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ABSTRACT
While concurrency in embedded systems is most often supplied
by real-time operating systems, this approach can be unpredictable
and difficult to debug. Synchronous concurrency, in which a sys-
tem marches in lockstep to a global clock, is conceptually easier
and potentially more efficient because it can be statically scheduled
beforehand.

We present an algorithm for generating efficient sequential code
from such synchronous concurrent specifications. Starting from
a concurrent program dependence graph generated from the syn-
chronous, concurrent language Esterel, we generate efficient, stati-
cally scheduled sequential code while adding a minimal amount of
runtime scheduling overhead.

Experimentally, we obtain speedups as high as six times over
existing techniques. While we applied our technique to Esterel, it
should be applicable to other synchronous, concurrent languages.

Categories and Subject Descriptors: D.3.4 [PROGRAMMING
LANGUAGES]: Processors — Code generation
General Terms: Languages
Keywords: Concurrent, Sequencial, Esterel, Program Dependence
Graph

1. OVERVIEW
Embedded software is often conveniently described as collec-

tions of concurrently-running processes and implemented using a
real-time operating system (RTOS). While the functionality pro-
vided by an RTOS is very flexible, the overhead incurred by such
a general-purpose mechanism can be substantial. Furthermore, the
interprocess communication mechanisms provided by most RTOSes
can easily become unwieldy and easily lead to unpredictable be-
havior that is difficult to reproduce and hence debug. The behavior
and performance of concurrent software implemented this way is
difficult to guarantee.

The synchronous languages [1] provide an alternative by provid-
ing deterministic, timing-predictable concurrency through the no-
tion of a global clock. Concurrently-running threads within a syn-
chronous program execute in lockstep, synchronized to a global,
often periodic, clock.
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The model of time used within the synchronous languages hap-
pens to be identical to that used in synchronous digital logic, mak-
ing the synchronous languages perfect for modeling digital hard-
ware. Hence, executing synchronous languages efficiently also im-
proves the simulation of hardware systems.

Unfortunately, implementing such languages efficiently is not
straightforward since the detailed, instruction-level synchroniza-
tion is difficult to implement efficiently with an RTOS. Instead,
successful techniques “compile away” the concurrency through a
variety of mechanisms ranging from building automata to statically
interleaving code [5].

In this paper, we present a technique for compiling such finely-
synchronized concurrent specifications that produces very efficient
code. While we implemented this technique in the Columbia Es-
terel Compiler, our proposed algorithm starts from the well-known
program dependence graph (PDG) representation [8]. In principle,
then, this technique is applicable to a variety of imperative, sequen-
tial languages with concurrency.

We chose the synchronous Esterel [2] for a number of reasons.
Its communication can be analyzed statically—the absence of alias-
ing makes it possible to statically identify all possible inter-thread
communication pathways. Its control-flow is acyclic and therefore
easy to analyze. Also, it is a challenging language to compile be-
cause of its mix of concurrency and control-flow. Existing tech-
niques for compiling Esterel grapple with scheduling overhead,
but our use of the PDG representation allows detailed instruction
scheduling that effectively reduces overhead.

CEC first performs a syntax-directed translation of an Esterel
program into an acyclic control-flow graph with data dependence
information. It then converts this into a PDG using a slight modifi-
cation of the algorithm due to Cytron et al. [3] to handle Esterel’s
concurrent constructs.

The contribution of this paper is an algorithm that restructures
a program dependence graph with arbitrary acyclic data dependen-
cies into one that has a direct translation into sequential code. Un-
like a PDG generated from purely sequential code, it it not usu-
ally possible to translate the PDG produced from Esterel directly
into sequential code because communication patterns in the Esterel
program may force concurrently-running threads to be interleaved.
This can be solved by either duplicating code, a potentially costly
operation that may produce an exponential increase in code size,
or by inserting additional guard variables and predicates. We take
the second approach, using heuristics to choose where to cut the
PDG and introduce predicates, and produce a semantically equiv-
alent PDG that does have a simple sequential representation. We
use a modified version of Simons and Ferrante’s algorithm [9] to
produce a sequential control-flow graph from this restructured PDG

and finally generate sequential C code from it.
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Figure 1: A program dependence graph requiring interleaving.
Diamonds are predicate nodes, triangles are forks, and rectangles
are statements. Solid lines are control arcs; dashed lines are data.

Our algorithm works in three phases (see Figure 2). First, we
compute a schedule—a total order of all the nodes in the PDG (Sec-
tion 4). This procedure is exact in the sense that it always produces
a correct result, but heuristic in the sense that it may not produce an
optimal result. Second, we use this schedule to guide a procedure
for restructuring the PDG that slices away parts of the PDG, moves
them elsewhere, and inserts assignments and tests of guard vari-
ables to preserve the semantics of the PDG (Section 5). Finally, we
use a slightly enhanced version of the sequentializing algorithm due
to Simons and Ferrante to produce a control-flow graph (Section 6).
Unlike Simons and Ferrante’s algorithm, our sequentializing algo-
rithm always completes because of the restructuring phase. In Sec-
tion 7, we present experimental results showing this technique can
produce code that runs as much as thirty times faster than others.

2. RELATED WORK
Ferrante and Mace [7] were the first to propose an algorithm for

generating sequential code from an acyclic PDG, but their technique
only works when no node duplication (or equivalently, the addition
of predicates) is necessary.

Later, Simons and Ferrante [9] presented an efficient algorithm
for generating sequential code from an acyclic PDG. Their major
contribution is a technique for computing “external edge” informa-
tion for each node and using this during the synthesis procedure.
The input to their algorithm is limited to a graph with only control
dependencies; they assume data dependencies have somehow been
incorporated into the control dependencies.

Building on Simons and Ferrante’s work, Steensgaard [10] re-
moved the requirement that the control dependencies in the PDG

be acyclic, thereby allowing loops in the generated code (earlier
work assumed that loops had somehow been removed), but still
assumed that the generated code did not require either node du-
plication or the insertion of additional predicates. We have not
integrated Steensgaard’s cyclic extensions because they were un-
necessary in our application.

Our technique extends Simons and Ferrante’s in two ways. First,
we propose a cutting algorithm that restructures the PDG and inserts
additional predicate nodes before it is passed to Simons and Fer-
rante’s basic algorithm, making it work for all valid acyclic PDGs.
Second, we consider data dependencies to generate correct code for
all valid PDGs.

Our procedure resembles Edwards’ technique for Esterel [4].
However, our use of a PDG representation instead of Edwards’ con-
current control-flow graph makes it possible to rearrange indepen-
dent statements among concurrent processes and further reduce
context-switching overhead.

3. PROGRAM DEPENDENCE GRAPHS
We specify computation using a variant of Ferrante, Ottenstein

and Warren’s [8] program dependence graph. The PDG for a pro-
gram is a directed graph whose nodes represent statements and
whose arcs represent the partial ordering among statements that
must be followed to preserve the program’s semantics. In some
sense, the PDG removes the maximum number of dependencies
among statements without changing the program’s meaning.

A PDG is a rooted, directed acyclic graph G = (S,P,F,r,c,D). S,
P, and F are disjoint sets of statement, predicate, and fork nodes.
Together, these form the set of all vertices in the graph, V = S∪P∪
F . r ∈V is the distinguished root node. c :V →V ∗ is a function that
returns the vector of control successors for each node (i.e., they are
ordered). Each vertex may have a different number of successors.
D ⊂V ×V is a set of data edges. If c(v1) = (v2,v3,v4), then node
v1 can pass control to v2, v3, and v4. The set of control edges can
be defined as C = {(m,n) : c(m) = (. . . ,n, . . .)}, i.e., (m,n) is a
control edge if n is some element of the vector c(m). If a data edge
(m,n) ∈ D, then m can pass data to node n.

The semantics of the graph rely mostly on the vertex types. A
statement node s ∈ S is the simplest: it represents a computation
with a side-effect (e.g., assigning a value to a variable) and has
no outgoing control arcs. A predicate node p ∈ P also represents
a computation but has outgoing control arcs. When executed, a
predicate arc passes control to exactly one of its control succes-
sors depending on the outcome of the computation it represents. A
fork node f ∈ F does not represent computation; instead it merely
passes control to all of its control successors. We call them fork
nodes to emphasize that they represent concurrency; other authors
call them “region nodes,” although they mean the same thing.

In addition to being rooted and acyclic, the structure of the di-
rected graph (V,C) satisfies two important constraints.

The predicate least common ancestor rule (PLCA) requires that
for any node n ∈ V with two different control paths to it from the
root, the least common ancestor (LCA) of any pair of distinct prede-
cessors of n is a predicate node. PLCA ensures that there is at most
one active path to any node. If the LCA node was a fork, control
could conceivably follow two paths to n, implying multiple execu-
tions of the same node, something we explicitly wish to prohibit.

The no post-dominance rule: if n is a descendant of a node m
then there is some path from m to some statement node that does
not include n. This is because we insist that the PDG has eliminated
unnecessary control dependencies among nodes. Otherwise, m and
n would have been placed under a common fork.

4. SCHEDULING
Building a sequential control-flow graph from a program depen-

dence graph requires ordering the concurrently-running nodes in
the PDG. In particular, the children of each fork node are seman-
tically concurrent but must be executed in some sequential order.
The main challenge is dealing with cases where data dependencies
among children of a fork force their execution to be interleaved.

Figure 1 shows a PDG that illustrates the challenge. In this graph,
data dependencies require n3 to be executed after n2 and n7 to be
executed after n4. Thus, the two subtrees under node n0 cannot be
executed one after the other; they must be interleaved. The gen-



procedure Main
Clear the visited set
PriorityDFS(root node of G)
Clear the schedule and visited set
ScheduleDFS(root node of G)
Restructure()
Fuse guard variables
Generate sequential code from G′

Figure 2: The Main procedure.

erated code must ensure nodes n2, n3, n4, and n7 execute in that
order. This example is fairly straightforward, but such interleaving
can become very complicated in large graphs with lots of data de-
pendencies and reconverging control-flow such as that at node n10.

Duplicating certain nodes in the PDG of Figure 1 could produce a
semantically equivalent graph with no interleaving but it also could
cause an exponential increase in graph size. Instead, we restruc-
ture the graph and add predicates that test guard variables. Unlike
node duplication, this introduces extra runtime overhead, but it can
produce much more compact code.

Our approach inserts guard variable assignments and tests based
on cuts implied by a topological ordering of the nodes in a PDG. A
cut represents a switch from an incompletely-scheduled child of a
fork to another child of the same fork. It divides the nodes under a
branch of a fork into two or more subgraphs.

To minimize the runtime overhead introduced by this technique,
we try to add few guard variables by making as few cuts as possible.
Ferrante, Mace, and Simons [7] showed this minimum cut problem
is NP-complete, so we attempt to solve it cheaply with heuristics.

We first compute a schedule for the PDG then follow this sched-
ule to find cuts where interleavings occur. We use a heuristic to
choose a good schedule, i.e., one implying few cuts, that tries to
choose a good order in which to visit each node’s successors. We
identify the cuts while restructuring the graph.

4.1 Ordering Node Successors
To improve the quality of the generated cuts, we use the heuris-

tic algorithm in Figure 3 to influence the scheduling algorithm. It
computes an order for successors of each node that the DFS-based
scheduling procedure in Figure 4 uses to visit the successors.

We assign each successor a priority vector of three integers (p1,
p2, p3) computed using the procedure described below, and later
visit the successors in descending priority order while construct-
ing the schedule. We totally order priority vectors: (p1, p2, p3) >

(q1,q2,q3) if p1 > q1, or p1 = q1 and p2 > q2, or if p1 = q1,
p2 = q2, and p3 > q3. For each node n, the A array holds the set of
nodes at or below n that have any incoming or outgoing data arcs.

The first priority number of si (the ith subgraph under node n)
counts the number of incoming data dependencies. It is the num-
ber of incoming data arcs minus the number of outgoing data arcs
to/from any other subgraphs under node n.

The second priority number counts the number of elements that
“pass through” the subgraph si. Specifically, it decreases by one for
each incoming data arcs from a subgraph s j to a node in si with a
node m that is a descendant of si that has an outgoing data arc to
another subgraph sk ( j 6= i and k 6= i, but k may equal j).

The third priority counts incoming and outgoing data arcs con-
nected to any nodes in sibling subgraphs. It is the total number of
incoming data arcs minus the number of outgoing data arcs.

Finally, a node without any data arc entering or leaving its de-
scendants is assigned a minimum first priority number.

procedure PriorityDFS(n)
if n has not been visited then

add n to the visited set
for each control successor s of n do

PriorityDFS(s)
A[n] = A[n]∪A[s]

for each control successor s of n do
ComputeSuccPriority(n, s)

if n has any incoming or outgoing data arcs then
add n to A[n]

procedure ComputeSuccPriority(n, s)
(a,b,c) = (0,0,0) initialize priorities
if s has neither incoming nor outgoing data arcs then

a = minimum priority number
return

for each j ∈ A[s] do
x = 0, y = 0
for each data predecessor p of j do

if there is a path from n ; p then
increase a by 1
if there is not a path s ; p then

increase x by 1
increase c by 1

for each data successor i of j do
if there is a path n ; i then

decrease a by 1
decrease c by 1

if x 6= 0 then
for each k ∈ A[ j] do

for each data successor m of k do
if n ; m but not s ; m then

increase y by 1
decrease b by x · y

set the priority vector of s under n to (a,b,c)

Figure 3: Successor Priority Assignment

Under these definitions, the priority of the left branch under n0
in Figure 1 is (0,−1,0), and that the right branch is (0,0,0). Arcs
from n2 to n3 and from n4 to n7 both affect the first priority num-
ber, but their effects cancel out. The path n2 → n3 → n4 → n7
affects the second priority number of the left branch. Under our
definitions, the right branch has highest priority and will be visited
first during the depth-first search used for scheduling.

Similarly, node n9 will be visited before n7 because the first
priority number of n7 is smaller due to the data arc n10 → n11. Fi-
nally, n5 will be visited after n4 because n5 has minimum priority.

procedure ScheduleDFS(n)
if n has not been visited then

add n to the visited set
for each ctrl. succ. i of n in descending priority do

ScheduleDFS(i)
for each data successor i of n do

ScheduleDFS(i)
insert n at the beginning of the schedule

Figure 4: The Scheduling Procedure



1: procedure Restructure
2: Clear the currently-active branch of each fork
3: Clear master-copy(n) and latest-copy(n) for each node n
4: for each n in scheduled order starting at the root do
5: D = DuplicationSet(n)
6: for each node d in D do
7: DuplicateNode(d)
8: for each node d in D do
9: ConnectPredecessors(d)

Figure 5: The Restructure procedure.

1: function DuplicationSet(n)
2: D = {n}
3: Clear the visited set
4: DuplicationVisit(n)
5: return D

6: function DuplicationVisit(n)
7: if n has not been visited then
8: Mark n as visited
9: if latest-copy(n) is undefined then

10: Include n in D
11: for each predecessor p of n do
12: if p is a fork and p → n is not currently active then
13: Include n in D
14: if DuplicationVisit(p) then
15: Include n in D
16: return true if n ∈ D

Figure 6: The DuplicationSet function.
A node is in the duplication set if it is along a path from a fork node
that leads to n but whose active branch does not.

4.2 Constructing the Schedule
The scheduling algorithm (Figure 4) uses a depth first search to

topologically sort the nodes in the PDG. The control successors of
each node are visited in order from highest to lowest priority (as-
signed by Figure 3). Ties are broken arbitrarily, and data successors
are visited in an arbitrary order. The label on each node in Figure 1
indicates its position in the schedule: n1 is first, followed by n2, n3.

5. RESTRUCTURING THE PDG
The scheduling algorithm presented in the previous section to-

tally orders all the nodes in the PDG. Data dependencies often force
the execution of subgraphs under fork nodes to be interleaved (con-
trol dependencies cannot directly induce interleaving because of the
PLCA rule). The algorithm described in this section restructures the
PDG by inserting guard variables (specifically, assignments to and
tests of guard variables) according to the schedule to produce a PDG

where the subgraphs under fork nodes are never interleaved.
The restructuring algorithm does two things: it identifies when

a subgraph must be cut away from an existing subgraph according
to the schedule and reattaches the cut subgraphs to nodes that test
guard variables to ensure the behavior of the PDG is preserved.

5.1 The Restructure Procedure
The Restructure procedure (Figure 5) steps through the nodes in

scheduled order, adding a minimal number of nodes to the graph
under construction that ensures each node in the schedule can be
executed without interleaving the execution of subgraphs under any
fork. It does this in three phases for each node. First, it calls Du-
plicationSet (Figure 6, called from line 5 in Figure 5) to establish

1: procedure DuplicateNode(n)
2: if n is a fork or a statement then
3: Create a new copy n′ of n
4: else n is a predicate
5: if master-copy(n) is undefined then making first copy
6: Create a new copy n′ of n
7: master-copy(n) = n′

8: else making second or later copy
9: Create a new node n′ that tests vn

10: if master-copy(n) = latest-copy(n) then second copy
11: for i = 0 to (the number of successors of n) −1 do
12: Create a new statement node a′ assigning vn = i
13: Attach a′ to the ith successor of master-copy(n)
14: for each successor f ′ of master-copy(n) do
15: Find a′, the assignment to vn under f ′

16: Add a data-dependence arc from a′ to n′

17: Attach a new fork node under each successor of n′

18: for each successor s of n do
19: if s is not in D then
20: Set latest-copy(s) to undefined
21: latest-copy(n) = n′

Figure 7: The DuplicateNode procedure.
This makes either an exact copy of a node or tests cached control-
flow information to create a node matching n.

1: procedure ConnectPredecessors(n)
2: Let n′ = latest-copy(n)
3: for each predecessor p of n do
4: Let p′ = latest-copy(p)
5: if p is a fork then
6: Add a new successor p′ → n′

7: Mark p → n as the active branch of p o
8: else p is a predicate
9: for each arc of the form p → n do

10: Let f ′ be the corresponding fork under p′

11: Add a successor f ′ → n′

Figure 8: The ConnectPredecessors procedure.
This connects every predecessor of n appropriately, possibly using
nodes that were just duplicated. As a side-effect, it remembers the
active branch of each fork.

which nodes must be duplicated in order to reconstruct the con-
trol flow to the node n. The boundary between the set D and the
existing graph can be thought of as a cut. Second, it calls Dupli-
cateNode (Figure 7, called from line 7 of Figure 5) on each of these
nodes to create new predicate nodes that reconstruct control using
a previously-cached result of the predicate test. Finally, it calls
ConnectPredecessors (Figure 8, called from line 9 of Figure 5) to
connect the predecessors of each of the nodes in the duplication set,
which incidentally includes n, the node being synthesized.

The main loop in Restructure (lines 4–9) maintains two invari-
ants. First, each fork maintains its currently-active branch, i.e., the
successor in whose subgraph a node was most recently added. This
information, tested in line 12 of Figure 6 and modified in line 7 of
Figure 8, is used to determine whether a node can be added to an
existing part of the new graph or whether the paths leading to it
must be partially reconstructed to avoid introducing interleaving.

The second invariant is that the latest-copy array holds, for each
node that appears earlier in the schedule, the most recent copy of
each node. The node n can use these latest-copy nodes if they do
not come from forks whose active branch does not lead to n.



5.2 The DuplicationSet Function
The DuplicationSet function (Figure 6) determines the subgraph

of nodes whose control flow must be reconstructed to execute the
node n. It is a depth-first search that starts at the node n and works
backward to the root. Since the PDG is rooted, all nodes in the
PDG have a path to the root node and therefore DuplicationVisit
traverses all nodes that are along any path from the root to n.

A node n becomes part of the duplication set D under three cir-
cumstances. The first case, tested in line 9, occurs when the latest
copy of a node is undefined, which can happend when a node is
duplicated but its successor is not. Lines 18–20 (Figure 7) clear the
latest-copy array for the successors of a node.

The second case, tested in line 12, is when the immediate pre-
decessor p of n is a fork but n is not the currently active branch of
the fork. This indicates that to execute n would require interleaving
because the PLCA rule tells us that there cannot be a path to n from
p through the currently-active branch under p.

The final case, line 14, occurs when any of n’s predecessors are
also in the duplication set.

As a result, every node in the duplication set D is along some
path that leads from a fork node f to n that goes through a non-
active branch of f , or leads from a node that has not been copied
“recently.” These are exactly the nodes that must be duplicated to
reconstruct all paths to n.

5.3 The DuplicateNode Procedure
Once the DuplicationSet function has determined which nodes

must be duplicated to reconstruct the control paths to node n, the
DuplicateNode procedure (Figure 7) actually makes the copies. Du-
plicating statement or fork nodes is trivial (line 3): the node is
copied directly and the latest-copy array is updated (line 21) to re-
flect the fact that this new copy is the most recent version of n,
something that is later used in ConnectPredecessors. Note that
statement nodes are only ever duplicated once, when they appear
in the schedule. Fork nodes may be duplicated multiple times.

The main complexity in DuplicateNode comes when n is a pred-
icate (lines 5–17). The first time a predicate is duplicated (i.e., the
first time it appears in the schedule), the master-copy array entry
for it is undefined (it was cleared at the beginning of Restructure—
line 3 of Figure 5), the node is copied directly, and this copy is
recorded in the master-copy array (lines 6–7).

After the first time a predicate is duplicated, its duplicate is actu-
ally a predicate node that tests vn, a variable that stores the decision
made at the predicate n (line 9). There is just one special case: the
second time a predicate is copied (and only the second time—we
do not want to add these assignments more than once), assignment
nodes are added under the first copy (i.e., the master-copy of n in
the new graph) that save the result of the predicate in the vn vari-
able. This is done in lines 11–13.

An invariant of the DuplicateNode procedure is that every time
a predicate node is duplicated, the duplicate version of it has a new
fork node placed under each of its successors (line 17). While these
are often redundant and can be removed, they are useful as an an-
chor point for the nodes that cache the results of the predicate and
in the uncommon (but not impossible) case that the successor of a
predicate is part of the duplicate set but that the predicate is not.

5.4 The ConnectPredecessors Procedure
Once DuplicateNode runs, all nodes needed to run n are in place

but unconnected. The ConnectPredecessors procedure (Figure 8)
connects these duplicated nodes to the appropriate nodes.

For each node n, ConnectPredecessors adds arcs from its prede-
cessors, i.e., the most recent copies of each. The only minor trick
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Figure 9: The restructured PDG from Figure 1.
This example only adds the single guard variable v1. Some unary
fork nodes generated by Restructure have been omitted for clarity.

occurs when the predecessor is a predicate (lines 9–11). First, Du-
plicateNode guarantees (line 17 of Figure 7) that every successor
of a predicate is a fork node, so ConnectPredecessors actually con-
nects the node to this fork, not the predicate itself. Second, it can
occur that a single node can have a particular predicate node ap-
pear two or more times among its predecessors. The foreach loop
in lines 9–11 connects all of these explicitly.

5.5 Examples
Running this procedure on Figure 1 produces the graph in Fig-

ure 9. The procedure copies nodes n1–n5. At this point, n0 → n3
is the active branch under n0, which is not on the path to n6, so a
cut is necessary. DuplicationSet returns {n1, n6}, so n1 will be du-
plicated. This causes DuplicateNode to create the two assignments
to v1 under n1 and the test of v1. ConnectPredecessors then con-
nects the new test of v1 to n0 and n6 to the test of v1. Finally, the
algorithm just copies nodes n7–n13 into the new graph.

Figure 10 illustrates the operation of the procedure on a more
complicated example. The PDG in (a) has some bizarre control de-
pendencies that force the nodes to be executed in the order shown.
The dizzying number of forced interleavings generates a fairly com-
plex final result, shown in Figure 10e.

The algorithm behaves simply for nodes n0–n8. The state af-
ter n8 has been added is shown in (b).

Adding n9, however, is challenging. DuplicationSet returns {n9,
n6, n5} because n8 is the active node under n4, so DuplicateNode
copies n9, makes a second copy of n6 (labeled n6′), creates a new
test of v5, and adds the assignments to v5 under n5 (the fork under
the “0” branch from n5 has been omitted for clarity). Adding n9’s
predecessors is easy: it is just the new copy of n6, but adding n6’s
predecessors is more complicated. In the original graph, n6 is con-
nected to n3 and n5, but only n5 was duplicated, so n6′ is connected
to v5 and to a fork off the copy of n3.

Figure 10d adds n10, which is simple because although n3 was
the active branch under n1, n10 only has it as a predecessor.

Finally, (e) shows the addition of n11, completing the graph. Du-
plicationSet returns {n11, n6, n3}, so n3 is duplicated and assign-
ment nodes to v3 are added. Again, n6 is duplicated to become
n6′′, but this time n3 was duplicated.
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Figure 10: (a) A complex example. (b) After adding nodes n0–n8. (c) After adding n9, (d) n10, and (e) n11.
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Figure 11: The reconstructed PDG from Figure 1 induced by a
different schedule.

5.6 Fusing Guard Variables
An unfortunate choice of schedule clearly illustrates the need

for guard variable fusion. Consider the correct but non-optimal
schedule n0, n1, n2, n6, n9, n3, n4, n5, n7, n8, n10, n11, n12, n13
for the PDG in Figure 1. Figure 11 depicts the effect of so many
cuts. The main waste is the cascade of conditionals along the right
side of the graph (predicates on v1, v6, and v9). For efficiency, we
replace such predicate cascades with single multi-way conditionals.

Figure 12 illustrates the effect of fusing guard variables. The
predicate cascade has been replaced by a single multi-way branch
that tests the fused guard variable v169 (formed by fusing predi-
cates v1, v6, and v9). Similarly, group assignments to these vari-
ables are fused, resulting in three single assignments to v169 in-
stead of three group concurrent assignments to v1, v6, and v9.

6. GENERATING SEQUENTIAL CODE
After the restructuring procedure described above, the PDG is

in a state where the subgraphs under each fork node can be exe-
cuted in a particular order. This order is non-obvious when there
is reconvergence in the graph, and appears to be costly to compute.
Fortunately, Simons and Ferrante [9] developed the external edge
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Figure 12: The PDG of Figure 11 after guard variable fusion.

condition (EEC) as an efficient way to compute this ordering. Ba-
sically, the nodes in eec(n) are executed whenever any node in the
subgraph under n is executed.

In what follows, X < Y denotes G(X) must be scheduled before
G(Y ); X > Y denotes G(X) must be scheduled after G(Y ); Y ∼ X
denotes any order is acceptable; Y 6= X denotes no order is accept-
able. Here, G(n) represents n and all its control descendants.

We reconstruct the graph by ordering fork successors. Given
the EEC information, we use the rules in Steensgaard’s decision
table [10] to order pairs of fork successors. When the table says
any order is acceptable, we order the successors based on data de-
pendencies. However, if, say, the EEC table says G(X) must be
scheduled before G(Y ), yet the data dependencies indicates the op-
posite order, the data dependencies win and two additional nodes
are inserted, one that sets a guard variable and the other that tests
it. Figure 13 illustrates the procedure.

In Figure 9, data dependency forces n11 > n10, but the external
edge condition could require n10 > n11 if there were a control edge
from a descendant of n11 to a descendant of n10 (i.e., if there were
more nodes under n10). In this case, n10 6= n11, so our algorithm
will cut the graph at n11 and add a guard there.

This produces a sequential control-flow graph for the concurrent
program. We generate structured C code from it using the algorithm
described in Edwards [4].



procedure OrderSuccessors(G)
for each node n do

if n is a fork node then
original-successors = control successors of n
clear the control successors of n
for each X in original-successors do

for each control successor Y of n do
if X ∼ Y then

if ∃(m,n) ∈ D, m ∈ G(X),n ∈ G(Y ) then
insert X before Y in n’s successors

else if Y < X then
if ∃(m,n) ∈ D, m ∈ G(Y ),n ∈ G(X) then

Cut Y
insert X before Y in n’s successors

else if Y > X then
if ∃(m,n) ∈ D, m ∈ G(X),n ∈ G(Y ) then

Cut X
else

insert X before Y in n’s successors
else if Y 6= X then

if ∃(m,n) ∈ D, m ∈ G(X),n ∈ G(Y ) then
Cut Y
insert X before Y in n’s successors

else
Cut X

if X was not inserted then
append X to the end of n’s successors

Figure 13: The successor ordering procedure

7. EXPERIMENTAL RESULTS
We compared the speed of the code generated by our technique

to that from the stock Esterel V5 compiler, which translates the
Esterel program into a logic circuit and generates a program that
simulates it; and the other C code generator in the Columbia Esterel
Compiler, which produces statically-scheduled discrete-event-like
code dispatched by multiple linked lists [6].

To obtain the average cycle times shown in Table 1, we ran the
generated C code from all three compilers (compiled with gcc -O3)
for 10 million cycles on a 2.5 GHz Intel Pentium 4 running Linux.
Most examples are fairly small, but tcint and atds-100 (both bus
controllers) are reasonably large and, we believe, illustrative of our
technique.

8. CONCLUSIONS AND FURTHER WORK
In this paper, we have presented an algorithm that produces ef-

ficient sequential code from arbitrary acyclic program dependence
graphs. Consisting of a heuristic scheduler followed by an exact
restructuring procedure, our technique produces sequential code
while inserting a minimal number of guard assignments and tests,
leading to fairly low overhead.

Experimentally, we have shown this algorithm produces very ef-
ficient code when applied to the synchronous, concurrent language
Esterel.

In the future, we intend to further explore the PDG’s ability to
support optimization routines and to support cyclic PDG’s. We will
also explore other code-generation applications for this procedure.

Example Lines Average cycle times
Esterel V5 Lists PDG

atds-100 948 45s 7.7s 1.3s
tcint 687 11s 2.8s 2.4s
multi6 113 10s 2.3s 1.4s
multi8 62 1.1s 1.7s 0.63s
greycounter 82 6.0s 3.9s 0.94s
abcd 111 5.2s 1.5s 1.7s

Table 1: Experimental Results

9. REFERENCES
[1] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas

Halbwachs, Paul Le Guernic, and Robert de Simone. The
synchronous languages 12 years later. Proceedings of the
IEEE, 91(1):64–83, January 2003.

[2] Gérard Berry and Georges Gonthier. The Esterel
synchronous programming language: Design, semantics,
implementation. Science of Computer Programming,
19(2):87–152, November 1992.

[3] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.
Wegman, and F. Kenneth Zadeck. Efficiently computing
static single assignment form and the control dependence
graph. ACM Transactions on Programming Languages and
Systems, 13(4):451–490, October 1991.

[4] Stephen A. Edwards. An Esterel compiler for large
control-dominated systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
21(2):169–183, February 2002.

[5] Stephen A. Edwards. Compiling concurrent languages for
sequential processors. ACM Transactions on Design
Automation of Electronic Systems, 8(2):141–187, April 2003.

[6] Stephen A. Edwards, Vimal Kapadia, and Michael Halas.
Compiling Esterel into static discrete-event code. In
Proceedings of Synchronous Languages, Applications, and
Programming (SLAP), Barcelona, Spain, March 2004.

[7] Jeanne Ferrante, Mary Mace, and Barbara Simons.
Generating sequential code from parallel code. In 1988
International Conference on Supercomputing, pages
582–592, St. Malo, France, July 1988. ACM.

[8] Jeanne Ferrante, Karl J. Ottenstein, and Joe D.Warren. The
program dependence graph and its use in optimization. ACM
Trans. Program. Lang. Syst., 9(3):319–349, 1987.

[9] Barbara Simons and Jeanne Ferrante. An efficient algorithm
for constructing a control flow graph for parallel code.
Technical Report TR–03.465, IBM, Santa Teresa Laboratory,
San Jose, California, February 1993.

[10] Bjarne Steensgaard. Sequentializing program dependence
graphs for irreducible programs. Technical Report
MSR-TR-93-14, Microsoft, October 1993.


