
A Determinizing Compiler

Nalini Vasudevan

Columbia University, New York
naliniv@cs.columbia.edu

Stephen A. Edwards

Columbia University, New York
sedwards@cs.columbia.edu

Abstract

The advent of multicores mandates parallel programming.
While parallelism presents a panoply of problems, few are
as pernicious and prevalent as nondeterminism, in which the
output of a program is affected by more than just its inputs,
e.g., uncontrollable scheduling choices made by the operating
system. A few parallel languages do guarantee determinism,
but do so through draconian restrictions.

It is time for a new era of bug-free parallel programming
that will enable programmers to shift easily from sequential to
parallel worlds. We propose a determinizing compiler: starting
from a non-deterministic program, our compiler inserts just
enough additional synchronization to guarantee deterministic
behavior, even in the presence of nondeterministic scheduling
choices. A brute-force solution would simply generate sequen-
tial code, but our compiler will strive to preserve parallelism
to impose a minimal loss of performance.

1. The Problem

Consider the C program in Figure 1, which creates two
threads usingpthread_create(). The two threads executefoo()
andbar() concurrently, thenpthread_join() calls wait for both
threads to finish andx is printed.Qux() andbaz() are functions
that do not share any variables. This program has a data race
becausex is being read and modified by two concurrent tasks:
foo() andbar().

Figure 2 is a modification of Figure 1 that encloses accesses
x within locks. This prevents races, but the program is still
non-deterministic: the final value ofx depends on the schedule.
Supposem evaluates to 1 andn evaluates to 2. Iffoo modifies
x first, the printed value ofx is (1+ 1) ∗ 2 = 4 becausex is
initialized to 1. However, ifbar modifies x first, the value
printed is(1∗ 2) + 1 = 3. The problem is that the functions
f oo andbar do not commute.

On a two-processor machine (an Intel Core 2 Duo running
Windows XP), we ran this program ten times and it consis-
tently printed 4. We then ran the program on a different ma-
chine (a Pentium 4 running Linux), and the program printed
3 six times and 4 four times. Such non-deterministic behavior
is undesirable and can be a serious problem in safety-critical
applications.

Deterministic programming languages and models such as
Kahn’s [3], StreamIt [6], and SHIM [1] do not allow such be-
havior, guaranteeing determinism in part by eschewing shared
memory. However, they make programming difficult by im-
posing too many restrictions on the behavior and structure of
programs.

int x = 1;
void ∗foo(void ∗args) {

int m;
m = qux();
x = x + m;

}
void ∗bar(void ∗args) {

int n;
n = baz();
x = x ∗ n;

}
main() {

..
pthread_create(& t_bar, NULL, bar, NULL);
pthread_create(& t_foo, NULL, foo, NULL);
..
pthread_join(t_bar, NULL);
pthread_join(t_foo, NULL);
printf("%d", x);

}

Figure 1. A program with races

int x = 1;
void ∗foo(void ∗args){

int m;
m = qux();
pthread_mutex_lock(&mutex);
x = x + m;
pthread_mutex_unlock(&mutex);

}
void ∗bar(void ∗args){

int n;
n = baz();
pthread_mutex_lock(&mutex);
x = x ∗ n;
pthread_mutex_unlock(&mutex);

}
main() {

..
pthread_create(& t_bar, NULL, bar, NULL);
pthread_create(& t_foo, NULL, foo, NULL);
..
pthread_join(t_bar, NULL);
pthread_join(t_foo, NULL);
printf("%d", x);

}

Figure 2. A race-free, non-deterministic program



int x = 1;
void ∗foo(void ∗args) {

int m;
m = qux();
x = x + m;
sync(x); /∗ Wait for bar to sync∗/

}
void ∗bar(void ∗args) {

int n;
n = baz();
sync(x); /∗ Wait for foo to sync∗/
x = x ∗ n;

}
main() {

// ..
pthread_create(& t_bar, NULL, bar, NULL);
pthread_create(& t_foo, NULL, foo, NULL);
// ..
pthread_join(t_bar, NULL);
pthread_join(t_foo, NULL);
printf("%d", x);

}

Figure 3. A deterministic version of the program in Figure 1

2. The Solution

We propose a radical change to parallel programming: pro-
grammers will have the freedom to introduce bugs, but still
manage to obtain correct executions. We propose a compiler
that will automatically generate deterministic code from anon-
deterministic program. The generated code will be scheduling-
agnostic and will thereby produce reproducible behavior.

We our compiler will generate code like Figure 3 for the
program in Figure 1. This version forces the two tasks to
synchronize (rendezvous) at thesync(x) statement. Thesync
statement acts as a barrier that forces a partial order between
the two tasks that orders accesses tox but allows the functions
qux() andbaz() to run concurrently. The program in Figure 3
is scheduler-agnostic: ifm is 1 andn is 2, it always prints 4.

Our idealistic goal is to take any C program with parallel
constructs and generate deterministic parallel code. The main
issue is to find out if a pair of tasks commute. We will use ex-
isting race-detection tools [5, 2] as a starting point. Although
not all race-free programs are deterministic, we plan to use
concepts from race-detection algorithms in our implementa-
tion. Then, we will tune the compiler for optimal performance
(i.e., permitting the largest amount of parallelism that does not
violate scheduling independence) by performing timing anal-
ysis [7, 4]. We will also consider machine learning algorithms
to assist the compiler in selecting the programmer-intended
execution among the different non-deterministic executions.

There are many open challenges to the design and imple-
mentation of such a compiler. How successful can we be with
only an approximate analysis of a program? How do we deal
with pointers? Where, exactly, do we insert synchronization?
Although there are a few solutions that already exist for some
of these sub-problems, they are not complete. We will pick
the appropriate ones, modify and integrate them to suit our
purpose. We also plan to use approximation and composi-
tional techniques to tackle these problems. Our ultimate goal

is to strike the perfect balance between determinism and par-
allelism.

One way to approach this problem would be to convert the
program into a completely sequential one (i.e., force a total
order over all instructions) then selectively remove synchro-
nization constraints that we can show to be unnecessary (such
as any restrictions on the order between the executions ofqux
andbaz in our running example). This technique might avoid
a problem noted by one of our reviewers: how consistently
our compiler will determinize a particular program. While our
determinizing algorithm itself will certainly be deterministic,
there is some danger that it might be sensitive to small changes
in the source code. However, it should be straightforward to
develop a sequentialization algorithm (using, e.g., program
source layout as a hint) that would be insensitive to small mod-
ifications.

Going forward, we expect every compiler will be deter-
minizing as well as optimizing. We believe this will be a nec-
essary step along the way to pervasive parallelism in program-
ming.

References
[1] Stephen A. Edwards. SHIM: A language for hardware/software

integration. InProceedings of SYNCHRON, Schloss Dagstuhl,
Germany, December 2004.

[2] Dawson Engler and Ken Ashcraft. Racerx: Effective, static detection
of race conditions and deadlocks, 2003.

[3] Gilles Kahn. The semantics of a simple language for parallel
programming. InInformation Processing 74: Proceedings of IFIP
Congress 74, pages 471–475, Stockholm, Sweden, August 1974.
North-Holland.

[4] Sharad Malik, Margaret Martonosi, and Yau-Tsun Steven Li. Static
timing analysis of embedded software. InProceedings of the 34th
Design Automation Conference, June 1997.

[5] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas Anderson. Eraser: a dynamic data race detector for
multi-threaded programs.ACM Transactions on Computer Systems,
15(4):391–411, November 1997.

[6] William Thies, Michal Karczmarek, and Saman Amarasinghe.
StreamIt: A language for streaming applications. InProceedings of
the International Conference on Compiler Construction (CC), volume
2304 ofLecture Notes in Computer Science, pages 179–196, Grenoble,
France, April 2002.

[7] Reinhard Wilhelm. Timing analysis and timing predictability. In
Formal Methods for Components and Objects, volume 3657 ofLecture
Notes in Computer Science, pages 317–323, Leiden, The Netherlands,
November 2004.


