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Buffer Sharing in Rendezvous Programs
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Abstract—Most compilers focus on optimizing performance,
often at the expense of memory, but efficient memory use can be
just as important in constrained environments such as embedded
systems. This paper presents a memory reduction technique for
CSP-style rendezvous communication, which is applied to the de-
terministic concurrent programming language SHIM. It focuses
on reducing memory consumption by sharing communication
buffers among tasks. It determines pairs of buffers that can never
be in use simultaneously and use a shared region of memory
for each pair. The technique produces a static abstraction of a
SHIM program’s dynamic behavior, which is then analyzed to
find buffers that are never occupied simultaneously. Experiments
show the technique runs quickly on modest-sized programs and
can sometimes reduce memory requirements by half.

Index Terms—Concurrency, SHIM, Static Analysis, Buffers,
Optimization

I. INTRODUCTION

Embedded systems have limited memory. Overlays, which

amount to time-multiplexing the use of memory regions, is

one way to reduce a program’s memory consumption. In

this paper, we propose a technique that automatically finds

opportunities to safely overlay communication buffer memory

in a concurrent programming language.

The technique we present here determines what buffer

memory may be shared in SHIM programs [1]. It is closely

related to some of the techniques we used to statically detect

deadlocks [2], but we address a different problem here.

SHIM is an asynchronous concurrent language that is

scheduling-independent: its input/output behavior is not af-

fected by any non-deterministic scheduling choices taken by

its runtime environment due to processor speed, the operating

system, scheduling policy, etc. A SHIM program consists of

sequential tasks that synchronize when they want to communi-

cate. The language is a subset of Kahn networks [3] (to ensure

determinism) that employs the rendezvous of Hoare’s CSP [4]

for communication to keep its behavior tractable.

SHIM processes communicate through channels (Figure 1).

Every task maintains its own local variables, and in most

SHIM implementations, any communication involves copying

to and reading from a shared memory location. The sequence

of symbols transmitted over each channel is deterministic but

the relative order of symbols on different channels is generally

undefined. However, if we can determine that the relative order

of symbols on a pair of channels is such that they never

interfere, we can safely share the buffers for the channels.
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Fig. 1. The channel structure

If we cannot find such an ordering, we conclude that the pair

cannot share memory.

Our analysis is conservative: if we establish two channels

can share buffers, they can do so safely, but we may miss

opportunities to share certain buffers because we do not model

data and may treat the program as separate pieces to avoid an

exponential explosion in analysis cost. Specifically, we build

sound abstractions to avoid state space explosions, effectively

enumerating all possible schedules with a product machine.

One application of our technique is to minimize buffer

memory used by code generated by the SHIM compiler

for the Cell Broadband engine [5]. The heterogeneous Cell

processor [6] consists of a power processor element (PPE)

and eight synergistic processor elements (SPEs). The SHIM

compiler maps tasks onto each of the SPEs. Each SPE has its

own local memory and shares data through the PPE. The PPE

synchronizes communication and holds all the channel buffers

in its local memory. An SPE can communicate with the PPE

through mailboxes [7].

We wish to reduce memory used by the PPE by overlapping

buffers of different channels. Our static analyzer does live

range analysis on the communication channels and determines

pairs of buffers that are never live at the same time. We

demonstrate in Section VII that the PPE’s memory usage can

be reduced drastically for practical examples such as a JPEG

decoder and an FFT.

Below, we describe the SHIM language (Section II), how we

model its behavior to analyze buffer usage (Section III), how

we compose models of SHIM tasks to build a product machine

for the whole program (Section IV), how we avoid state

explosion (Section V), and how we use these results to reduce

buffer memory usage (Section VI). We present experimental

results in Section VII and the application of our algorithm to

Cell Programs in Section VIII. We discuss related work in

Section X and conclude in Section XI.

II. THE SHIM PROGRAMMING LANGUAGE

SHIM [1] is a C-like concurrent programming language

whose tasks communicate exclusively through multiway ren-

dezvous channels. To the usual collection of C-like expressions

and statements it adds two constructs: par for specifying

concurrency, and send and recv for communication. p par q

runs statements p and q in parallel and finishes when both

p and q terminate. Send c and recv c are communication
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void main()
{
chan int a , b;
{ // Task 1

send a = 6; // Send 6 on a (synchronize w/ 2)
// a = 6 here

recv b; // Receive b (synchronize w/ 2)
// b = 8 here

} par { // Task 2
recv a; // Receive a ( synchronize w/ 1)

// a = 6 here
send b = 8; // Send 8 on b (synchronize w/ 1)

// b = 8 here
}

}

Fig. 2. A SHIM program where two tasks communicate through two channels

statements that synchronize on channel c. SHIM has no global

or shared variables.

In Figure 2, two SHIM tasks run concurrently within main

and communicate on channels a and b. The send a in task 1

assigns 6 to a and waits for task 2 to receive the value.

The tasks therefore rendezvous then continue to their next

statements. Next, the two tasks rendezvous at b. There, task 1

receives the value 8 from task 2.

Small changes to this program can produce different behav-

ior. If both tasks (statically) attempted to send on a channel, the

compiler would reject the program. If statements recv a and

send b = 8 were interchanged, the program would deadlock.

Back ends of our SHIM compiler can generate C code for a

variety of environments: shared-memory multiprocessors using

the pthreads library [8], the IBM Cell Broadband Engine [5],

and single-threaded processors that do not require thread

support [9]. The SHIM model has also been implemented as

a library for Haskell [10] and even hardware translation has

been proposed [11].

The goal of our work is buffer sharing, which we illustrate

using the program in Figure 3. Here, the main task starts four

tasks in parallel. Tasks 1 and 2 communicate on a. Then,

tasks 2 and 3 communicate on b and finally tasks 3 and 4

on c. Finally, task 4 receives 8 on channel c. Communication

on a cannot occur simultaneously with that of b because task 2

forces them to occur sequentially. Similarly communications

on b and c are forced to be sequential by task 3. Commu-

nications on a and c cannot occur together because they are

forced to be sequential by the communication on b. Our tool

understands this pattern and reports that a, b, and c can share

buffers because their communications never overlap, thereby

reducing the total buffer requirements for this program by

66%. Although this only represents the savings of a few words

in this example, SHIM communication channels often pass

large objects such as arrays, in which case a 66% reduction

can be substantial. Our experimental results in Section VII

demonstrate this.

void main()
{

chan int a , b , c ;
{ // Task 1

send a = 6; // Send a (synchronize w/ 2)
} par { // Task 2

recv a; // Receive a ( synchronize w/ 1)
send b = a + 1; // Send 7 on b (synchronize w/ 3)

} par { // Task 3
recv b; // Receive b (synchronize w/ 2)
send c = b + 1; // Send 8 on c (synchronize w/ 4)

} par { // Task 4
recv c ; // Receive c ( synchronize w/ 3)

// c = 8 here
}

}

Fig. 3. A SHIM program that illustrates the need for buffer sharing

III. ABSTRACTING SHIM PROGRAMS

Our technique abstracts a SHIM program down to its

communication patterns to identify situations in which buffers

can be active simultaneously and thus not shared. We describe

this below.

First, we assume that a SHIM program has no recursion.

While the SHIM language allows it, we can use the techniques

of Edwards and Zeng [12] to remove bounded recursion, which

makes the program finite and renders the buffer minimization

problem decidable. We do not attempt to analyze programs

with unbounded recursion.

Although the recursion-free subset of SHIM is finite-state

and therefore tractable in theory, in practice the full state

space of even a small program is usually too large; a sound

abstraction is necessary. A SHIM task has both computation

and communication, but because buffers are used only when

tasks communicate, we abstract away the computation.

Since we abstract away computation, we must assume that

all branches of any conditional statement can be taken. This

leaves open the possibility that our analysis will conclude two

channels can be used simultaneously but in fact never are,

but we believe our abstraction is reasonable. In particular it

is safe: we overlap buffers only when we are sure that two

channels can never be used at the same time regardless of

the details of the computation. This choice proved to be wise.

For the programs discussed in Section VII, we never lost any

opportunity for sharing by assuming both sides of a branch are

followed that an exact analysis would have enabled. Besides,

it is impossible to predict at compile-time the exact behavior

of branches that depend on program input.

A. An Example

In Figure 4, the main function consists of two tasks that

communicate through channels a, b, and c.

The first task communicates on channels a and b in a

loop; the second task synchronizes on channels c and b, then

terminates. Once a task terminates, it is no longer compelled

to synchronize on the channels to which it is connected. Thus
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void main() {
chan int a , b, c ;
{ // Task 1

for ( int i = 0; i < 15; i++) { // state 1
if ( i % 2 == 0)

send a = 5;
else

send b = 7;
// state 2

send b = 10;
}

// state 3
} par { // Task 2

// state 1
send c = 13;

// state 2
recv b;

// states 3 & 4
}

}

Fig. 4. A (contrived) SHIM program with a loop, conditionals, and a task
that terminates

after the second task terminates, the first task just talks to itself,

i.e., it is the only process that participates in a rendezvous on

its channels. Thus, terminated processes do not cause other

processes to deadlock.

At compilation time, the compiler dismantles the main

function of Figure 4 into tasks T1 and T2. T1 is connected

to channels a and b since a and b appear in the code section

of T1. Similarly T2 is connected to channels b and c. During

the first iteration of the loop in T1, T1 talks to itself on a; since

no other task is connected to a. Meanwhile, T2 talks to itself

on c. Then the two tasks rendezvous on b, communicating the

value 10, then T2 terminates. During subsequent iterations of

T1, T1 talks to itself on either b twice or a and b once each.

In the program in Figure 4, communication on b cannot

occur simultaneously with that on c because T2 forces the two

communications to be sequential and therefore b and c can

share buffers. On the other hand, there is no ordering between

channels a and c; a and c can rendezvous at the same time

and therefore a and c cannot share buffers. By overlapping the

buffers of b and c, we can save 33% of the total buffer space.

Our analysis performs the same preprocessing as our static

deadlock detector [2]. It begins by removing bounded recur-

sion and duplicating functions to force every call site to be

unique. This has the potential of producing an exponential

blow-up, but we have not observed this in practice because

bounded recursion in SHIM programs usually generates struc-

ture rather that being algorithmic.

At this point, the call graph of the program is a tree,

enabling us to statically determine all the tasks and the

channels to which each is connected.

Next we disregard all functions that do not affect the

communication behavior of the program. Because we are

ignoring data, their behavior cannot affect whether we consider

a buffer to be sharable. We implicitly assume every such

function can terminate—again, a safe approximation.
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Fig. 5. Automata for (a) the main task and (b), (c) its subtasks
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Fig. 6. Composing tasks in Figure 5: (a) Merging T1 and T2. (b) Inlining
T1 ·T2 in M.

Next, we create an automaton that models the control and

communication behavior for each function. Figure 5 shows

automata for the three tasks (main, T1, and T2) of Figure 4.

For each task, we build a deterministic finite state automaton

whose edges represent choices, typically to communicate. The

states are labeled by program counter values and the transitions

by channel names. Each automaton has a unique final state,

which we draw as a double box. There is a transition from

every terminating state to this final state labeled with a dummy

channel that indicates such a transition. An automaton has

only one final state but can have multiple terminating states.

In Figure 5(b), T1’s state 1 is the terminating state, state 3 is

the final state, and they are connected by τ1, which is like

a classical ε transition. However, ε edges would make the

automaton nondeterministic, so we instead create a dummy

channel τ1 that is unique to T1 and allow T1 to move from

state 1 to state 3 without having to synchronize.

The main function has a dummy πm1 transition from its

start to the entry of state 2 (T1‖T2), which represents the par

statement in main. In general, we create a dummy channel for

every par in the program.

Figure 6(a) shows the product of T1 and T2—an automaton

that represents the combined behavior of T1 and T2. We con-

structed Figure 6(a) as follows. We start with state (program

counter) values (1,1). At this point, T1 can communicate on

a and move to state 2. Therefore we have an arc from (1,1)
to (2,1) labeled a. Similarly, T2 can communicate on c and
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move to its state 2. From state (1,1) it is not possible to

communicate on b because only T1 is ready to communicate,

not T2 (T2 is also connected to b). Also at state (1,1), T1 can

terminate by taking the transition τ1 and moving to (3,1).

From state (3,1), T2 can transition first to state (3,2)
by communicating on channel c and then to state (3,3) by

communicating on b; these transitions do not change the state

of T1 because it has already terminated.

From (2,1), T2 can communicate on c and change the state

to (2,2). Similarly from (1,2), T1 can communicate on a and

move to (2,2). In state (1,2) it is also possible to communicate

on b since both tasks are ready. Therefore, we have an arc b

from (1,2) to (2,3). Since T1 may also choose to terminate in

state (1,2), there is an arc from (1,2) to (3,2) on τ1. Other

states follow similar rules.

To determine which channels may share buffers, we con-

sider all states that have two or more outgoing edges. For

example, in Figure 6(a), state (1,1) has outgoing transitions

on a and c. Either of them can fire, so this is a case where

the program may choose to communicate on either a or c.

This means the contents of both of these buffers are needed at

this point, so we conclude buffers for a and c may not share

memory. We prove this formally below.

From Figure 4, it is evident that a and b can never occur

together because T1 forces them to be sequential. However,

since state (1,2) has outgoing transitions on a and b, our

algorithm concludes that a and b can occur together. However,

they actually can not. We draw this erroneous conclusion be-

cause our algorithm does not differentiate between scheduling

choices and control flow choices (i.e., due to conditionals such

as if and while). By doing this we are only adding extra

behavior to the system and disregarding pairs of channels

whose buffers actually could be shared. This is not a big

disadvantage because our analysis remains safe. For this

example, our algorithm only allows b and c to share buffers.

Figure 6(b) is obtained by inlining the automaton for T1 ·
T2—Figure 6(a)—within M. This represents the entire program

in Figure 4. Since the par call is blocking, inlining T1 · T2

within M is safe. We replaced state 2 of Figure 5(a) with

Figure 6(a) to obtain Figure 6(b). The conclusions are the

same as that of Figure 6(a)—only b and c can share buffers.

IV. MERGING TASKS

In this section, we use notation from automata theory to

formalize the merging of two tasks. We show our algorithm

does not generate any false negatives and is therefore safe.

Definition 1: A deterministic finite automaton T is a 5-tuple

(Q,Σ,δ ,q, f ) where Q is the set of states, Σ is the set of

channels, q ∈ Q1 is the initial state, f ∈ Q is the final state,

and δ ⊆ Q×Σ → Q is the partial transition function.

Definition 2: If T1 and T2 are automata, then the composed

automaton T1 · T2 = (Q1 × Q2,Σ1 ∪ Σ2,δ12,〈q1,q2〉,〈 f1, f2〉),

where, for 〈p1, p2〉 ∈ Q1 ×Q2 and a ∈ Σ1 ∪Σ2,

δ12(〈p1, p2〉,a) =















































〈δ1(p1,a), if a ∈ ∑1 and a ∈ ∑2;

δ2(p2,a)〉

〈δ1(p1,a), p2〉 if a ∈ ∑1 and

(a 6∈ ∑2 or p2 = f2);

〈p1,δ2(p2,a)〉 if a ∈ ∑2 and

(a 6∈ ∑1 or p1 = f1);

undefined otherwise,

is the transition rule for composition.

In general, if T1 has m states and T2 has n, then the product

T1 ·T2 can have at most mn states. The states are labeled by a

tuple composed of the program counter values of the individual

tasks. Each state can have at most k outgoing edges, where k is

the total number of channels. Consequently, the total number

of edges in the graph can at most be mnk (k accounts for the

extra τ and π channels—one extra channel per task and one

per par).

Below, we demonstrate that the order in which automata

are composed does not matter. Although the state labels will

be different, the states are isomorphic. First, we define exactly

what we mean for two automata to be equivalent.

Definition 3: Two automata T1 = (Q1,Σ1,δ1,q1, f1) and

T2 = (Q2,Σ2,δ2,q2, f2) are equivalent (written T1 ≡ T2) if

and only if Σ1 = Σ2 and there exists a bijective function

b : Q1 → Q2 such that q2 = b(q1), f2 = b( f1), and for every

p ∈ Q1 and a ∈ Σ1, either both δ1(p,a) and δ2(b(p),a) are

defined and δ2(b(p),a) = b(δ1(p,a)) or both are undefined.

Lemma 1: Composition is commutative: T1 ·T2 ≡ T2 ·T1.

Proof: By definition,

T1 ·T2 = (Q1 ×Q2,Σ1 ∪Σ2,δ12,〈q1,q2〉,〈 f1, f2〉) and

T2 ·T1 = (Q2 ×Q1,Σ2 ∪Σ1,δ21,〈q2,q1〉,〈 f2, f1〉).

We claim b(〈p1, p2〉) = 〈p2, p1〉 is a suitable bijective func-

tion. First, note Σ1 ∪Σ2 = Σ2 ∪Σ1, 〈q2,q1〉 = b(〈q1,q2〉), and

〈 f2, f1〉 = b(〈 f1, f2〉).
Next,

δ21(b(〈p1, p2〉),a)

= δ21(〈p2, p1〉,a)

=







































〈δ2(p2,a),δ1(p1,a)〉 if a ∈ ∑2 and a ∈ ∑1;

〈δ2(p2,a), p1〉 if a ∈ ∑2 and

(a 6∈ ∑1 or p1 = f1);

〈p2,δ1(p1,a)〉 if a ∈ ∑1 and

(a 6∈ ∑2 or p2 = f2);

undefined otherwise;

= b



























































〈δ1(p1,a),δ2(p2,a)〉 if a ∈ ∑1 and a ∈ ∑2;

〈p1,δ2(p2,a)〉 if a ∈ ∑2 and

(a 6∈ ∑1 or p1 = f1);

〈δ1(p1,a), p2〉 if a ∈ ∑1 and

(a 6∈ ∑2 or p2 = f2);

undefined otherwise;





















= b
(

δ12(〈p1, p2〉,a)
)
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Thus, T1 ·T2 ≡ T2 ·T1.

Lemma 2: Composition is associative: (T1 · T2) · T3 ≡ T1 ·
(T2 ·T3).

Proof: By definition,

(T1 ·T2) ·T3 = ((Q1 ×Q2)×Q3,(Σ1 ∪Σ2)∪Σ3,δ(12)3,

〈〈q1,q2〉,q3〉,〈〈 f1, f2,〉, f3〉)

T1 · (T2 ·T3) = (Q1 × (Q2 ×Q3),Σ1 ∪ (Σ2 ∪Σ3),δ1(23),

〈q1,〈q2,q3〉〉,〈 f1,〈 f2, f3〉〉).

We claim b(〈〈p1, p2〉, p3〉) = 〈p1,〈p2, p3〉〉 is a suitable

bijective function. First, note that (Σ1 ∪ Σ2) ∪ Σ3 = Σ1 ∪
(Σ2 ∪Σ3), 〈q1,〈q2,q3〉〉= b(〈〈q1,q2〉,q3〉), and 〈 f1,〈 f2, f3〉〉=
b(〈〈 f1, f2〉, f3〉).

Next,

δ1(23)(b(〈〈p1, p2〉, p3〉),a)

= δ1(23)(〈p1,〈p2, p3〉〉,a)

=















































































































































〈δ1(p1,a),〈δ2(p2,a), if a ∈ ∑1 and a ∈ ∑2 and

δ3(p3,a)〉〉 a ∈ ∑3;

〈δ1(p1,a),〈δ2(p2,a), p3〉〉 if a ∈ ∑1 and a ∈ ∑2 and

(a 6∈ ∑3 or p3 = f3);

〈δ1(p1,a),〈p2,δ3(p3,a)〉〉 if a ∈ ∑1 and a ∈ ∑3 and

(a 6∈ ∑2 or p2 = f2);

〈δ1(p1,a),〈p2, p3〉〉 if a ∈ ∑1 and

(a 6∈ ∑2 or p2 = f2) and

(a 6∈ ∑3 or p3 = f3);

〈p1,〈δ2(p2,a),δ3(p3,a)〉〉 if a ∈ ∑2 and a ∈ ∑3 and

(a 6∈ ∑1 or p1 = f1);

〈p1,〈δ2(p2,a), p3〉〉 if a ∈ ∑2 and

(a 6∈ ∑1 or p1 = f1) and

(a 6∈ ∑3 or p3 = f3);

〈p1,〈p2,δ3(p3,a)〉〉 if a ∈ ∑3 and

(a 6∈ ∑1 or p1 = f1) and

(a 6∈ ∑2 or p2 = f2);

undefined otherwise;

= b




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

〈〈δ1(p1,a),δ2(p2,a)〉, if a ∈ ∑1 and a ∈ ∑2 and

δ3(p3,a)〉 a ∈ ∑3;

〈〈δ1(p1,a),δ2(p2,a)〉, p3〉 if a ∈ ∑1 and a ∈ ∑2 and

(a 6∈ ∑3 or p3 = f3);

〈〈δ1(p1,a), p2〉,δ3(p3,a)〉 if a ∈ ∑1 and a ∈ ∑3 and

(a 6∈ ∑2 or p2 = f2);

〈〈δ1(p1,a), p2〉, p3〉 if a ∈ ∑1 and

(a 6∈ ∑2 or p2 = f2) and

(a 6∈ ∑3 or p3 = f3);

〈〈p1,δ2(p2,a)〉,δ3(p3,a)〉 if a ∈ ∑2 and a ∈ ∑3 and

(a 6∈ ∑1 or p1 = f1);

〈〈p1,δ2(p2,a)〉, p3〉 if a ∈ ∑2 and

(a 6∈ ∑1 or p1 = f1) and

(a 6∈ ∑3 or p3 = f3);

〈〈p1, p2〉,δ3(p3,a)〉 if a ∈ ∑3 and

(a 6∈ ∑1 or p1 = f1) and

(a 6∈ ∑2 or p2 = f2);

undefined otherwise;
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= b
(

δ(12)3(〈〈p1, p2〉, p3〉,a)
)

Thus, (T1 ·T2) ·T3 ≡ T1 · (T2 ·T3).

Lemma 3: T1 ·T2 ·T3 · · ·Tn ≡ (((T1 ·T2) ·T3) · · ·) ·Tn

Proof: Since the composition is commutative and as-

sociative, we can build the entire system incrementally by

composing two tasks at a time.

Lemma 4: The outgoing transitions from a given state

represent every possible rendezvous that can occur at that

particular state.

Proof: According to the definition of δ , we add an

outgoing edge to a state for every rendezvous that can happen

immediately after that state.

Multiple outgoing arcs from a state may represent choices

due to control statements (such as if or while). δ (p1,a) = q2

and δ (p1,b) = q2, then we have two outgoing choices due to

control flow.

On the other hand, a scheduling choice may occur when

composing two tasks. A scheduling choice occurs when the

ordering between two rendezvous is unknown. This happens

when two different pairs of tasks can rendezvous on two

different channels at the same time.

Suppose a ∈ Σ1 and a 6∈ Σ2 and δ1(p1,a) = q1, and if

b ∈ Σ2 and b 6∈ Σ1 and δ2(p2,b) = q2, then δ12(〈p1, p2〉,a) =
〈q1, p2〉 and δ12(〈p1, p2〉,b) = 〈p1,q2〉. Thus, for every pos-

sible scheduling choice, we have an outgoing edge from the

given state.

The absence of any choice due to control or scheduling will

leave it with either one or zero outgoing arcs. Consequently,

the outgoing transitions from a given state represent all pos-

sible rendezvous that can occur at that particular state. They

represent both control flow and scheduling choices.

A scheduling choice imposes no ordering among ren-

dezvous, thus allowing the possibility of two or more ren-

dezvous to happen at the same time.

Theorem 1: Two channels a and b can share buffers if, ∀p,

at most one of δ (p,a) and δ (p,b) is defined, but not both.

Proof: Suppose a and b can rendezvous at the same time

and if p1 represents the state of the program counter just before

the rendezvous, then by Lemma 4 we have two outgoing arcs

from p1: δ (p1,a) = q1 and δ (p1,b) = q2

Consequently, for some p, both δ (p,a) and δ (p,b) exist.

Conversely, if for all p at most one of δ (p,a) and δ (p,b)
exists, we can safely say a and b can share buffers.

Our algorithm does not differentiate between control flow

choices (e.g., due to if or while) and scheduling choices (due

to partial ordering of rendezvous). Both kinds of choices

produce states having multiple outgoing arcs. We conclude

that arcs going out from the same state cannot share buffers.

The multiplicity can be contributed only by control choices

leading to false positives, but our system is safe; whenever

we are unsure, we do not allow sharing.

V. TACKLING STATE SPACE EXPLOSION

If two tasks communicate infrequently, there is a possibility

that the number of states in the product machine will grow too

large to compute. We address this by introducing a threshold,

which limits the stack depth of our recursive product machine

composition procedure and corresponds to the longest simple

path in the product machine. If we reach the threshold, we
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Algorithm 1 compose(p1, p2,Σ1,Σ2,depth, threshold)

if depth > threshold then

return “Threshold exceeded”

else

for all a ∈ Σ1 ∪Σ2 do

〈q1,q2〉 = δ (〈p1, p2〉,a)
if 〈q1,q2〉 6∈ hash then

Add 〈q1,q2〉 to hash

compose(q1, q2, Σ1, Σ2, depth+1, threshold)

stop and treat the two tasks being composed as being separate

(i.e., unable to share buffers with each other).

This heuristic, which we chose because our implementation

was running out of stack space on certain complex examples,

has the advantage of applying exactly when we are unlikely

to find opportunities to share buffer memory. Tightly coupled

tasks tend to have small state spaces—these are exactly those

that allow buffer memory to be shared. Loosely coupled tasks

by definition run nearly independently and thus the commu-

nication pattern of most pairs of channels are uncontrolled,

eliminating the chance to share buffers between them.

Algorithm 1 is the composition algorithm. It recursively

composes two states p1 and p2. The depth variable is ini-

tialized to 0 and incremented whenever successor states are

composed. Whenever depth exceeds the threshold, we declare

failure.

We draw conclusions about local channels (whose scope

has been completely explored) and we remain silent about the

others. We make safe conclusions even when other channels

have not been completely explored.

Theorem 2: If our algorithm concludes that two channels a

and b can share buffers after abstracting away channel c, then

a and b can still share buffers in the presence of c.

Proof: If a and b can share buffers, then there is a

sequential ordering between them. By SHIM semantics [11],

introduction of a new channel can create ordering between two

channels that are not ordered, but can never disrupt an existing

sequential ordering unless it introduces a deadlock. Therefore,

if our algorithm concludes that two buffers can share channels,

introducing a new channel does not affect the conclusion since

we assume deadlock-free programs.

We conclude that two channels can share buffers only if

two conditions hold: the two channels have been explored

completely and every state has at most one of the two channels

in its outgoing edge set.

We take a bottom-up approach while merging groups of

tasks. Tasks in a (preprocessed) SHIM program have a tree

structure that arises from nesting of par constructs. We merge

the leaf tasks of this tree before merging their parents. We stop

merging when all tasks have exceeded the threshold or if the

complete program has been merged. This approach allows us

to stop whenever we run out of time or space without violating

safety.

VI. BUFFER ALLOCATION

Our static analysis algorithm produces a set S that con-

tains pairs of channels that can share buffers. Let S′ be the

Example Lines Channels Tasks Bytes Buffer Run States

Saved Reduction Time

Source-Sink 35 2 11 4 50 % 0.1 s 394
Pipeline 35 5 9 16388 25 0.1 68
Bitonic Sort 35 5 13 12 60 0.1 135
Prime Sieve 40 5 16 12 60 0.5 122
Berkeley 40 3 11 4 33.33 0.6 285
FIR Filter 110 28 28 52 46.43 13.8 74646
Framebuffer 185 11 16 28 0.002 1.3 15761
FFT 230 12 10 286720 41.6 0.8 2192
JPEG Dec. 990 12 9 983040 55.55 1.5 2192

TABLE I
EXPERIMENTAL RESULTS WITH THE THRESHOLD SET TO 8000

IDCT Lines Channels Total Bytes Buffer Run States

Tasks Tasks Saved Reduction time

1 940 2 4 98304 33.33 % 0.5 s 26
2 950 4 5 196608 33.33 0.6 64
3 960 6 6 393216 44.44 0.7 158
4 970 8 7 589824 50 0.9 386
5 980 10 8 786432 53.33 1.2 928
6 990 12 9 983040 55.55 1.5 2192

TABLE II
BEHAVIOR OF THE JPEG DECODER WITH VARYING NUMBER OF IDCT

TASKS (THRESHOLD SET TO 8000)

complement of this set. We represent it as a graph: channels

represent vertices and for every pair 〈ci,c j〉 ∈ S′, we draw an

edge between ci and c j. Two adjacent vertices cannot share

buffers. Every node has a weight, which corresponds to the

size of the channel.

Minimizing buffer memory consumption, therefore, reduces

to the NP-hard weighted vertex coloring problem [13], [14]:

a graph G is colored with p colors such that no two adjacent

vertices are of the same color. We denote the maximum weight

of a vertex colored with color i as max(i), and we need to find

a coloring such that ∑
p
i=1 max(i) is minimum.

We use a greedy first-fit algorithm as a heuristic. Let G be

a list of groups, initially empty. We order the channels in non-

increasing order of buffer sizes, then add the channels one by

one to the first non-conflicting group in G. If there is no such

group, we create a new group in G and add the channel to this

newly created group. A group is defined to be non-conflicting

if the channel to be added can share its buffer with every

channel already in the group. Channels in the same group can

share buffers. This algorithm runs in polynomial time but does

FFT Lines Channels Total Bytes Buffer Run States

Tasks Tasks Saved Reduction time

1 150 2 4 57344 50 % 0.2 s 25
2 160 4 5 114688 50 0.3 63
3 180 6 6 172032 50 0.4 158
4 200 8 7 172032 37.5 0.6 385
5 210 10 8 229376 40 0.7 927
6 230 12 9 286720 41.6 0.8 2192

TABLE III
BEHAVIOR OF FFT WITH VARYING NUMBER OF PROCESSING TASKS

(THRESHOLD SET TO 8000)
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Threshold Bytes Saved Buffer Reduction Runtime States

2000 0 0 % 0.6 s 10024
3000 0 0 1.5 23530
4000 0 0 3.4 51086
5000 52 46.43 12.4 70929
6000 52 46.43 12.8 72101
7000 52 46.43 13.5 73433
8000 52 46.43 13.8 74646

TABLE IV
EFFECT OF THRESHOLD ON THE FIR FILTER EXAMPLE

not guarantee an optimal solution.

VII. EXPERIMENTAL RESULTS

We implemented our algorithm and ran it on various SHIM

programs. Table I lists the results of running the experiments

on a 3 GHz Pentium 4 Linux machine with 1 GB RAM. For

each example, the columns list the number of lines of code in

the program, the total number of channels it uses, the number

of tasks that take part in communication (i.e., excluding any

functions that perform no communication), the number of

bytes of buffer memory saved by applying our algorithm, what

percentage this is of overall buffer memory, the time taken

for analysis (including compilation, abstraction, verification,

and grouping buffers), and the number of states our algorithm

explored. For these experiments, we set the threshold to 8000.

Source-Sink is a simple example of a FIFO with two

processes: one that passes data and the other that prints the

results through an output channel, along with a number of

intermediate stages. Pipeline is a modification of source-sink

that uses two buffer processes in between the input and output

process. The Pipeline example has larger buffers because it

passes large amounts of data between stages.

Bitonic Sort uses multiple tasks for that compare and shuffle

pairs of data values. They interact through thirteen channels.

The Prime Sieve example has bounded recursion that is

removed as part of the compilation process [12].

The Berkeley example has data-dependent communication

patterns. We abstract away the data, simplifying the analysis.

Framebuffer contains a line drawing task that drives a

640×480 video framebuffer. The framebuffer hardly gets any

savings because no concrete data is passed among tasks. The

tasks communicate with each other just through synchroniza-

tion signals.

FFT takes an audio file as input, divides it into 1024-sample

blocks performs fixed-point FFT on each block, then does

an inverse FFT. It uses the largest buffers of all the example

programs.

The JPEG decoder is one of the largest applications cur-

rently written in SHIM. It has multiple IDCT processors that

run concurrently on groups of macroblocks passed around

through buffers.

For the JPEG and the FFT Examples, we created varying

number of threads and measured the reduction in buffer

memory; see Table II and Table III. For the JPEG decoder

and FFT, we save up to 55% and 45% respectively of buffer

memory.

The FIR filter is a parallel filter with twenty-eight channels.

It takes about thirteen seconds to analyze this program and the

number of states explored is about eighty thousand. Since this

was one of the more challenging examples for our algorithm,

we tried varying the threshold. Table IV summarizes our

results. As expected, the number of visited states increases as

we increase the threshold. With a threshold of 1000, we hardly

explore the program, but higher thresholds let us explore

more. When the threshold reaches 5000, we have explored

enough of the system to begin to find opportunities for sharing

buffer memory, even though we have not explored the system

completely.

Experimentally, we find that the analysis takes less than a

minute for modestly large programs and that we can reduce

buffer space by 60% and therefore considerable amount of PPE

memory on the Cell processor for examples like the bitonic

sort and the prime number sieve. We have also reported a

subset of our findings in [15].

VIII. APPLICATIONS

One concrete application of our technique is to reduce

memory consumption in a distributed architecture like the Cell

broadband engine [16], [6], [7]. Secondly, the output of our

algorithm can be used as a strategy to distribute buffers.

A. Optimizing Cell Programs

The Cell processor, one target of our SHIM compiler [5],

uses a heterogeneous architecture consisting of a traditional

64-bit power processor element (PPE) with its own 32K L1

and 512K L2 caches coupled to eight synergistic processor

elements (SPEs).

Each SPE is an 128-bit processor whose ALU can perform

up to 16 byte operations in parallel. Each has 128 128-bit

general-purpose (vector) registers, a 256K local store, but no

cache. Each SPE provides high, predictable performance on

vectors.

Cell programs use direct-memory access (DMA) operations

to transfer data among the PPE and SPEs’ memories. While

addresses are global (i.e., addresses for the PPE’s and each

SPE’s memories are distinct), this is not a shared memory

model. Although direct SPE-to-SPE communication is possi-

ble, it is easier to implement a communication between an SPE

and the PPE since handshaking is easy to implement using the

Cell’s hardware mailboxes.

Our Cell compiler [5] for SHIM uses multiple cores to

provide task-level parallelism. Tasks communicate through

dedicated buffers in the PPE. Since the communication buffers

reside in the PPE, there is a possibility of sharing.

Figure 7 shows the block diagram of a JPEG decoding ap-

plication with 4 IDCT processors and a possible mapping onto

the Cell processor. The JPEG application is easily pipelined, at

least partially: data is read (R) from the input stream, Huffman

decoded (Huf), processed, an IDCT is applied, and finally

written (W) to the output stream.

Both the read (R) and write (W) blocks must be executed

sequentially. The I/O operations are performed by the PPE,
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Fig. 7. JPEG block diagram with four IDCT processors

therefore we dedicate PPE threads to read and write opera-

tions. The Huffman decoding blocks are executed in sequence

but by an SPE. The IDCT blocks can run independently and

therefore executed concurrently by different SPEs.

The tasks communicate with each other through channels. In

Figure 7, in, stripe1, stripe2, stripe3, stripe4, out1, out2, out3

and out4 are communication channels. SPE 0 communicates

with other SPEs through channels stripe1, stripe2, stripe3

and stripe4. The communication buffers of these channels are

located in the PPE. For example, SPE 1 writes to stripe1 in

PPE’s memory and then SPE 2 reads the value from it. The

Huffman decoder first communicates stripe1 to SPE 2, then

stripe2 to SPE 3 followed by stripe3 to SPE 4 and finally

stripe4 to SPE 5. Since the communication is ordered, the

four channels can use the same buffer space in the PPE. Each

stripe occupies about 200KB of PPE memory, therefore our

technique saves a total of about 600KB of space.

B. Distributed Buffer Allocation

For many distributed applications, buffers do not reside in

the same memory. This is advantageous in two ways. Firstly,

a single node cannot monopolize all the buffers. Secondly,

a distributed memory allocation is more fault-tolerant than a

centralized memory allocation. Our memory reduction algo-

rithm can be used to find ways of distributing buffers over

different nodes. Secondly, we can specify ways of distributing

tasks among nodes by determining what buffers they access.

Consider a program that has four channels a, b, c and d that

require buffers of equal sizes. Suppose our algorithm finds that

a and b can share channels, then we put a and b on the same

node. We can also tie to this node, the tasks that access a and

b frequently. This provides a strategy for distributed memory

allocation that optimizes memory and locality.

IX. LIMITATIONS AND APPLICABILITY TO OTHER

LANGUAGES

Our technique makes some key assumptions about the

structure and behavior of programs that limits its applicability.

While the SHIM language has most of these limitations, our

technique could be adapted to work in other settings.

One major assumption is that the call graph of any program

is a tree, enabling us to statically determine all the tasks and

the channels to which each is connected. Thus, our approach

cannot be directly applied to a program that dynamically

creates tasks or changes its connectivity. While plenty of

programs do have such a dynamic nature, many are static in

the sense we assume.

Secondly, SHIM does not support pointers, implying chan-

nels and tasks are determined at compile time. For languages

that support references to channels and tasks, a good alias

analysis step would have to be added to our technique to make

it work.

We implemented the SHIM communication model as a

library [10] in Haskell, and we believe such a library could be

written for many concurrent languages. For a program that use

our library, it would be necessary to first verify the program

is using the API correctly before applying our technique, but

this should be possible.

chan int x , a , b, c ;
{

x = 1;
send x ;

} par {
recv x ;
if (x > 5) {

recv a;
recv c ;

} else {
recv a;
recv b;
recv c ;

}
}

Fig. 8. A code fragment that is affected by branch predicate abstraction

For efficiency, our analysis completely ignores data and

assumes that both paths of a branch can be taken, but this

sometimes leads to over-conservative results. Consider Fig-

ure 8. Here, only the else branch is taken since the received
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x is 1 and therefore less than 5. This code sequentializes

channels a, b and c. However, our analysis assumes that the

if part of the branch can also be taken, which sequentializes

only a and c. Therefore, our analysis erroneously concludes

that b cannot share buffers with a and c. In practice, such

patterns do not appear very often. In particular, ignoring data

did not negatively influence the results for any of the examples

in Section VII, but our technique could be improved by

performing a global analysis to obtain relations among branch

predicates.

X. RELATED WORK

Many memory reduction techniques exist for embedded

systems. Greef et al. [17] reduce array storage in a sequential

program by reusing memory. Their approach has two phases:

they internally reduce storage for each array, then globally

try to share arrays. By contrast, our approach looks for

sharing opportunities globally on communication buffers in

a concurrent setting.

StreamIt [18] is a deterministic language like SHIM. Ser-

mulins et al. [19] present cache aware optimizations that

exploit communication pattern in StreamIt programs. They aim

to improve instruction and data locality at the cost of data

buffer size. Instead, we try to reduce buffer sizes.

Chrobak et al. [20] schedule tasks in a multiprocessor

environment to minimize maximum buffer size. Our algorithm

does not add scheduling constraints to the problem: it reduces

the total buffer size without affecting the schedule, and thereby

not affecting the overall speed.

The techniques of Murthy et al. [21], [22], [23], [24],

Teich et al. [25], and Geilen et al. [26] are closest to ours.

They describe several algorithms for merging buffers in signal

processing systems that use synchronous data flow models

[27]. Govindarajan et al. [28] minimize buffer space while ex-

ecuting at the optimal computation rate in dataflow networks.

They cast this as a linear programming problem. Sofronis et

al. [29] propose an optimal buffer scheme with a synchronous

task model as basis. These papers revolve around minimizing

buffers in a synchronous setting; our work solves similar

problems in an asynchronous setting. Our approach finds if

there is an ordering between rendezvous of different channels

based on the product machine. We believe that our algorithm

works on a richer set of programs.

Lin [30], [31] talks about an efficient compilation process

of programs that have communication constructs similar to

SHIM. He uses Petri nets to model the program and uses loop

unrolling techniques. We did not attempt this approach because

loop unrolling would cause the state space to explode even for

small SHIM programs.

Static verification methods already exist for SHIM. In our

previous work [2], we build a synchronous system to find

deadlocks in a SHIM program. We make use of the fact that

for a particular input sequence, if a SHIM program deadlocks

under one schedule it will deadlock under any other. By

contrast, the property we check in this paper is not schedule-

independent: two channels may rendezvous at the same time

under one schedule but may not under another schedule. This

makes our problem more challenging.

There is a partial evaluation method [9] for SHIM that

combines multiple concurrent processes to produce sequential

code. Again, the work makes use of the scheduling inde-

pendence property by expanding one task at a time until it

terminates or blocks on a channel. On the other hand, in this

paper, we expand all possible communications from a given

state and therefore forcing us to consider all tasks that can

communicate from that state, rather than a single task.

XI. CONCLUSIONS

We presented a static buffer memory minimization tech-

nique for the SHIM concurrent language. We obtain the partial

order between communication events on channels by forming

the product machine of potentially all tasks in a program.

To avoid state space explosion, we can treat the program as

consisting of separate pieces.

We remove bounded recursion and expand each SHIM

program into a tree of tasks and use sound abstractions to

construct for each task an automaton that performs communi-

cation. Then we use the merging rules to combine tasks.

We abstract away data and computation from the program

and only maintain parallel, communication and branch struc-

tures. We abstract away the data-dependent decisions formed

by conditionals and loops and do not differentiate between

scheduling choices and conditional branches. This may lead

to false positives: our technique can discard pairs even though

they can share buffers. However, our experimental results

suggest this is not a big disadvantage and in any case our

technique remains safe.

Our algorithm can be practically applied to the SHIM

compiler that generates code for the Cell Broadband Engine.

We found we could save 286KB of the PPE’s memory for an

FFT example and 983KB for a JPEG example.

We reduce memory without affecting the run-time schedule

or performance. By sharing, two or more buffer pointers point

to the same memory location. This can be done at compile-

time during the code-generation phase.

To avoid state space explosion, we introduced a threshold

for limiting the recursion depth our algorithm must handle. We

plan to look into more modular techniques that allow a set of

tasks to be analyzed independently of the remaining sets.

We are now ignoring SHIM’s exceptions [32]. Exceptions

in SHIM provide a convenient way to terminate peer tasks

and they are deterministic in behavior. We plan to consider

exceptions in the future.

Currently, local variables and buffers do not interact with

each other. This is because we make the assumption that the

two need not necessarily reside in the same memory. However,

for shared memory systems, we plan to explore the possibility

of interaction by doing live variable analysis on local variables.
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