
A Processor Extension for
Cycle-Accurate Real-Time Software

Nicholas Jun Hao Ip and Stephen A. Edwards

Columbia University

New York, New York, USA

A Processor Extension for Cycle-Accurate Real-Time Software – p. 1/19

Basic Idea

Q: How do you make software run

at a precise speed?

A: Give it access to a clock.

A Processor Extension for Cycle-Accurate Real-Time Software – p. 2/19

Basic Idea

Q: How do you make software run

at a precise speed?

A: Give it access to a clock.

A Processor Extension for Cycle-Accurate Real-Time Software – p. 2/19

One Usual Way: Timers

Period timer interrupt triggers scheduler

Large period reduces overhead

Linux uses a 10 ms clock

Result: OS provides 10 ms resolution at best

Higher precision requires more overhead

0 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms 70 ms 80 ms

A Processor Extension for Cycle-Accurate Real-Time Software – p. 3/19

Or NOPs/cycle counting
Code from Linux arch/i386/kernel/timers/timer_none.c

delay_none:

0: push %ebp

1: mov %esp,%ebp

3: sub $0x4,%esp

6: mov 0x8(%ebp),%eax

9: jmp 10

10: jmp 20

20: dec %eax

21: jns 20

23: mov %eax,-4(%ebp)

26: leave

27: ret

Tricky

Clock speed + cache behavior +

branch behavior + ?

This example worries about

cache alignment

Very much an

assembly-language trick

1000s of lines of code in Linux

needed for busy wait

A Processor Extension for Cycle-Accurate Real-Time Software – p. 4/19

Related Work: Giotto

Giotto [Henzinger, Horowitz, Kirsch, Proc. IEEE 2003]

The RTOS style: specify a collection of tasks and modes.

Compiler produces schedule (task priorities).

Precision limited by periodic timer interrupt.

mode forward() period 200 {

actfreq 1 do leftJet(leftMotor);

actfreq 1 do rightJet(rightMotor);

exitfreq 1 do point(goPoint);

exitfreq 1 do idle(goIdle);

exitfreq 1 do rotate(goRotate);

taskfreq 2 do errorTask(getPos);

taskfreq 1 do forwardTask(getErr);

}

A Processor Extension for Cycle-Accurate Real-Time Software – p. 5/19

Related Work: STI

Software Thread Integration

[Dean, RTSS 1998]

Insert code for a non-real-time

thread into a real-time thread.

Pad the rest with NOPs

Often creates code explosion

Requires predictable processor

A Processor Extension for Cycle-Accurate Real-Time Software – p. 6/19

Related Work: VISA

VISA [Meuller et al., ISCA 2003]

Run two processors:

• Slow and predictable

• Fast and unpredictable

Start tasks on both.

If fast completes first, use extra time.

If fast misses a checkpoint, switch over to slow.

A Processor Extension for Cycle-Accurate Real-Time Software – p. 7/19

Our Solution/Processor

MIPS-like processor with 16-bit data path as proof of concept

One additional “deadline” instruction:

dead timer, timeout

Wait until timer expires, then immediately reload it with timeout.

A Processor Extension for Cycle-Accurate Real-Time Software – p. 8/19

Programmer’s Model

General-purpose

Registers
15 0

$0 (= 0)

$1

$2

...

$13

$14

$15

Timers
15 0

$t0

$t1

$t2

$t3

Program counter

15 0

$pc

A Processor Extension for Cycle-Accurate Real-Time Software – p. 9/19

Instructions
add Rd, Rs, Rt
addi Rd, Rs, imm16
and Rd, Rs, Rt
andi Rd, Rs, imm16
be Rd, Rs, offset
bne Rd, Rs, offset
j target
lb Rd, (Rt + Rs)
lbi Rd, (Rs + offset)
mov Rd, Rs
movi Rd, imm16
nand Rd, Rs, Rt
nandi Rd, Rs, imm16
nop
nor Rd, Rs, Rt
nori Rd, Rs, imm16

or Rd, Rs, Rt
ori Rd, Rs, imm16
sb Rd, (Rt + Rs)
sbi Rd, (Rs + offset)
sll Rd, Rs, Rt
slli Rd, Rs, imm16
srl Rd, Rs, Rt
srli Rd, Rs, imm16
sub Rd, Rs, Rt
subi Rd, Rs, imm16
dead T, Rs
deadi T, imm16
xnor Rd, Rs, Rt
xnori Rd, Rs, imm16
xor Rd, Rs, Rt
xori Rd, Rs, imm16

A Processor Extension for Cycle-Accurate Real-Time Software – p. 10/19

Behavior of Dead

deadi $t0, 8

add $r1, $r2, $r3

deadi $t0, 10

add $r1, $r2, $r3

cycle instruction $t0

−4 deadi $t0, 8 3

−3 " 2

−2 " 1

−1 " 0

0 add $r1, $r2, $r3 7

1 deadi $t0, 10 6

2 " 5
...

...
...

7 " 0



















8 cycles

8 add $r1, $r2, $r3 9

A Processor Extension for Cycle-Accurate Real-Time Software – p. 11/19

Idioms: Straightline Code

deadi $t0, 42
...

deadi $t0, 58
...

deadi $t0, 100

First block will take

at least 42 cycles.

Second block: at

least 58 cycles.

A Processor Extension for Cycle-Accurate Real-Time Software – p. 12/19

Idioms: Loops

L1:
...

deadi $t0, 42
...

bne $r1, $r2, L1

Put a deadline in a loop:

Each iteration will take at least

42 cycles.

A Processor Extension for Cycle-Accurate Real-Time Software – p. 13/19

Case Study: Video

80 × 30 text-mode display

25 MHz pixel clock

Pixel shift register in hardware; everything else in software

Char.
Data
2.5K

Font
Data
1.5K

Control

Shift Register

� �� � �

� �� � �

Video

��	�
�
�	��
	�/ ���������

A Processor Extension for Cycle-Accurate Real-Time Software – p. 14/19

Case Study: Video
movi $2, 0 ; reset line address

row:
movi $7, 0 ; reset line in char

line:
deadi $t1, 96 ; h. sync period
movi $14, HS+HB
ori $3, $7, FONT ; font base address
deadi $t1, 48 ; back porch period
movi $14, HB
deadi $t1, 640 ; active video period
mov $1, 0 ; column number

char:
lb $5, ($2+$1) ; load character
shli $5, $5, 4 ; *16 = lines/char
deadi $t0, 8 ; wait for next character
lb $14, ($5+$3) ; fetch and emit pixels
addi $1, $1, 1 ; next column
bne $1, $11, char
deadi $t1, 16 ; front porch period
movi $14, HB
addi $7, $7, 1 ; next row in char
bne $7, $13, line ; repeat until bottom
addi $2, $2, 80 ; next line
bne $2, $12, row ; until at end

Two nested loops:

• Active line

• Character

Two timers:

• $t1 for line timing

• $t0 for character output

78 lines of assembly

Replaces 450 lines of VHDL

(1/5th)

A Processor Extension for Cycle-Accurate Real-Time Software – p. 15/19

Case Study: Serial Receiver
movi $3, 0x0400 ; final bit mask (10 bits)
movi $5, 651 ; half bit time for 9600 baud
shli $6, $5, 1 ; calculate full bit time

wait_for_start:
bne $15, $0, wait_for_start

got_start:
wait $t1, $5 ; sample at center of bit
movi $14, 0 ; clear received byte
movi $2, 1 ; received bit mask
movi $4, 0 ; clear parity
dead $t1, $6 ; skip start bit

receive_bit:
dead $t1, $6 ; wait until center of next bit
mov $1, $15 ; sample
xor $4, $4, $1 ; update parity
and $1, $1, $2 ; mask the received bit
or $14, $14, $1 ; accumulate result
shli $2, $2, 1 ; advance to next bit
bne $2, $3, receive_bit

check_parity:
be $4, $0, detect_baud_rate
andi $14, $14, 0xff ; discard parity and stop bits

Sampling rate under software

control

Standard algorithm:

1. Find falling edge of start bit

2. Wait half a bit time

3. Sample

4. Wait full bit time

5. Repeat 3. and 4.

A Processor Extension for Cycle-Accurate Real-Time Software – p. 16/19

Implementation

Synthesized on a Xilinx

Spartan-3 FPGA

Coded in VHDL

Runs at 25 MHz

Unpipelined

Uses on-chip memory

A Processor Extension for Cycle-Accurate Real-Time Software – p. 17/19

Conclusions
• Instruction-level access to timers enable precise real-time

control

• Dead instruction waits for timeout, then reloads

synchronously

• Prototype MIPS-like processor runs at 25 MHz

• Text-mode video display 1/5 the size of VHDL

• Serial controller similarly simple

A Processor Extension for Cycle-Accurate Real-Time Software – p. 18/19

Future Work
• Implementing extension on an H8-compatible processor

• GCC development chain

• Direct access to dead instruction in C

A Processor Extension for Cycle-Accurate Real-Time Software – p. 19/19

	Basic Idea
	Basic Idea

	One Usual Way: Timers
	Or NOPs/cycle counting
	Related Work: Giotto
	Related Work: STI
	Related Work: VISA
	Our Solution/Processor
	Programmer's Model
	Instructions
	Behavior of emph {Dead}
	Idioms: Straightline Code
	Idioms: Loops
	Case Study: Video
	Case Study: Video
	Case Study: Serial Receiver
	Implementation
	Conclusions
	Future Work

