
LDTA 2006

A Domain-Specific Language for Generating
Dataflow Analyzers

Jia Zeng 2

Department of Computer Science
Columbia University, New York

Chuck Mitchell 3

Microsoft Corporation
Redmond, Washington

Stephen A. Edwards 4

Department of Computer Science
Columbia University, New York

Abstract

Dataflow analysis is a well-understood and very powerful technique for analyzing
programs as part of the compilation process. Virtually all compilers use some sort
of dataflow analysis as part of their optimization phase. However, despite being
well-understood theoretically, such analyses are often difficult to code, making it
difficult to quickly experiment with variants.

To address this, we developed a domain-specific language, Analyzer Generator
(AG), that synthesizes dataflow analysis phases for Microsoft’s Phoenix compiler
framework. AG hides the fussy details needed to make analyses modular, yet gen-
erates code that is as efficient as the hand-coded equivalent. One key construct we
introduce allows IR object classes to be extended without recompiling.

Experimental results on three analyses show that AG code can be one-tenth the
size of the equivalent handwritten C++ code with no loss of performance. It is our
hope that AG will make developing new dataflow analyses much easier.

Key words: Domain-specific language, Dataflow analysis,
dynamic class extension, compiler, Phoenix compiler framework

1 Edwards and his group are supported by an NSF CAREER award, an award from the
SRC, and from New York State’s NYSTAR program.
2 Email: jia@cs.columbia.edu
3 Email: chuckm@microsoft.com
4 Email: sedwards@cs.columbia.edu

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Zeng, Mitchell, and Edwards

1 Introduction

Modern optimizing compilers are sprawling beasts. GCC 4.0.2, for example,
tips the scales at over a million lines of code. Much of its heft is due simply to
its many features: complete support for a real-world language, a hundred or
more optimization algorithms, and countless back-ends. But the intrinsic com-
plexity of its internal structures’ APIs and the verbosity of its implementation
language are also significant contributors.

We address the latter problem by providing a domain-specific language, ag

for “Analyzer Generator,” for writing dataflow analysis phases in Microsoft’s
Phoenix compiler framework. Experimentally, we show functionally equivalent
analyses coded in ag can be less than one-tenth the number of lines of their
hand-coded C++ counterparts and have comparable performance.

Reducing the number of lines of code needed to describe a particular anal-
ysis can reduce both coding and debugging time. We expect our language
will make it possible to quickly conduct experiments that compare the effec-
tiveness of various analyses. Finally, by providing a concise language that to
allows analyses to be coded in a pseudocode-like notation mimicking standard
texts [1], compiler students will be able to more quickly code and experiment
with such algorithms.

One contribution of our work is a mechanism for dynamically extending
existing classes. In writing a dataflow analysis, it is typical to want to add
new fields and methods to existing classes in the intermediate representation
(ir) in the analysis. Such fields, however, are unneeded after the analysis is
completed, so we would like to discard them. While inheritance makes it easy
to create new classes, most object-oriented languages do not allow existing
classes to be changed. The main difference is that we want existing code to
generate objects from the new class, which it would not otherwise do.

The challenge of extending classes is an active area of research in the
aspect-oriented programming community [7], but their solutions differ from
ours. For example, the very successful AspectJ [6] language provides the in-
tertype declarations that can add fields and methods to existing classes. Like
ours, this technique allows new class fields and methods to be defined out-
side the main file for the class, it is a compile-time mechanism that actually
changes the underlying class representation, requiring the original class and
everything that depends on it to be recompiled. In ag, only the code that
extends the class must be recompiled when new fields are added.

MultiJava [3] provides a mechanism that is able to extend existing classes
without recompiling them, much like our own, but their mechanism only allows
adding methods, not fields, to existing classes.

In ag, we provide a seamless mechanism for adding annotations to existing
ir classes. In ag code, the user may access such added fields with the same
simple syntax as for fields in the original class. Adding such fields does not
require recompiling any code that uses the original classes.

2

Zeng, Mitchell, and Edwards

We implemented our ag compiler on top of Microsoft’s Phoenix, a frame-
work for building compilers and tools for program analysis, optimization, and
testing. Like the SUIF system [13], Phoenix was specifically designed to be
extensible and provides the ability, for example, to attach new fields to core
data types without having to recompile the core. Unfortunately, implement-
ing such a facility in C++ (in which Phoenix is coded) has a cost both in
the complexity of code that makes use of such a facility and in its execution
speed. Experimentally, we find the execution speed penalty is less than factor
of four and could be improved; unfortunately, the verbosity penalty of using
such a facility in C++ appears to be about a factor of ten. Reducing this is
one of the main advantages of ag.

2 Related Work

The theory of dataflow analysis is well-studied. Kildall [8] was one of the
first to propose a unified lattice-based framework for global program analysis.
Later, Kam and Ullman [5] addressed the iterative approach and made the
theory more concrete.

Wilhelm [12] notes that there are many generic theories for dataflow analy-
sis, but few tools are built on these theories and even fewer are widely accepted.
One big reason is the lack of a standard mid-level program representation. We
expect the Phoenix compiler framework to address this problem, at least for
object-oriented imperative languages. Another reason for the lack of tools is
their complexity. Thus the focus of our work is to provide a simple language
and tool for writing dataflow analyses.

Tjiang’s Sharlit [10] is a tool for building iterative dataflow analyzers and
optimizers. It is built on the suif [13] generic compiler construction framework.
However, Sharlit did not introduce a new language. It uses C++ and provides
some APIs, much like the Phoenix environment, and its focus was mostly
on its efficiency, not its simplicity. While it makes an implementation of an
analysis much more modular, it remains difficult to use.

A few tools require an explicit definition of the lattice used in dataflow
analysis. Examples include Alt and Martin’s pag [2], Venkatesh and Fischer’s
spare [11], and the flexible architecture presented by Dwyer and Clarke [4].
Pag is well-known and has been used in industry. There are many similari-
ties between ag and pag: both use basic blocks and unchanged-pre-condition
checking to improve the speed of the generated analyzer. Both provide a “set”
data type. Unlike ag, pag requires the user to specify the lattice used during
analysis, which provides more optimization choices, like widening and narrow-
ing, and makes it easier to verify the algorithm’s correctness, but this makes
pag descriptions larger and more complex.

Some tools specifically address interprocedural analysis, such as Yi and
Harrison’s auto-generation work [14]. We focus only on intraprocedural analy-
sis, although many of our ideas should carry over to inter-procedural problems.

3

Zeng, Mitchell, and Edwards

3 The Design of AG

Ag is a high-level language that provides abstractions to describe iterative
dataflow analyses. The ag compiler translates an ag program into C++ source
and header files, which are then compiled to produce a Dynamically-Linked
Library (dll) file. (Figure 1) This dll can then be plugged in to the Phoenix
compiler and invoked just after a program is translated into Phoenix’s Middle
Intermediate Representation (mir).

Our generated plug-in extends ir objects to collect information and invokes
a traversal that is part of the Phoenix framework to perform iterative analysis.
This traversal function invokes computations defined in the ag program.

We follow the classical dataflow analysis approach. An ag program implic-
itly traverses the control-flow graph of the program and considers a basic block
at a time. Inside each block, the analysis manipulates its constituent instruc-
tions and operands. We thus chose to make blocks, instructions, and operands
basic objects in ag. Phoenix, naturally, already has such data types, but ag

makes them easier to uses since our language has a deeper understanding of
them.

One of the main contributions of ag is the ability to add attributes and
computations to these fundamental data types. This facility relies on mech-
anisms already built in to Phoenix, but because of the limitations of C++,
making use of such mechanisms is awkward and tedious to code. Ag makes it
much easier.

To simplify the description of computation functions, we included new
statements in ag such as foreach and data-flow equations like those found in
any compiler text. We also introduced a set data type since data collected
during dataflow analysis usually takes the form of sets.

Ag relies on the Phoenix Traverser class. This is an iterative traverser that
does not guarantee boundedness. See Nielson and Nielson [9] for a discussion
of the issues in guaranteeing boundedness.

4 The AG Language

The AG language is designed for dataflow analysis. It provides abstractions
for the common features of iterative intraprocedural analysis. For user conve-
nience and adaptability, we chose a syntax similar to that of C++ and added
a variety of new statements and constructs.

4.1 Program Structure

Figure 2 shows the structure of a typical ag program to describe an analyzer.
It defines a new, named phase, extends a number of built-in Phoenix classes
with new fields and methods to define what information to collect, and finally
defines a transfer function for the dataflow analysis.

4

Zeng, Mitchell, and Edwards

AG Library Files Phx C++ Compiler Phx Library Files

DataflowAlgorithm.dll

DataflowAlgorithm.ag

AG Translator

DataflowAlgorithm.Phx.cpp/.h

Fig. 1. The operation of the ag framework

Phase name {
extend class name {

field declarations...

method declarations...

void Init() { . . . }
}
...
type TransFunc(direction) {

Compose(N) { . . . }
Meet(P) { . . . }
Result(N) { . . . }

}
}

Fig. 2. The structure of an ag program

An extend class defines a new ir class that uses the Phoenix dynamically
extensible ir class system. New fields and methods declared in an extend class
are added as new class members. The user may directly refer to them as if
they were members of the original class (our compiler identifies such fields
and generates the appropriate Phoenix code to access and call members of
such extended classes). Notice the methods declared in an extend class are
“private,” i.e. they can only be applied to the corresponding extend object,
or in other methods declared under the same extend class. Currently, we only
support extending Block, Instr, and Opnd classes.

5

Zeng, Mitchell, and Edwards

In each extend class, the Init method behaves (and is executed as) an
initializer just after the constructor for the extended class.

Each phase has a single TransFunc that defines the return type and iter-
ation direction (backward or forward) of the analyzer and, more importantly,
the equations applied during the analysis. The body of a TransFunc may de-
fine functions, especially three reserved functions: Compose, Meet, and Result.
Compose and Meet functions are applied when the traverser iterates on every
blocks. The Compose function defines the computation inside a block using
global data. The Meet function defines the computation performed between
blocks, i.e., to merge data from the exit of the predecessor to the entry of
the successor. The Result function defines operations to be performed just
after the iteration. It usually propagates information to the objects that make
up the blocks, such as instructions. Other functions may be declared in the
TransFunc; they can be called by the three reserved functions or each other.

The user may embed arbitrary C++ code in the body of these methods.
Such code segments are transparent to ag compiler, which simply includes
them verbatim in the generated code.

4.2 AG Syntax

We derived the syntax of ag from C++. We present its complete syntax in
the appendix; Table 1 provides a summary. Below, we provide some details
about its design.

Set is a data type similar to set in the C++ standard library. It can only
apply to the reserved classes and actually refers to a set of IDs. For example,
“Set<Instr>” will be translated into a bit-vector mapped on IDs of instruc-
tions in implementation. The Map type is similar.

During the analysis, the most relevant data are those with information for
the entry and exit points of each block, so we introduced the In and Out data
set as built-in variables.

Except for the two logical operators, the operators in Table 1 can be applied
both to integers and Set-valued variables. Using the +, −, and * operators
generate code that perform Or, Minus, and And operations on bit vectors.

In dataflow analysis, one often needs to iterate over a subset of objects,
so we added a foreach statement to do this. Foreach is a predicated iterator,
meaning that it steps through the members of a set and performs actions on
only selected members of the set. The user does not have to declare an iterator
specifically, just a variable of the type over which the iteration is occurring
and the set on which to iterate. The user may also specify a condition that
acts as a filter and a direction (Forward/increase or Backward/decrease). The
condition is described with the where keyword. The syntax is shown in Table 1.

The type, range and condition allowed are listed in the attached syntax
table. The “where condition” and “direction” parameters are optional.

6

Zeng, Mitchell, and Edwards

data types Set Map int bool void

special variables In Out

operators + − ∗ = += −= ∗= && ‖

built-in classes Opnd Instr Block Alias Expr Func Region

special methods Init Compose Meet Result

built-in functions DstAliasTable SrcAliasTable Print

built-in constants Forward Backward

declarations Phase identifier (parameter list) { ... }

extend class type { ... }

type TransFunc (direction) { ... }

statements lvalue = expression;

if (expression) { ... } else { ... }

/% arbitrary C++ code %/

foreach (type var in range where cond. direction) { ... }

phoenix-iterator (...) { ... }

Table 1
Ag Syntax Summary

Such foreach statements are translated to conditional for loops in the C++
and use the iterator macros in the Phoenix framework. Note that the foreach

statement, especially the predication, is not strictly necessary (an additional
if is sufficient), but the same can be said of C’s for statement.

If the range is a Set, the type must match its content. Otherwise, if the
range is a class, the type must match one of its members. For example, each
instruction contains a list of operands, so we can specify a type of Opnd and
a range of an instruction. Also, the user may specify a condition of “dataflow
&& dst” to iterate over dataflow-related destination operands in the list.

Phoenix provides a number of iterator macros, which can be used in ag

almost verbatim (see Figure 3 Line 12). The only difference is that in C++,
a matching “next” macro must follow the use of each iterator macro (see
Figure 4 Line 26); this is not necessary in ag.

DstAliasTable is a reserved function that takes an alias tag x as parame-
ter and returns a set of destination operands whose alias-tag is x. Similarly,
SrcAliasTable returns all source operands with the same alias-tag.

7

Zeng, Mitchell, and Edwards

5 An Example

To illustrate ag, we present a complete example: the classical “reaching defi-
nitions” dataflow analysis. The complete ag source is in Figure 3.

This algorithm computes the sets of definitions that reach the entry and
exit points of each basic block in a program. Following the Dragon book [1],
a definition of a variable is the operand in an instruction that may assign
to the variable. In the Phoenix ir, each instruction has source operands and
destination operands. For reaching definitions, we are concerned mostly with
the destinations.

The whole analysis is defined as a phase called ReachingDefs (line 1 of
Figure 3). The rest of the analysis consists of extend classes that add fields
and computations to the built-in data types for operands, instructions, and
basic blocks, and description of transfer functions.

5.1 Extend Classes

Extend classes augment existing data types with additional fields in which
to collect information and procedures for collecting it. This is similar to ex-
tending a base class in an object-oriented language, but differs because the
new attributes are actually attached to objects of the “base class” itself at
the language level, not just in objects of derived classes (the C++ code we
generate from ag actually uses class inheritance). But a user can refer to new
attributes as if they were already in the original class. Consider the Opnd
extend class (lines 3–20). This adds two attributes to each operand, operand
sets named Gen and Kill. As usual, the Gen set contains operands that are
defined within the block and available immediately after it in the source code.

The Init function initializes the values of the Gen and Kill fields. The
two sets are implemented as bit vectors—see Lines 2–12 in Figure 4 for the
declaration of Gen; Lines 14–29 show the translation of the Init function. The
body of Init adds destination operands to the Gen set. Similarly, all other
destination operands in the built-in destination-opnd-map-to-alias-tag table
(DstAliasTable) that have the same alias tag as the operand (i.e., when both
modify the same memory location) are added to the Kill set (Lines 12–17).

The Instr and Block extend classes add Gen and Kill sets to each of their
classes and populate these sets with data from Opnd and Instr objects respec-
tively. Lines 47–72 in Figure 4 call the three Init functions (the translation
of the other two are not shown). Note that this function is synthesized com-
pletely from how this data is used in the analyzer, not from explicit code in
the ag source.

After collecting Gen and Kill sets for blocks, the algorithm specifies some
details of the main analysis iteration. At the beginning of the transfer function
TransFunc, the iteration is declared to proceed in the forward direction and
return a set of Opnd objects.

8

Zeng, Mitchell, and Edwards

1 Phase ReachingDefs {

2

3 extend class Opnd {

4 Set<Opnd> Gen;

5 Set<Opnd> Kill;

6

7 void Init() {

8 Opnd opnd = this;

9 if (opnd->IsDef) {

10 opnd->Gen += opnd;

11

12 foreach_must_total_alias_of_tag(alias_tag, opnd->AliasTag, AliasInfo) {

13 opnd->Kill += DstAliasTable(alias_tag);

14 }

15 opnd->Kill -= opnd;

16 }

17 }

18 }

19

20 extend class Instr {

21 Set<Opnd> Gen;

22 Set<Opnd> Kill;

23

24 void Init() {

25 Instr instr = this;

26

27 foreach (Opnd dstOpnd in instr where (dataflow && dst)) {

28 instr->Gen += dstOpnd->Gen;

29 instr->Kill += dstOpnd->Kill;

30 }

31 }

32 }

33

34 extend class Block {

35 Set<Opnd> Gen;

36 Set<Opnd> Kill;

37

38 void Init() {

39 Block block = this;

40

41 foreach (Instr instr in block) {

42 block->Gen = instr->Gen + (block->Gen - instr->Kill);

43 block->Kill = block->Kill + instr->Kill - instr->Gen;

44 }

45 }

46 }

47

48 Set<Opnd> TransFunc(Forward) {

49 Compose(N) {

50 Out = In - N->Kill + N->Gen;

51 }

52

53 Meet(P) {

54 In += P->Out;

55 }

56 }

57 }

Fig. 3. A Complete ag analysis: Reaching Definitions

9

Zeng, Mitchell, and Edwards

1 class OpndExtensionObject :
2 public Phx::RbagGenTest::AG::OpndExtensionObject
3 {
4 PHX_DECLARE_PROPERTY(Phx::BitVector::Sparse *, Gen);
5 __PHX_DEFINED_VIRTUAL_GET_PROPERTY(Phx::BitVector::Sparse *, Gen) __const;
6 __PHX_DEFINED_VIRTUAL_SET_PROPERTY(Phx::BitVector::Sparse *, Gen);
7

8 Phx::BitVector::Sparse * _local_Gen;
9 }

10

11 void OpndExtensionObject::Init(Phx::FuncUnit *func_unit,
12 Phx::BitVector::Sparse *PHX_ARRAY(dst_alias_table))
13 {
14 Phx::IR::Opnd *opnd = _this;
15 if(opnd->IsDef) {
16 this->Gen->SetBit(this->uid);
17 foreach_must_total_alias_of_tag(alias_tag, opnd->AliasTag, func_unit->AliasInfo) {
18 this->Kill->Or(dst_alias_table(alias_tag));
19 }
20 next_must_total_alias_of_tag;
21 this->Kill->ClearBit(this->uid);
22 }
23 }
24

25 void IterateData::Merge(
26 Phx::DataFlow::Data *dependent_block_data,
27 Phx::DataFlow::Data *effected_block_data,
28 Phx::DataFlow::MergeFlags flags) {
29 IterateData * dep_block_data = PTR_CAST(IterateData *, dependent_block_data);
30 Phx::BitVector::Sparse * Out = dep_block_data->Out;
31

32 if(flags & Phx::DataFlow::MergeFlags::First) In = Out->Copy();
33 else In->Or(Out);
34 dep_block_data->Out = Out;
35 }
36

37 void Traverser::InitData(Phx::BitVector::Sparse *PHX_ARRAY(dst_alias_table))
38 {
39 foreach_block_in_func(block, funcUnit) {
40 foreach_instr_in_block(instr, block) {
41 foreach_dataflow_dst_opnd(dstopnd, instr) {
42 OpndExtensionObject *ext_dstopnd =
43 OpndExtensionObject::GetExtensionObject(dstopnd);
44 ext_dstopnd->Init(funcUnit, dst_alias_table);
45 }
46 next_dataflow_dst_opnd;
47 InstrExtensionObject *ext_instr =
48 InstrExtensionObject::GetExtensionObject(instr);
49 ext_instr->Init(funcUnit->Lifetime);
50 }
51 next_instr_in_block;
52 BlockExtensionObject *ext_block =
53 BlockExtensionObject::GetExtensionObject(block);
54 ext_block->Init(funcUnit->Lifetime);
55 }
56 next_block_in_func;
57 }

Fig. 4. Part of the Phoenix (C++) code generated by the AG compiler for the
reaching definitions example

10

Zeng, Mitchell, and Edwards

The extend classes are based on original ir classes. The example in Figure 3
shows that the user may refer to fields from the extend class (e.g., Figure 3,
Line 10, “opnd->Gen”) using the same notation as for those in the base class
(e.g., Figure 3, Line 13: “opnd->AliasTag”). These two references generate
very different C++ code (c.f. Figure 4, Lines 21 and 23).

5.2 Transfer Function

As usual, we assume there are unique entry and exit points in the control flow
graph for each block. “In” and “Out” are two built-in data sets related to
the entry and the exit points respectively. The definition for TransFunc head
declares the type of “In” and “Out” sets as holding operands. These two sets
are usually used in the transfer function to pass data.

Compose and Meet are the two main functions for defining the transfer
function. In this program, they specify the two groups of dataflow equations
in the standard way [1, Eq. 10.9]:

in[Bi] =
⋃

Bj a predecessor of Bi

out[Bj]

out[Bi] = gen[Bi] ∪ (in[Bi] − kill[Bi]).

The first equation is exactly and simply included in the Meet function
(Line 59), which computes the effect of the exit-point data from predecessors
to the entry-point data of the current block in the iteration. In is related to
the current block being visited, while Out is related to the block P that is
passed to the Meet function. By default, the argument for the Meet function is
a basic block that represents an arbitrary predecessor of the current block. As
shown in Figure 4 lines 31–45, the data equation is translated into bit-vector
manipulations.

The second dataflow equation is included in the Compose function (Line 55),
which computes the data transformation globally from the entry point to the
exit point for a single block. Declared as an argument to the Compose func-
tion, variable N is an extended object of the block by default. Since Gen and
Kill are fields that have been added to the Block class (lines 38 and 39), they
can be referred to as members of N .

5.3 Wrap up: Phase and Traverser

A complete ag program is translated into a C++ program that is compiled
as a plug-in phase that can be invoked as part of the Phoenix compilation
processes. It initializes all extended objects first, then executes the forward
traverser, which applies the dataflow equations to iteratively compute on the
blocks following the structure of the control-flow graph until the In sets con-
verge for every block. The generated code uses the machinery built into the
Phoenix framework to do this; an ag user does not write code for this.

11

Zeng, Mitchell, and Edwards

Reaching Live Uninitialized

Definitions Variables Variables

C++ LOC (manual) 791 303∗ 108†

AG LOC (manual) 64 55 94

C++ LOC (generated) 626 519 682

C++ runtime 7.3s 0.8s †

AG runtime 7.4s 3.1s 13.6s

∗The manually-coded live variable analysis uses hard-coded fields, which makes it simpler

at the expense of being far less modular.

†The manually-coded uninitialized variables analysis relies on the Phoenix SSA library not

included in this count. This is a very different architecture than the code generated by ag.

Table 2
Experimental results: size and speed of ag-generated code vs. handwritten.

6 Experimental Results

We tested ag on three analyses: reaching definitions, live variables, and unini-
tialized variables. We chose these three examples because a hand-written ver-
sion of each, done by experienced programmers, already existed in Phoenix.
We compared the size and speed of the generated code with the manually writ-
ten version for the first two examples because, like our generated code, they
use the Traverser class in Phoenix. The manually-written version of uninitial-
ized variables used Phoenix’s static single-assignment code, which ag does not
take advantage of, so we did not experiment with it.

Table 2 shows our results. “LOC” indicates the number of lines of code
excluding comments; times are in seconds. We computed the average run times
of these plug-ins by running compiler with the plug-in, running the compiler
without the plug-in, and subtracting these two running times. The times are
thus a little suspect because they also include the time to load and initialize
the plug-in itself.

In each test case, the C++ code generated by the ag compiler is more
than six times the size of the ag source. Even better for ag, the manually-
written code for reaching definitions is even larger than the generated code.
That is because the AG library files include commonly used code and default
methods, for example, the constructor of the phase.

The manually-written live-variables code is smaller than the generated
C++ code for that analysis, but this is because the manually-written code
does not use the (verbose) Phoenix extend objects.

We ran the generated Phoenix C++ code on a laptop with a 2.0 GHz
Pentium-M processor running Windows XP. The benchmark is the Phoenix

12

Zeng, Mitchell, and Edwards

Microsoft Intermediate Language reader, which can generate high-level in-
termediate representations for a variety of targets. It is about five hundred
thousand lines of code.

The ag-generated code for the reaching definitions analysis runs just as
fast as the manually-written code on the msil reader. Unfortunately, the live
variable analysis code runs about one-fourth as quickly, but there is a good
reason for this: the manually-written C++ version does not use the Phoenix
object-extension facility. Instead, it simply recomputes the desired data every
time it traverses a block. Thus, the speed difference here more illustrates the
cost of using extension objects instead a more brute-force approach. Evidently
in this example, the computation is cheap enough so that repeating it is less
costly than saving and recovering it later. We include the runtime for the ag

code for uninitialized variables, but do not give a time for the manually-written
code because it uses a completely different algorithm.

7 Conclusions

We presented a domain-specific language, AG, for writing dataflow analy-
sis phases in Microsoft’s Phoenix framework. Experimental results show that
manually-written AG code can be less than one-tenth the size of the equivalent
manually-written C++ with similar performance. A key enabler for the sim-
plicity of AG code is its mechanism for extending existing IR classes, which
makes it possible to extend existing classes without recompiling them and
allows user-level code to access these fields as easily as typical ones.

As a small, domain-specific language, AG has some weaknesses. Minimizing
verbosity was our focus, and we did so at the loss of some flexibility. The most
obvious is that the user is forced to use the iterative analysis framework, even
though Phoenix has other options, such as lattice and static single-assignment
frameworks. Although AG has some high-level types such as sets and maps, its
type system is limited and does not support strings, arrays, arbitrary iterators,
and so forth.

AG is also currently limited to analyses running on the medium-level inter-
mediate representation (MIR), although it could be extended to handle others.
Furthermore, AG programs currently only handle user-defined variables; the
many implicit temporary variables in the MIR are currently ignored. For ex-
ample, the C statement on the left is dismantled as shown on the right. AG
code currently ignores the temporary t1.

x = y + 3; −→
t1 = y + 3;

x = t1;

As with many domain-specific languages, debugging AG is somewhat prob-
lematic. While we provide a print statement, AG does not have a dedicated
debugger, IDE, or any of the other now-standard features in a development
environment. All these could be added, but not without a fair amount of work.

13

Zeng, Mitchell, and Edwards

AG is constructed as a translator, so in theory most weaknesses could be
fixed by extending AG, provided the new features were supported by Phoenix.
It could be extended, say, to describe region-based dataflow analyses, or to
describe optimizations. But it is difficult to say at what point AG would cease
to be a domain-specific language and balloon into C++.

Nevertheless, we believe that a factor of ten in code-size reduction justifies
the extra challenges in using a small language.

For more information about Phoenix, see its official website:
http://research.microsoft.com/compilers .

Acknowledgments

We would like to thank Al Aho for his enlightening discussions and interesting
suggestions on this project. We also wish to thank the whole Phoenix group
for their kind help and support.

References

[1] Aho, A. V., R. Sethi and J. D. Ullman, “Compilers, principles, techniques, and
tools,” Addison-Wesley, 1988.

[2] Alt, M. and F. Martin, Generation of efficient interprocedural analyzers with
PAG, in: Proceedings of the Second International Symposium on Static Analysis
(SAS) (1995), pp. 33–50.

[3] Clifton, C., G. T. Leavens, C. Chambers and T. Millstein, MultiJava: Modular
open classes and symmetric multiple dispatch for Java, in: Proceedings of Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA),
Minneapolis, Minnesota, 2000, pp. 130–145.

[4] Dwyer, M. B. and L. A. Clarke, A flexible architecture for building data flow
analyzers, in: Proceedings of the 18th International Conference on Software
Engineering (ICSE), Berlin, Germany, 1996, pp. 554–564.

[5] Kam, J. B. and J. D. Ullman, Global data flow analysis and iterative algorithms,
Journal of the ACM 23 (1976), pp. 158–171.

[6] Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. G. Griswold,
An overview of AspectJ, Lecture Notes in Computer Science 2072 (2001),
pp. 327–355.

[7] Kiczales, G., J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier
and J. Irwin, Aspect-oriented programming, in: M. Akşit and S. Matsuoka,
editors, Proceedings European Conference on Object-Oriented Programming
(1997), pp. 220–242.

[8] Kildall, G., A unified approach to global program optimization, in: Proceedings
of Principles of Programming Languages, 1973, pp. 194–206.

14

http://research.microsoft.com/compilers

Zeng, Mitchell, and Edwards

[9] Nielson, H. R. and F. Nielson, Bounded fixed point iteration, in: Proceedings
of Principles of Programming Languages (POPL), Albuquerque, New Mexico,
1992, pp. 71–82.

[10] Tjiang, S. W. K. and J. L. Hennessy, Sharlit: a tool for building optimizers,
in: Proceedings of Programming Language Design and Implementation (PLDI),
New York, New York, 1992, pp. 82–93.

[11] Venkatesh, G. A. and C. N. Fischer, Spare: A development environment for
program analysis algorithms, IEEE Transactions on Software Engineering 18

(1992), pp. 304–318.

[12] Wilhelm, R., Program analysis—a toolmaker’s perspective, ACM Computing
Surveys 28 (1996), p. 177.

[13] Wilson, R. P., R. S. French, C. S. Wilson, S. P. Amarasinghe, J.-A. M. Anderson,
S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S. Lam and J. L.
Hennessy, SUIF: An infrastructure for research on parallelizing and optimizing
compilers, ACM SIGPLAN Notices 29 (1994), pp. 31–37.

[14] Yi, K. and W. L. Harrison III, Automatic generation and management of
interprocedural program analyses, in: Proceedings of Principles of Programming
Languages (POPL), Charleston, South Carolina, 1993, pp. 246–259.

15

Zeng, Mitchell, and Edwards

AG Syntax

ag-phase:

Phase identifier (parameter-listopt) compound-statement

parameter-list:

parameter

parameter-list , parameter

parameter:

type identifier

type:

basic-type

extensible-class-type

Set < type >

Map < type , type >

basic-type: one of

int bool void

extensible-class-type: one of

Alias Opnd Instr Block Region Func

compound-statement:

{ statements }

statements:

statement

statements statement

statement:

variable-declaration

function-definition

extend-class-definition

assignment-expressionopt ;

if-else-statement

foreach-statement

phoenix-foreach

continue ;

break ;

return expressionopt ;

cpp-code-segment

compound-statement

16

Zeng, Mitchell, and Edwards

variable-declaration:

type variable-declaration-list ;

variable-declaration-list:

variable

variable-declaration-list , variable

variable:

identifier

identifier = expression

function-definition:

basic-function-definition

transfer-function-definition

compute-function-definition

basic-function-definition:

type identifier (parameter-listopt) compound-statement

transfer-function-definition:

type TransFunc (direction) compound-statement

compute-function-definition:

compute-function-name (identifieropt) compound-statement

compute-function-name: one of

compose meet result

extend-class-definition:

extend class extensible-class-type compound-statement

assignment-expression:

variable-or-field assignment-operator expression

expression

variable-or-field:

variable-or-field -> identifier

identifier

17

Zeng, Mitchell, and Edwards

expression:

numeric-literal

variable-or-field

expression binary-operator expression

! expression

- expression

variable-or-field (variable-listopt)

(expression)

variable-list:

variable-or-field

variable-list , variable-or-field

binary-operator: one of

+ - * < > && || <= >= != ==

assignment-operator: one of

= += -= *=

if-else-statement:

if (expression) statement

if (expression) statement else statement

foreach-statement:

foreach (type identifier in expression whereopt directionopt) compound-

statement

where:

where expression

direction: one of

forward backward

phoenix-foreach:

phoenix-foreach-keyword (parameter-listopt) compound-statement

cpp-code-segment:

/% C++-program-text %/

18

	Introduction
	Related Work
	The Design of AG
	The AG Language
	Program Structure
	AG Syntax

	An Example
	Extend Classes
	Transfer Function
	Wrap up: Phase and Traverser

	Experimental Results
	Conclusions
	References

