COMPUTER ARCHITECTURE LETTERS

Cache Impacts of Datatype Acceleration

Lisa Wu, Martha A. Kim, Stephen A. Edwards
Department of Computer Science, Columbia University, New York, NY
{lisa,martha, sedwards}@cs.columbia.edu

Abstract—Hardware acceleration is a widely accepted solution for performance and energy efficient computation because it removes
unnecessary hardware for general computation while delivering exceptional performance via specialized control paths and execution
units. The spectrum of accelerators available today ranges from coarse-grain off-load engines such as GPUs to fine-grain instruction
set extensions such as SSE. This research explores the benefits and challenges of managing memory at the data-structure level and
exposing those operations directly to the ISA. We call these instructions Abstract Datatype Instructions (ADIs). This paper quantifies
the performance and energy impact of ADIs on the instruction and data cache hierarchies. For instruction fetch, our measurements
indicate that ADIs can result in 21-48% and 16—27% reductions in instruction fetch time and energy respectively. For data delivery, we
observe a 22—-40% reduction in total data read/write time and 9-30% in total data read/write energy.

Index Terms—Accelerators, Instruction Set Extensions, Data Structures, Cache Hierarchy

1 INTRODUCTION

N response to strict power constraints and dimin-
Iishing single-core performance returns, the hardware
industry has shifted en masse to parallel multicore chips.
In theory, parallel processing can match historic per-
formance gains while meeting modern power budgets,
but as recent studies show, this requires near-perfect
application parallelization [1]. In practice, such paral-
lelization is often unachievable: most algorithms have
inherently serial portions and require synchronization
in their parallel portions. Furthermore, parallel software
requires drastic changes to how software is written,
tested, and debugged.

Application-specific integrated circuits (ASICs) are the
gold standard for computational power and perfor-
mance efficiency, but it is uneconomical and impractical
to produce a custom chip for every application. As a re-
sult most chips are likely to remain programmable, and,
ideally, deliver custom-caliber efficiency in a general-
purpose setting. Hardware accelerators, such as graphics
coprocessors, cryptographic accelerators [2], or network
processors [3], [4], provide this for their target domain,
but often have awkward, ad hoc interfaces that make
them difficult to use and impede software portability.

We explore the impact of supplementing general-
purpose processors with abstract datatype processors
(ADPs) to deliver custom hardware performance in a
form palatable to software. ADPs implement abstract
datatype instructions (ADIs) that expose to hardware
high-level types such as hash tables, XML DOM:s, rela-
tional database tables, and others common to software.

By encapsulating data and algorithms richer than
the usual fine-grained arithmetic, memory, and control-
transfer instructions, ADIs provide ample implementa-

Manuscript submitted: 17-Sep-2011. Manuscript accepted: 14-Oct-2011.
Final manuscript received: 21-Oct-2011

tion optimization opportunities in the form of an al-
ready familiar programming interface. Architects have
made heroic efforts to quickly execute streams of fine-
grained instructions, but their hands have been tied
by the narrow scope of program information that con-
ventional ISAs afford to hardware. ADIs release these
restraints. Good software programming practice has long
encouraged the use of carefully written, well-optimized
libraries over manual implementations of everything;
ADIs simply supply such libraries in a new form.

2 MOTIVATION

It remains an open question how best to provide high-
performance, energy-efficient, single threaded computa-
tion. We highlight the following three lessons, which
motivate this new direction of research.

o Dark silicon projections. Power and cooling are pro-
jected to allow only a small fraction of transistors to
be fully operational at any time [5], [6]. With power
more valuable than area, systems incorporating spe-
cialized hardware begin to make far more sense.

o Serial performance still matters. Recent work has
shown parallel speedups require near-perfect ap-
plication parallelization [1]; high-performance, low-
power, sequential execution remains important.

e Do not neglect programmability. The multicore rev-
olution was driven by hardware needs, imposing
difficult changes on software. Yet proper software
technology can mitigate the problems that might
otherwise hinder the adoption of promising new
architectures: compilers for MIPS and other early
RISC ISAs shielded programmers from the atten-
dant increases in instruction count.

Together these three lessons inspire our application of
abstract datatypes to bridge the divide between applica-
tions and specialized hardware resources.

COMPUTER ARCHITECTURE LETTERS

TABLE 1
Example Abstract Datatype Instructions for Hash Tables

ADI Description

new id

put id, key, val
get val, id, key
remove id

Create a table; return its ID in register id
Associate val with key in table id

Return value wval associated with key in table id
Delete hash table with the given ID

3 ARCHITECTURE AND DESIGN

ADIs are instructions that express hardware-accelerated
operations on data structures. Table 1 shows example
ADIs for a hash table accelerator. The scope and behavior
of a typical ADI resembles that of a method in an object-
oriented setting: ADIs create, query, modify, and destroy
complex data types, operations that might otherwise
be coded in 10s or 100s of conventional instructions.
Multiple studies in a range of domains conclude that the
quality of interaction across an application’s data struc-
tures is a significant determinant of performance [7], [8],
[9]. In this work we consider ADIs for sparse vector and
hash table types.

As with other instruction set extensions, we assume a
compiler will generate binaries that include ADIs where
appropriate. When an ADI-enhanced processor encoun-
ters an ADI, the instruction and its operand values are
sent to the appropriate ADP for execution. For example,
operations on hash tables would be dispatched to the
hash table ADP; operations on priority queues would be
dispatched to the priority queue ADP. While ADIs can
be executed in either a parallel or serial environment, we
only consider single-threaded execution here.

4 EVALUATION METHODOLOGY

In this paper, we quantify the impact of ADIs on in-
struction and data delivery to the processing core via the
memory hierarchy. Storage arrays, caches, and the data
movement associated with these structures consume a
substantial fraction of total computation energy. In one
RISC processor, each arithmetic operation consumed
10 p]J, but reading the two operands from the data cache
required 107 p]J each and writing the result back required
121 pJ [10]. Thus, 335 pJ is spent on the L1 data cache to
accomplish a 10 pJ arithmetic operation. Amdahl’s law
dictates that we should optimize these operations to the
extent possible.

We examine two contemporary, performance-critical,
serial applications that are not obviously amenable to
parallelization: support vector machines and natural lan-
guage parsing.

o Machine learning classification is used in domains
ranging from spam filtering to cancer diagnosis. We
use LIBSVM [11], a popular support vector machine
library that forms the core of many classification,
recognition, and recommendation engines. In par-
ticular, we used LIBSVM to train a SVM for multi-
label scene classification [12]. The training data set

consists of 1211 photographs of outdoor scenes be-
longing to six potentially overlapping classes, beach,
sunset, field, fall foliage, mountain or urban. We target
the sparse vector type with an ADP with specialized
instructions for insertion, deletion, and dot product
operations on sparse vectors.

o Parsing is a notoriously serial bottleneck in natural
language processing applications. For this research,
we selected an open source statistical parser devel-
oped by Michael Collins [13]. We trained the parser
using annotated English text from the Penn Tree-
bank Project [14] and parsed a selection of sentences
from the Wall Street Journal. For this application
we target hash tables, assuming ADI support for
operations such as table lookup and insertion.

We instrumented these two applications using PIN,
and fed the dynamic instruction and data reference
streams to a memory system simulator. We then com-
bined the output access counts with Cacti’s characteri-
zation of the access time and energy of each structure
to compute the total time and energy spent fetching
instructions and data.

We evaluate a design space of fifty-four cache con-
figurations for ADI-enhanced and ADI-free instruction
streams. We considered direct-mapped and 2-way L1
caches of capacity 2 KB to 512 KB (each with 32 B lines),
and unified L2 caches (each with 64 B lines) of sizes 1 MB
(4-way), 2 MB (8-way), and 4 MB (8-way). We fixed main
memory at 1 GB.

5 INSTRUCTION DELIVERY

First, we compare the instruction fetch behavior an
ADI-equipped processor to its standard counterpart. We
characterize the hierarchy by total energy consumed,
dynamic and leakage, over all levels of the hierarchy;
and total time spent accessing the memory system.

Figure 1 shows the results of our instruction fetch
experiments. Graphs on the left represent the SVM appli-
cation; those on the right are for the parser. The scatter
plots in the first row graph the total instruction fetch
energy against the total instruction fetch time. Here, the
crosses show the instruction cache behavior for ADI-free
programs; the circles show the change in efficiency with
the addition of ADIs.

Of the two programs, SVM shows the greatest im-
provement, confirming the importance of the sparse
vector dot product in the execution of this benchmark.
The Parser benchmark shows more modest improve-
ments, reflecting the smaller fractional importance of
the hash table datatype in this application. From this
design space we identify the set of Pareto-optimal cache
designs: three from SVM and four for Parser. Selecting
the optimal cache configurations for each benchmark is
optimistic, as in reality many applications will share a
single configuration; we do so here in order to measure
ADIs against the best possible performance a cache can offer.

COMPUTER ARCHITECTURE LETTERS

SVM Parser
~ + +
(= 04 @) i + Baseline @) ++++
c>5 ' @D g O With ADIs &® o +
‘@ § 3
=1
Hoo0.2+
<
O
&
0 ; ; f . . .
0 10 20 0 5 10 15
Access Time (s)
6 0.4 Il Memory Static
@ -LZDynamiF
g I I L1I Dynamic
m 0.2 4
. "1 jig=-
o
&
0
o I Vemory
~ o
Qo 20 L1l
£
[_1
2 10
IS
<
0
=== 322 = = =223 222 2
<+ f o~ o~ A <+ *H o~ o~ = —
+ O+ o+ o+ o+ + O+ O+t + o+ o+
MM M M MM MoOM M M M M MM
~ : I S < : o : o~ : <t : o
[m) @) @) @) @) @) A
< < < < < < <

Fig. 1. ADIs’ impact on instruction fetch energy and time.

The remaining charts in Figure 1 show the detailed
breakdown of energy and instruction fetch time of each
optimal cache configuration. The energy consumption is
divided into static and dynamic components for each
level of the hierarchy. When a program’s instruction
footprint does not fit into the L1 instruction cache (L1I),
we see L2 dynamic energy dominate. However, the
dynamic L1I energy becomes dominant as the L1I size
increases and the working set begins to fit.!

The bottom row of Figure 1 shows the overall time the
memory system spends delivering instructions. Because
main memory is far slower than the L1 cache, even the
minuscule number of instruction fetches that go to main
memory after missing both caches tend to dominate.

To summarize our findings on instruction fetch, each
application gains in performance over all Pareto opti-
mal cache designs, with the improvements in perfor-
mance and energy savings coming in proportion to the
reduction in total instructions fetched. To the extend
instruction fetch consumes time and energy, these results
suggest that changing the instruction encoding can reap
important benefits, regardless of application domain.

6 DATA DELIVERY

Because ADIs encapsulate data structures as well as the
algorithms that act on them, they can be implemented

1. We omitted bars for main memory dynamic energy and L1I and
L2 cache static energy as they were roughly a thousand times smaller—
not visible on these graphs.

4 KB
8 KB 8 KB

4 W, 8 W.
y Y 4kB 4 KB 4KB 4KB
4 Way 4 Way 4 Way 4 Way

UNIFIED1 UNIFIED2 PRIVATE SPARSEVEC HASHTAB ORACLE

Fig. 2. Compared configurations of level 1 data stores

using specialized datapaths coupled to special-purpose
storage structures that can be considerably more efficient
than the general-purpose alternative. While there has
been a great deal of research on specialized datapaths
and computation, few researchers have considered spe-
cializing the memory system. Below, we examine the
costs and benefits of segregating and serving streams of
data according to its type.

We compare several different L1 data cache organiza-
tions while keeping the other levels of the hierarchy con-
stant. We hold the total L1 resources (i.e., total number
of bits) constant but deploy them in several ways, illus-
trated in Figure 2: as a single, unified L1 cache (UNIFIED1
and UNIFIED2); two identical, private caches (PRIVATE);
and one normal cache plus one type-specific storage
unit (SPARSEVEC and HASHTAB, described below). To
provide an upper bound on the data access savings one
can hope to see, we also model an infinite, instantaneous,
zero-energy storage unit to serve type-related memory
requests (ORACLE).

We consider a naive implementation of a sparse vector
store, which consists of a RAM storage array and a
small number of registers that hold pointers to the next
element in a particular sparse vector. The processing
core can issue two types of requests to the sparse vector
store: begin vector, which notifies the vector store that the
processor is about to initiate an operation of the vector
at a particular base address; and next element events,
through which the processor requests the next element
(i.e., index, value pair) in a sparse vector.

Our experimental results indicate there is significant
benefit both in data delivery speed and energy consump-
tion from issuing operation-specific events such as the
next-element requests described above instead of generic
load and store operations.

Our sparse vector store has a very simple design, and
there are a number of ways to improve its microarchitec-
ture. One option is prefetching. The sparse vector store
knows the processor is doing a dot product operation
and thus always knows what the processor will request
next. Even a simple prefetch algorithm can be expected
to reduce data delivery time.

We evaluate the Parser benchmark in a similar manner
to SVM. Instead of a SPARSEVEC, we employ a type-
specific storage for hash tables, HASHTAB. Similar to
the SPARSEVEC, the HASHTAB at its core is simply a
RAM array whose total capacity is partitioned into two
regions: the first caches portions of the table backbone;

COMPUTER ARCHITECTURE LETTERS

SVM Parser

%

2 @

Access Energy (J)
%

5 6 7 8 9 6 8 10 12
Access Time (s)

Access Energy (J)

‘nll il
AN

10

Access Time (s)

o
uniriepl [
[N |

Private [N
1

oracLi i

unirien1 [N
unirien2 [N

PRIVATE -
astTas i
oracte |

HASHTAB

Fig. 3. Data delivery energy and performance of candi-
date L1 storage configurations on SVM and Parser.

the second caches table elements themselves. As with
SPARSEVEC there is ample room for microarchitects to
optimize the implementation of this storage structure,
employing aggressive datapaths or more sophisticated
storage structures such as CAMs. Other research, par-
ticularly from the networking domain, has outlined mi-
croarchitectural techniques to support efficient associa-
tive lookups in hardware [15], [4].

The scatter plots in Figure 3 (top) plot the Pareto
optimal energy-performance curves for the four generic
cache organizations (UNIFIED1, UNIFIED2, PRIVATE, OR-
ACLE) plus the type-specific stores (SPARSEVEC and
HASHTAB). In this case we see that the specialized store
is a vast improvement over the general purpose stores,
nearly matching ideal storage properties.

Specialized storage structures, SPARSEVEC and
HASHTAB, showed 13-19.7% and 35.1-38% performance
gains for SVM and Parser respectively while reducing
energy by 5.9-8.6% and 28.9-33.1% respectively. The
PRIVATE configuration is less complex to design but
gained at most 7.9% and 5.9% while costing 1.4% and
1.7% more energy for SVM and Parser respectively.

Both the energy and runtime breakdowns in the rest
of Figure 3 indicate that the specialized hash table store
operates as a near-perfect cache, reducing L2 pressure,
which in turn reduces trips to memory, where most of
the time and energy costs lie. In both cases, SRAMs
with datatype-specific management policies were able to
outperform equivalent-capacity general purpose caches,
regardless of cache configuration.

7 CONCLUSION

ADPs marry high-level datatypes with processor
architecture—an unusually large range of abstraction—
to solve a pressing problem: how to improve the energy
efficiency of large-scale computation. Our experiments
found such specialization can improve instruction and
data delivery energy by 27% and 38% respectively. The
impact on the overall system will depend on the relative
importance of instruction and data delivery, which varies
between embedded systems [10] and high-performance
cores [16]. ADPs represent a move away from efficient
manipulation of primitive data elements to computing
with higher-level types, narrowing the growing semantic
gap between programmers and their hardware. This
new direction for computer architecture and compilers
is widely applicable to many problem domains and
will empower programmers to write faster software that
consumes less energy.

REFERENCES

[1] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
IEEE Computer, vol. 41, no. 7, pp. 33-38, Jul. 2008.

[2] L. Wu, C. Weaver, and T. Austin, “Cryptomaniac: a fast flexible
architecture for secure communication,” in Proceedings of the In-
ternational Symposium on Computer Architecture (ISCA), Jun. 2001.

[3] H. Franke, J. Xenidis, C. Basso, B. Bass, S. Woodward, J. Brown,
and C. Johnson, “Introduction to the wire-speed processor and
architecture,” IBM Journal of Research and Development, vol. 54,
no. 1, pp. 3:1-3:11, 2010.

[4] L. D. Carli, Y. Pan, A. Kumar, C. Estan, and K. Sankaralingam,
“Plug: Flexible lookup modules for rapid deployment of new
protocols in high-speed routers,” in Proceedings of the Special
Interest Group on Data Communication (SIGCOMM), Aug. 2009.

[5] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor, “Conservation
cores: Reducing the energy of mature computations,” in Proceed-
ings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), Pittsburgh,
Pennsylvania, Mar. 2010, pp. 205-218.

[6] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in
Proceedings of the International Symposium on Computer Architecture
(ISCA), 2011, pp. 365-376.

[71 C.Jung, S. Rus, B. P. Railing, N. Clark, and S. Pande, “Brainy:
effective selection of data structures,” 2011, pp. 86-97.

[8] L. Liu and S. Rus, “Perflint: A context sensitive performance
advisor for C++ programs,” 2009, pp. 265-274.

[9] S. Williams, L. Oliker, R. Vudug, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix-vector multiplication on emerging
multicore platforms,” 2007, pp. 1-12.

[10] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. C. Harting,
V. Parikh, J. Park, and D. Sheffield, “Efficient embedded comput-
ing,” IEEE Computer, vol. 41, no. 7, pp. 27-32, Jul. 2008.

[11] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector
machines, 2001, software available at http://www.csie.ntu.edu.
tw/~cjlin/libsvm.

[12] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-
label scene classification,” Pattern Recognition, vol. 37, no. 9, pp.
1757-1771, 2004.

[13] M. Collins, “Head-driven statistical models for natural language

parsing,” Ph.D. dissertation, University of Pennsylvania, 1999.

“The Penn treebank project,” Online http://www.cis.upenn.edu/

~treebank.

[15] F. Zane and G. Narlikar, “CoolCAMs: Power-efficient TCAMs for
forwarding engines,” in Joint Conference of the IEEE Computer and
Communications Societies, Jul. 2003, pp. 42-52.

[16] K. Natarajan, H. Hanson, S. W. Keckler, C. R. Moore, and
D. Burger, “Microprocessor pipeline energy analysis,” in Proceed-
ings of the International Symposium on Low Power Electronics and
Design (ISLPED), 2003, pp. 282-287.

[14]

