
BEADL: A New Real-Time Language for
Behavioral Experiments

Stephen A. Edwards

Columbia University

Octopi Workshop
Chalmers University of Technology

Gothenburg, Sweden
December 2018

Adam Kepecs, Cold Spring Harbor Laboratory
[Lak et al., Neuron 84(1), 2014]

Bpod: An Open Hardware Platform for Behavioral
Monitoring and Control

Sanworks.io, spun out of Kepecs’ lab.
Teensy 3.6: ARM Cortex M4, 180 MHz

sma = NewStateMatrix();
sma = AddState(sma,’Name’, ’ITI’,...

’Timer’,S.ITI,...
’StateChangeConditions’, {’Tup’, ’PreState’},...
’OutputActions’,{});

%Pre task states
sma = AddState(sma, ’Name’,’PreState’,...

’Timer’,S.GUI.PreCue,...
’StateChangeConditions’,{’Tup’,’CueDelivery’},...
’OutputActions’,{’BNCState’,1});

%Cue
sma=AddState(sma,’Name’, ’CueDelivery’,...

’Timer’,S.GUI.CueDuration,...
’StateChangeConditions’,{’Tup’, ’Delay’},...
’OutputActions’, {’SoftCode’,S.Cue});

%Delay
sma=AddState(sma,’Name’, ’Delay’,...

’Timer’,S.Delay,...
’StateChangeConditions’,{’Tup’, ’ExtraCueDelivery’},...
’OutputActions’,{});

%Extra Cue for L3-SecondaryCue
sma=AddState(sma,’Name’, ’ExtraCueDelivery’,...

’Timer’,S.ExtraCueDuration,...
’StateChangeConditions’, {’Tup’, ’ExtraDelay’},...
’OutputActions’, {’SoftCode’,S.ExtraCue});

%Extra Delay for L3-SecondaryCue
sma=AddState(sma,’Name’, ’ExtraDelay’,...

’Timer’,S.ExtraDelay,...
’StateChangeConditions’,{’Tup’, ’Outcome’},...
’OutputActions’,{});

%Reward
sma=AddState(sma,’Name’, ’Outcome’,...

’Timer’,S.Outcome,...
’StateChangeConditions’, {’Tup’, ’PostOutcome’},...
’OutputActions’, {’ValveState’, S.Valve});

%Post task states
sma=AddState(sma,’Name’, ’PostOutcome’,...

’Timer’,S.GUI.PostOutcome,...
’StateChangeConditions’,{’Tup’, ’exit’},...
’OutputActions’,{});

SendStateMatrix(sma);

InitTrial

timer=inf
led center port on

enter center port

DelayStimulus

timer=stim_delay
led center port off

leave center port

timer elapsed

DeliverStimulus

timer=0.35s
deliver stimulus

leave center port

timer elapsed

TimeoutPunishment

timer=3s

stop stimulus

timer elapsed

play punishment sound

WaitForCoice

timer=3s

timer elapsed

stop stimulus

led left port on

led right port on

enter correct_port

enter error_port

DelayReward

timer=correct_delay

led left port off

timer elapsed

led right port off

DelayPunishment

timer=error_delay

led left port off

timer elapsed

led right port off

leave correct_port leave error_port
grace-period=0.4s grace-period=0.4s

DeliverReward

timer=reward_time
deliver reward

timer elapsed

ITI

timer=0.5s

timer elapsed

output action

input event (subject)

input event (virtual)

StateName

timer=x

An event caused be the subject (animal)

An event caused be the system itself

An action performed by the system (Bpod)
Examples: leds, valves, serial-commands, BNC outputs,
softcode, global timers

Definition of a state with name and (local) timer.
A local timer is only active in the state where it is
defined and specifies the max. duration of the state

descriptor

grace-period
Allows an event to occur without leaving the state or
triggering any ouput actions at re-entering the state

Trial-dependend value that is specified outside the trial
but can be updated during a session

Describe as FSM

Build FSM with Matlab API

Download FSM to firmware

Firmware: FSM interpreter
w/100 µs heartbeat

BEADL: The Idea

Stimuli

Responses

Subject

Controller

Results

BEADL

outputs
valve dispense # Channel w/ 1 event
led on off # Two possible events

inputs
gate enter exit

task simple_example:
"Subject Attraction" # State label
valve dispense # Generate event
await

10 s: # Timeout
"Failure"
goto "Subject Attraction"

gate enter: # Event arrived

"Light Stimulus"
led on # Generate event
await 100 ms # Simple delay
led off

BEADL: Philosophy

Deterministic formal semantics

Explicit model-time delays only; platform-independent
timing above some minimum delay (synchronous logic)

“Bare metal” microcontroller implementations: hardware
counter/timer drives timing, timer interrupts for scheduling

Schedulability/static timing analysis done at compile time

BEADL: Possible Single-Threaded Implementation

outputs
valve dispense
led on off

inputs
gate enter exit

"Attract"
valve dispense
await

10 s:
"Fail"
goto "Attract"

gate enter:
"Stimulus"
led on
await 100 ms
led off

void interrupt1() {
now = get_platform_time();
switch (state) {
case S1:
Attract: report("Attract");
valve_dispense();
state = S2, schedule(now + SEC(10)); return;

case S2:
switch (get_interrupting_event()) {
case TIMEOUT:
Fail : report("Fail");
goto Attract;

case GATE_ENTER: break;
default: return; }

Stimulus: report("Stimulus");
led_on();
state = S3, schedule(now + MS(100)); return;

case S3:
led_off ();
state = STOPPED; return;

case STOPPED:
return;

}
}

BEADL: Parallel Composition

Language Design is Library Design —Stroustrup

A desired BEADL library: input debounce

Nervous rats often jitter before making a decision; want a
library that discards “on” events shorter than x ms

⇒ Parallel composition?

Feedback loops?

Simultaneous events?

Contradictions?

Ptolemy
Edward Lee et al., UC Berkeley, 1980s to present

Fig 2.1, System Design, Modeling, and Simulation Using Ptolemy II, 2014

Originally for simulating synchronous dataflow;
this remains its primary strength

Heterogeneous Modeling in Ptolemy
Director = simulation controller; imposes operational
semantics

Fig 1.4, System Design, Modeling, and Simulation Using Ptolemy II, 2014

Ptolemy’s Discrete Event Domain

Fig 7.4, System Design, Modeling, and Simulation Using Ptolemy II, 2014

Ptolemy’s Discrete Event Domain

Fig 7.4, System Design, Modeling, and Simulation Using Ptolemy II, 2014

Very subtle bug: PoissonClock generates its first event at
time 0; the Previous block emits no event in response,
AddSubtract only receives the single event tagged “0” and
outputs a spurious “0.”

Ptolemy’s Discrete Event Domain

Fig 7.4, System Design, Modeling, and Simulation Using Ptolemy II, 2014

Solution: Add a sampler to drop the first event

Fig 7.5, System Design, Modeling, and Simulation Using Ptolemy II, 2014

Achieving Determinacy

Channels convey events

Event : Value × Timestamp

Timestamp : Model time × Microstep × Topological Level
: R×N0 ×N0

Events on a channel may have identical timestamps

Topological levels are straightforward for this example:

0 1 2 3 4 5

Fig 7.5, System Design, Modeling, and Simulation Using Ptolemy II, 2014

Scheduling Algorithm: Dealing With Simultaneous
Events

Maintain an event queue ordered by timestamp

Timestamps ordered by model time, microstep, then
topological level

1. Select event e with lowest timestamp t in event queue.
Let a be the actor to which e is to be applied

2. Set model time to t

3. Let E be all events with timestamp t for actor a in the
queue

4. Remove events E from the queue

5. Fire actor a on events E (may generate more events)

6. Repeat

Feedback Loops

Every feedback loop must be broken with a time delay actor

Fig 7.10, System Design, Modeling, and Simulation Using Ptolemy II, 2014

A delay of “0” is actually a delay of a single microstep

Microsteps can lead to madness

...or Zeno-like behavior

Last resort: Priorities (for actors with side-effects)

Fig 7.9, System Design, Modeling, and Simulation Using Ptolemy II, 2014

PTIDES/PtidyOS

Clock

Merge

Camera

Display
Command

Central
Computer

s1

Device

Delay
d

Queue

Process
Image

s2

Route

[Zhao et al., RTAS 2007]

“Real-time
discrete-event
simulation”

Real-time scheduler maintains event queue

If next queued event is “too far” in the future, delay with a
timer interrupt

Interrupts on inputs generate new events

Ptolemy DE/PTIDES/PtidyOS

Clever contribution of PTIDES is a distributed
implementation strategy that answers “When I can advance
my clock, i.e., when are there no older events?”

I don’t like its semantic model, especially its need to
explicitly break feedback loops with microstep delays.

Microsteps: “A poor man’s fixed point evaluator”

The main culprit: allowing multiple events on a channel

Simultaneous Events

What should we do with simultaneous events?

We could simply legistate them away at the input, but they
are easy to generate internally.

What should this do?

Simultaneous Events

What should we do with simultaneous events?

We could simply legistate them away at the input, but they
are easy to generate internally.

Fork Add

Seems reasonable: output is double the input

Simultaneous Events

What should we do with simultaneous events?

We could simply legistate them away at the input, but they
are easy to generate internally.

Fork Merge

Should this be allowed? What should its output be?

The Lustre Synchronous Dataflow Language

node Watchdog (set,reset,u_tps: bool; delay: int) returns (alarm: bool);
var is_set : bool;

remain : int;
let
alarm = is_set and (remain = 0) and pre(remain) > 0;
is_set = false −> if set then true

else if reset then false
else pre(is_set);

remain = 0 −> if set then delay
else if u_tps and pre(remain) > 0
then pre(remain) − 1

tel

Declarative dataflow style; expressing control is awkward

Every loop must have a unit delay (“pre”) No microsteps

Implicit clock not tied to wallclock time

[Halbwachs, Caspi, et al.]

The Esterel Synchronous Programming Language

module ABRO:
input A, B, R;
output O;

loop
[await A || await B];
emit O

each R

end module

Imperative style with sequencing, concurrency, conditionals,
and exceptions

More subtle causality constraints; “constructive” causality
requires a per-state analysis

[Berry et al.]

BEADL: A Work in Progress

Ï Semantics
Event-driven with explicit model time advances
Synchronous: Esterel-like with Lustre-style causality?
No reactions to absent events (timeouts only)

Ï Implementation
PTIDES-like: Interrupt driven
Events: timeouts, input arrivals
Model time “matched” to platform time

Ï Schedulability
Run-time deadline checking
Compile-time WCET analysis?

