExtraCueDelivery’,...
’Timer’,S.ExtraCueDuration,...
’StateChangeConditions’, {’Tup’
’OutputActions’, {’SoftCode’,S.ExtraCue});

%Extra Delay for L3-SecondaryCue

sma=AddState(sma, 'Name’, ’ExtraDelay’,...
’Timer’,S.ExtraDelay,...
’StateChangeConditions’,{’Tup’,
’OutputActions’,{});

%Reward

sma=AddState(sma, 'Name’,
’Timer’,S.Outcome, ...
’StateChangeConditions’, {’Tup’
’OutputActions’, {’ValveState’, S.Valve});

%Post task states

sma=AddState(sma, 'Name’, ’'PostOutcome’,...

'Delay’, ...

’Outcome’}, ...

’Outcome’, ...

’PreState’}, ...

’ExtraCueDelivery’}

’ExtraDelay’}, ...

’PostOutcome’}, ..

Describe as FSM
Build FSM with Matlab API
Download FSM to firmware

Firmware: FSM interpreter
w/100 us heartbeat

BEADL: The Idea

outputs
valve dispense # Channel w/ 1 event
led on off # Two possible events
inputs

gate enter exit

Controller Stimuli
task simple_example:
"Subject Attraction" # State label
BEADL Subject valve dispense # Generate event
D await
Responses 10 s: # Timeout
"Failure"

e goto "Subject Attraction"
gate enter: # Event arrived

"Light Stimulus"

led on # Generate event
await 100 ms # Simple delay
led off

BEADL: Philosophy

Deterministic formal semantics

Explicit model-time delays only; platform-independent
timing above some minimum delay (synchronous logic)

“Bare metal” microcontroller implementations: hardware
counter/timer drives timing, timer interrupts for scheduling

Schedulability/static timing analysis done at compile time

BEADL: Possible Single-Threaded Implementation

void interrupt1() {
now = get_platform_time();
switch (state) {
case ST:

ou\;caﬁl\;:.'sdis ense Attract: report("Attract");
led on o?f valve_dispense();
inputs state = S2, schedule(now + SEC(10)); return;

case S2:
switch (get_interrupting_event()) {
case TIMEOUT:

gate enter exit

"Attract" g .
b Fail: report("Fail");
;ﬁ‘;?tdlsp ense goto Attract;
10 s: case GATE_ENTER: break;
o .Fail" default: return; }
goto "Attract” Stimulus: report("Stimulus");
. led_on();
ga“tsetit-:ngsg " state = S3, schedule(now + MS(100)); return;
- case S3:
await 100 ms Ied_of_f();T PPED:)
led off state = STO ; return;

case STOPPED:
return;
}
}

BEADL: Parallel Composition

Language Design is Library Design —Stroustrup
A desired BEADL library: input debounce

Nervous rats often jitter before making a decision; want a
library that discards “on” events shorter than x ms

= Parallel composition?

Feedback loops?
Simultaneous events?

Contradictions?

Ptolemy

Edward Lee et al.,

ucC Berkeley, 19805 to present

jew Edit_Graph

T e

v
HEMMBMAEW“U»FOWWWM

Spectrum SDF Director

Tuis medel hows a shuple perodoorem spectea estimate of &
modt

lated slnu:old m noise. The t

B e et s
wo peaks are centered at the carrier
requency, with their distance from the carrier given by the
signal frequency. The sample rate i assumed to be 8kHz.

800 |
File Edit_Special Help
Spectrum Time Doma Spectrum =Ll
File Edit _Special Help B
Time-Domain Plot .
10
10 s
B2
05 =
09 “
0
] s 2z a4 0 1z 3 4
10 : ; reqvency 10
(TR w20 25
ame ndex w10

Fig 2.1, System Design, Modeling, and Simulation Using Ptolemy II, 2014
Originally for simulating synchronous dataflow;
this remains its primary strength

Heterogeneous Modeling in Ptolemy

Director = simulation controller; imposes operational
semantics

Model: CompositeActor

Director .
B: AtomicActor

link
A: CompositeActor C: CompositeActor

- N, e .

, ’E‘_._'E.\ > .

~._Relation

- < 7 =
/ N s .
. N S ",

Director o Attribute: value

E: AtomicActor

q: Port
D: AtomicActor

p: Port

Relation

Relation

Opaque CompositeActor Transparent CompositeActor

Fig 1.4, System Design, Modeling, and Simulation Using Ptolemy II, 2014

Ptolemy’s Discrete Event Domain

DE Director

PoissonClock CurrentTime

o

Histogram of Interarrival Times

141

121

1.0

08

06

041

02
0.0[

I”I”"Illll.l...........
1 2 3 4 5

6

AddSubtract

HistogrampPI

Previous

+

Pre with
default:
absent

J

Fig 7.4, System Design, Modeling, and Simulation Using Ptolemy II, 2014

Oy

Ptolemy’s Discrete Event Domain

PoissonClock CurrentTime .
AddSubtract HistogramPlotter

mggerDM > + ﬁ
Previous

Pre with

t default:

absent

Fig 7.4, System Design, Modeling, and Simulation Using Ptolemy II, 2014

Very subtle bug: PoissonClock generates its first event at
time 0; the Previous block emits no event in response,
AddSubtract only receives the single event tagged “0” and
outputs a spurious “0.”

Ptolemy’s Discrete Event Domain

PoissonClock rrentTim -
oissonClock - CurrentTime HistogramPlotter

AddSubtract
mggerDM > + ﬁ
Previous _
Pre with
t default:

absent

Fig 7.4, System Design, Modeling, and Simulation Using Ptolemy II, 2014

Solution: Add a sampler to drop the first event

PoissonClock CurrentTime Sampler

lriggerb@

| AddSubtract HistogramPlotter

+
Previous _ F—D‘ |.|I_I.|

Pre with
default:
absent

Fig 7.5, System Design, Modeling, and Simulation Using Ptolemy II, 2014

Achieving Determinacy

Channels convey events

Event : Value x Timestamp

Timestamp : Model time x Microstep x Topological Level
: R xNpxNp

Events on a channel may have identical timestamps

Topological levels are straightforward for this example:

0 1 2 3 4 5
PoissonClock CurrentTime Sampler
triggerb_@ _— AddSubtract HistogramPlotter

+ oon|
Previous _
Pre with

default:
absent

Fig 7.5, System Design, Modeling, and Simulation Using Ptolemy II, 2014

Scheduling Algorithm: Dealing With Simultaneous
Events

Maintain an event queue ordered by timestamp

Timestamps ordered by model time, microstep, then
topological level

1. Select event e with lowest timestamp ¢ in event queue.
Let a be the actor to which e is to be applied

2. Set model time to ¢

3. Let E be all events with timestamp ¢ for actor a in the
gueue

4. Remove events E from the queue
5. Fire actor a on events E (may generate more events)
6. Repeat

Feedback Loops

Every feedback loop must be broken with a time delay actor

AddSubtract TimeDelay
DE Director
>+ delay of
] 1 "

DiscreteClock

Ramp

trigger | TimedPlotter
(T

gger,
triggery]

| *

S

periody]

wers|
doxs|

of F

sfF delayed difference
difference x

7k ramp 0

o

B

4

-

2

-

of

0 1 2 3 4 5 6 7 8
model time

Fig 7.10, System Design, Modeling, and Simulation Using Ptolemy II, 2014

A delay of “0” is actually a delay of a single microstep

Microsteps can lead to madness

DiscreteClock Ram
wiggerp oo p Merge TimedPlotter
pericdb [i

b"

AddSubtract BooleanSwitch
¥ T,

uersHY
doisP)

>

DE Director

TimeDelay
L L delay of
0.0 v
FeedPack wit‘h Zero Pelay
s
2b
sF
st
4t
af
o
s
L
0 1 2 6 7 8

a
model time

...or Zeno-like behavior

Last resort: Priorities (for actors with side-effects)

DE Director

stopTime: 10.0

DiscreteClock
triggerD‘

eriod
p D‘

uels
dois

Ramp

FileWriter

I ‘ } i”EUtB |
i filenameb_

init: 1

step: 1
Priority: 1

Ramp?2

Priority: 1

FileWriter2

I ‘ } inEutD |
I filenameb,

init: -1

step: -1
Priority: O

Fig 7.9, System Design, Modeling, and Simulation Using Ptolemy II, 2014

Priority: O

PTIDES/PtidyOS

Merge H Queue k% Device F :

: camers “Real-time
e -~ discrete-event

simulation”
=
Display
Central

[Zhao et al., RTAS 2007]

Process
:| Image

Real-time scheduler maintains event queue

If next queued event is “too far” in the future, delay with a
timer interrupt

Interrupts on inputs generate new events

Ptolemy DE/PTIDES/PtidyOS

Clever contribution of PTIDES is a distributed
implementation strategy that answers “When | can advance
my clock, i.e., when are there no older events?”

| don't like its semantic model, especially its need to
explicitly break feedback loops with microstep delays.

Microsteps: “A poor man's fixed point evaluator”

The main culprit: allowing multiple events on a channel

Simultaneous Events

What should we do with simultaneous events?

We could simply legistate them away at the input, but they
are easy to generate internally.

What should this do?

Simultaneous Events

What should we do with simultaneous events?

We could simply legistate them away at the input, but they
are easy to generate internally.

— Fork Add —

Seems reasonable: output is double the input

Simultaneous Events

What should we do with simultaneous events?

We could simply legistate them away at the input, but they
are easy to generate internally.

— Fork Merge |—

Should this be allowed? What should its output be?

The Lustre Synchronous Dataflow Language

node Watchdog (set,reset,u_tps: bool; delay: int) returns (alarm: bool);
var is_set : bool;
remain : int;
let
alarm = is_set and (remain = 0) and pre(remain) > 0;
is_set = false —> if set then true
else if reset then false
else pre(is_set);
remain = 0 —> if set then delay
else if u_tps and pre(remain) > 0
then pre(remain) — 1
tel

Declarative dataflow style; expressing control is awkward
Every loop must have a unit delay (“pre”) No microsteps

Implicit clock not tied to wallclock time

[Halbwachs, Caspi, et al.]

The Esterel Synchronous Programming Language

module ABRO:

input A, B, R;

output O;

loop
[await A || await B |;
emit O

each R

end module

Imperative style with sequencing, concurrency, conditionals,
and exceptions

More subtle causality constraints; “constructive” causality
requires a per-state analysis

[Berry et al.]

BEADL: A Work in Progress

» Semantics
Event-driven with explicit model time advances
Synchronous: Esterel-like with Lustre-style causality?
No reactions to absent events (timeouts only)

» Implementation

PTIDES-like: Interrupt driven

Events: timeouts, input arrivals

Model time “matched” to platform time
» Schedulability

Run-time deadline checking
Compile-time WCET analysis?

