
Submitted to MEMOCODE ’09

Buffer Sharing in CSP-like Programs

Nalini Vasudevan
Columbia University, New York

naliniv@cs.columbia.edu

Stephen A. Edwards
Columbia University, New York
sedwards@cs.columbia.edu

Abstract

Most compilers focus on optimizing performance, often at the
expense of memory, but efficient memory use can be just as impor-
tant in constrained environments such as embedded systems.

In this paper, we present a memory reduction technique for the
deterministic concurrent programming language SHIM. We focus
on reducing memory consumption by sharing buffers among the
tasks, which use them to communicate using CSP-style rendezvous.
We determine pairs of buffers that can never be in use simultane-
ously and use a shared region of memory for each pair.

Our technique produces a static abstraction of a SHIM pro-
gram’s dynamic behavior, which we then analyze to find buffers
that can share memory. Experimentally, we find our technique runs
quickly on modest-sized programs and often reduces memory re-
quirements by half.

Keywords Concurrency, SHIM, Static Analysis, Buffers, Opti-
mization

1. Introduction

Embedded systems have limited memory. Overlays, which
amount to time-multiplexing the use of memory regions, is one
way to reduce a program’s memory consumption. In this paper, we
propose a technique that automatically finds opportunities to safely
overlay communication buffer memory in a concurrent program-
ming language.

The technique we present here determines what buffer memory
may be shared in SHIM programs (Edwards and Tardieu 2005;
Tardieu and Edwards 2006a,b). This is closely related to some of
the techniques used by Vasudevan and Edwards (2008), although
we solve a different problem.

SHIM is an asynchronous concurrent language and is scheduling-
independent: its input/output behavior is not affected by any non-
deterministic scheduling choices taken by its runtime environment,
due to processor speed, the operating system, scheduling policy,
etc. A SHIM program is composed of sequential tasks that syn-
chronize whenever they want to communicate. The language is a
subset of Kahn networks (Kahn 1974) (to ensure determinism) that
employs the rendezvous of Hoare’s CSP (Hoare 1985) for commu-
nication to keep its behavior tractable.

SHIM processes communicate through channels. The sequence
of symbols transmitted over each channel is deterministic, although
the relative order of symbols between channels is generally unde-
fined. If the sequences of symbols transmitted over two channels do
not interfere, then we can safely share buffers. We propose a tech-
nique for establishing ordering between pairs of channels; if such
ordering cannot be established, we conclude that the pair cannot
use the same buffers.

Our analysis is conservative: if we establish two channels can
share buffers, they can do so safely, but we may miss opportuni-
ties to share certain buffers because we do not model data and may
treat the program as separate pieces to avoid an exponential explo-

sion in analysis cost. Specifically, we build sound abstractions to
avoid state space explosions, effectively enumerating all possible
schedules with a product machine.

One application of our technique is to minimize buffer memory
used by code generated by the SHIM compiler for the Cell Broad-
band engine (Vasudevan and Edwards 2009). The heterogeneous
Cell processor (Kahle et al. 2005) consists of a power processor el-
ement (PPE) and eight synergistic processor elements (SPEs). The
SHIM compiler maps tasks onto each of the SPEs. Each SPE has
its own local memory and shares data through the PPE. The PPE
synchronizes communication and holds all the channel buffers in
its local memory. The SPE communicates with the PPE using mail-
boxes (Kistler et al. 2006).

We wish to reduce memory used by the PPE by overlapping
buffers of different channels. Our static analyzer does liveness
analysis on the communication channels and determines pairs of
buffers that are never live at the same time. We demonstrate in
Section 7 that the PPE’s memory usage can be reduced drastically
for practical examples such as a JPEG decoder and an FFT.

Below, we describe the SHIM language (Section 2), how we
model its behavior to analyze buffer usage (Section 3), how we
compose models of SHIM tasks to build a product machine for the
whole program (Section 4), how we avoid state explosion while
doing this (Section 5), and how we use these results to reduce
buffer memory usage (Section 6). We present experimental results
in Section 7 and related work in Section 8.

2. The SHIM programming language

SHIM (Edwards and Tardieu 2005; Tardieu and Edwards
2006a,b) is a C-like concurrent programming language. Tasks in
SHIM communicate through multi-way rendezvous channels. To
the usual collection of C-like expressions and statements it adds
two constructs:par for specifying concurrency andnext for com-
munication.p par qruns statementsp andq in parallel and finishes
when bothp and q terminate.next c is the communication con-
struct that synchronizes on channelc. It sends data if it appears
on the left side of an assignment and receives data otherwise. To
preserve determinism, SHIM has no global or shared variables.

In Figure 1, two tasks run concurrently withinmain and com-
municate on channelsa andb. Thenext ain task 1 is a send because
it appears on the left side of the assignment. Thenext aof task 2 is a
receive. Similarly, thenext bof task 2 is a send andnext bof task 1
is a receive. Thenext ain task 1 assigns 6 toa and waits for task 2
to receive the value. The tasks therefore rendezvous at theirnexts,
then continue to the next statement. Next, the two tasks rendezvous
atnext b. There, task 1 receives the value 8 from task 2.

If there are two or more senders on a particular channel, the
compiler simply rejects the program. If the statementsnext aand
next b = 8were interchanged, the program would deadlock.

SHIM compiles to C. Back ends produce code for a variety of
environments: shared-memory multiprocessors using the pthreads
library (Edwards et al. 2008), the IBM Cell Broadband Engine (Va-

Buffer Sharing in Concurrent Programs 1 2009/5/9

void main()
{
chan int a, b;
{ // Task 1

next a = 6; // Send 6 on a (synchronize with task 2)
// a = 6 here
next b; // Receive b (synchronize with task 2)
// b = 8 here

} par { // Task 2

next a; // Receive a (synchronize with task 1)
// a = 6 here
next b = 8; // Send 8 on b (synchronize with task 1)
// b = 8 here

}
}

Figure 1. A SHIM program in which two tasks exchange data on
channelsa andb

sudevan and Edwards 2009), and single-threaded processors thatdo
not require thread support (Edwards and Tardieu 2006a). SHIM has
also been implemented as a library for Haskell (Vasudevan et al.
2008). Hardware translation has also been proposed by Edwards
and Tardieu (2006b) but has not yet been implemented.

In this paper we address an optimizing technique for SHIM –
buffer sharing. In the program in Figure 2, the main task starts four
tasks in parallel. Tasks 1 and 2 communicate ona. Then, tasks 2
and 3 communicate onb and finally tasks 3 and 4 onc. The value
of c received by task 4 is 8. Communication ona cannot occur
simultaneously with that ofb because task 2 sequentializes them.
Similarly communications onb andc are sequentialized by task 3.
Communications ona andc cannot occur together because they are
sequentialized by the communication onb. Our tool understands
this pattern and reports thata, b andc can share buffers because
their communications never overlap, thereby reducing the total
buffer requirements by 66% for this program.

3. Abstracting SHIM Programs

First, we assume that a SHIM program has no recursion. Ed-
wards and Zeng (2008) show how to remove bounded recursion,
which makes the program finite, rendering the buffer minimization
problem decidable. We do not attempt to analyze programs with
unbounded recursion.

Although the recursion-free subset of SHIM is finite-state and
therefore tractable in theory, in practice the state space of even a
small program is usually too large to analyze exactly; a sound ab-
straction is necessary. A SHIM task has both computation and com-
munication, but because buffers are used only when tasks commu-
nicate, we abstract away the computation.

Since we abstract away computation, we must assume that all
branches of any conditional statement can be taken. This leaves
open the possibility that two channels may appear to be used si-
multaneously but in fact never are, but we believe our abstraction
is reasonable. In particular it is safe: we overlap buffers only when
we are sure that two channels can never be used at the same time
regardless of the details of the computation.

void main()
{
chan int a, b, c;
{ // Task 1

next a = 6; // Send a (synchronize with task 2)

} par { // Task 2

next a; // Receive a (synchronize with task 1)
next b = a + 1; // Send 7 on b (synchronize with task 3)

} par { // Task 3

next b; // Receive b (synchronize with task 2)
next c = b + 1; // Send 8 on c (synchronize with task 4)

} par { // Task 4

next c; // Receive c (synchronize with task 3}
// c = 8 here

}
}

Figure 2. A SHIM program to illustrate the need for buffer sharing

void main() {
chan int a, b, c;
{ // Task 1

for (int i = 0; i < 15; i++) { // state 1
if (i % 2 == 0)

next a = 5;
else

next b = 7;
// state 2
next b = 10;

}
// state 3

} par { // Task 2

// state 1
next c = 13;
// state 2
next b;
// states 3 & 4

}
}

Figure 3. A (contrived) SHIM program with a loop, conditionals,
and a task that terminates

3.1 An Example

Consider the SHIM program in Figure 3. Themain function
starts two tasks that communicate through channelsa, b andc.

Buffer Sharing in Concurrent Programs 2 2009/5/9

1,1

2,1

1,22,2

2,3 2,41,3

3,1

3,2

3,3

1,4

3,4

a

c
c

a

b b
a

b

τ1

c

τ1

τ2 b

τ1

τ2

τ1

τ2

a,b

(a) T1 ·T2 (a,b,c,τ1,τ2)

1,[,]

2,[1,1]

2,[2,1]

2,[1,2]2,[2,2]

2,[2,3] 2,[2,4]2,[1,3]

2,[3,1]

2,[3,2]

2,[3,3]

2,[1,4]

2,[3,4]3,[]

πm1

a

c
c

a

b b
a

b

τ1

c

τ1

τ2 b

τ1

τ2

τm

τ2

τ1

a,b

(b) M ·T1 ·T2(a,b,c,τ1,τ2,πm1)

Figure 5. Composing tasks in Figure 4: (a) MergingT1 andT2. (b) Inlining T1 ·T2 in M.

1

2
(T1‖T2)

3

πm1

τm

(a) M (a,b,c,πm1)

1

2

3

a,b

τ1

b

(b) T1 (a,b,τ1)

1

2

3 4

c

b
τ2

(c) T2 (b,c,τ2)

Figure 4. The main task and its subtasks

The first task communicates on channelsa and b in a loop;
the second task synchronizes on channelsc andb, then terminates.
Once a task terminates, it no longer compelled to synchronize on
the channels to which it is connected. Thus after the second task
terminates, the first task just talks to itself. A process is said to talk
to itself when it is the only process that participates in a rendezvous.
Terminated processes do not cause other processes to deadlock.

At compilation time, the compiler dismantles the main function
of Figure 3 into tasksT1 andT2. T1 is connected to channelsa and
b since a and b appear in the code section ofT1. Similarly T2 is
connected to channelsb andc. During the first iteration of the loop
in T1, T1 talks to itself ona; since no other task is connected toa.
Meanwhile,T2 talks to itself onc. Then the two tasks rendezvous

on b, communicating the value 10, thenT2 terminates. During
subsequent iterations ofT1, T1 talks to itself on eitherb twice or
a andb once each.

In the program in Figure 3, communication onb cannot occur
simultaneously with that on c becauseT2 sequentializes the two
communications and thereforeb and c can share buffers. On the
other hand, there is no ordering between channelsa andc; a andc
can rendezvous at the same time and thereforea andc cannot share
buffers. By overlapping the buffers ofb andc, we can save 33% of
the total buffer space.

Our analysis performs the same preprocessing as Vasudevan and
Edwards (2008). It begins by removing bounded recursion using
the technique of Edwards and Zeng (2008). Next, we duplicate
functions to force every call site to be unique. This has the potential
of producing an exponential blow-up in code side, but we have not
observed it in practice.

At this point, the call graph of the program is tree, enabling us
statically determine all the tasks and the channels to which each is
connected.

Next we disregard all functions that do not affect the communi-
cating behavior of the program. Because we are ignoring data, their
behavior cannot affect whether we consider a buffer to be sharable.
We implicitly assume every such function can terminate—again, a
safe approximation.

Next, we create an automaton that models the control and com-
munication behavior for each function. Figure 4 shows automata
for the three tasks (main,T1, andT2) of Figure 3. For each task,
we build a deterministic finite state automaton whose edges repre-
sent choices, typically to communicate. The states are labeled by
program counter values and the transitions by channel names. Each

Buffer Sharing in Concurrent Programs 3 2009/5/9

automaton has a unique final state, which we draw as a double box.
There is a transition from every terminating state to this final state
labeled with a dummy channel that indicates such a transition. An
automaton has only one final state but can have multiple terminat-
ing states. In theT1 of Figure 3, 1 is the terminating state, 3 is the
final state, and they are connected byτ1, which is like a classi-
cal ε transition. Anε transition would make the automaton non-
deterministic. Therefore we create this dummy channelτ1, that is
unique toT1, and therefore allowT1 to freely move from state 1 to
state 3 without having to synchronize with any other another task.

The main function has a dummyπm1 transition from its start to
the entry of state 2(T1‖T2), which represents thepar statement in
main. In general, we create a dummy channel for everypar in the
program.

Figure 5(a) shows the product ofT1 andT2—an automaton that
represents the combined behavior ofT1 and T2. We constructed
Figure 5(a) as follows. We start with state (program counter) values
(1,1). At this point,T1 can communicate ona and move to state
2. Therefore we have an arc from(1,1) to (2,1) labeled bya.
Similarly, T2 can communicate onc and move to its state 2. From
state(1,1) it is not possible to communicate onb because onlyT1
is ready to communicate, notT2 (T2 is also connected tob). Also at
state(1,1), T1 can terminate by taking the transitionτ1 and moving
to (3,1).

From state(3,1), T2 can transition first to state(3,2) by com-
municating on channelc and then to state(3,3) by communicating
on b; these transitions do not change the state ofT1 because it has
already terminated.

From (2,1), T2 can communicate onc and change the state to
(2,2). Similarly from(1,2), T1 can communicate ona and move to
(2,2). In state(1,2) it is also possible to communicate onb, since
both tasks are ready. Therefore, we have an arcb from (1,2) to
(2,3). SinceT1 may also choose to terminate in state(1,2), there is
an arc from(1,2) to (3,2) on τ1. Other states follow similar rules.

To determine which channels may share buffers, we consider
all states that have two or more outgoing edges. For example, in
Figure 5(a), state(1,1) has two outgoing transitions ona and c.
Either of them can fire. In other words, this is a case where the
program may choose to communicate on eithera or c, meaning the
contents of both of these buffers are needed at this point. Thus we
conclude buffers fora andc may not share memory. We prove this
formally later in the paper.

From Figure 3, it is evident thata andb can never occur together
becauseT1 sequentializes them. However, since state(1,2) has out-
going transitions ona andb, our algorithm concludes thata andb
can occur together. However, they actually can not. We draw this
conclusion because our algorithm does not differentiate between
scheduling choices and control flow choices (i.e., due to condition-
als such asif andwhile). By doing this we are only adding extra
behavior to the system and disregarding pairs of channels whose
buffers actually could be shared. This is not a big disadvantage be-
cause our analysis remains safe. For this example our algorithm
only allowsb andc to share buffers.

Figure 5(b) is obtained by inlining the automaton forT1 ·T2—
Figure 5(a)—withinM. This represents the entire program in Fig-
ure 3. Since thepar call is blocking, inliningT1 ·T2 within M is
safe. We replaced state 2 of Figure 4(a) with Figure 5(a) to obtain
Figure 5(b). The conclusions are the same as that of Figure 5(a)—
only b andc can share buffers.

4. Merging Tasks

In this section, we use notation from automata theory to for-
malize the merging of two tasks. We show our algorithm does not
generate any false negatives and is therefore safe.

DEFINITION 1. A deterministic finite automatonT is a 5-tuple
(Q,Σ,δ ,q, f) where Q is the set of states,Σ is the set of channels,
q∈ Q1 is the initial state, f∈ Q is the final state, andδ ⊆ Q×Σ →
Q is the partial transition function.

DEFINITION 2. If T1 and T2 are automata, then thecomposed au-
tomatonT1 ·T2 = (Q1×Q2,Σ1∪Σ2,δ12,〈q1,q2〉,〈 f1, f2〉), where,
for 〈p1, p2〉 ∈ Q1×Q2 and a∈ Σ1∪Σ2,

δ12(〈p1, p2〉,a) =



































〈δ1(p1,a),δ2(p2,a)〉 if a ∈ ∑1 and a∈ ∑2;
〈δ1(p1,a), p2〉 if a ∈ ∑1 and

(a 6∈ ∑2 or p2 = f2);
〈p1,δ2(p2,a)〉 if a ∈ ∑2 and

(a 6∈ ∑1 or p1 = f1);
undefined otherwise;

is the transition rule for composition.

In general, ifT1 hasm states andT2 hasn, then the product
T1 ·T2 can have at mostmnstates. The states are labeled by a tuple
composed of the program counter values of the individual tasks.
Each state can have at mostk outgoing edges, wherek is the total
number of channels. Consequently, the total number of edges in
the graph can at most bemnk (k accounts for the extraτ and π
channels—one extra channel per task and one perpar).

Below, we demonstrate that the order in which automata are
composed does not matter, although the state labels will be differ-
ent. First, we define exactly what we mean for two automata to be
equivalent.

DEFINITION 3. Two automata T1 = (Q1,Σ1,δ1,q1, f1) and T2 =
(Q2,Σ2,δ2,q2, f2) are equivalent(written T1 ≡ T2) if and only if
Σ1 = Σ2 and there exists a bijective function b: Q1 → Q2 such that
q2 = b(q1), f2 = b(f1), and for every p∈Q1 and a∈Σ1, either both
δ1(p,a) andδ2(b(p),a) are defined andδ2(b(p),a) = b(δ1(p,a))
or both are undefined.

LEMMA 1. Composition is commutative: T1 ·T2 ≡ T2 ·T1.

PROOFBy definition,T1 ·T2 =(Q1×Q2,Σ1∪Σ2,δ12,〈q1,q2〉,〈 f1, f2〉)
and T2 · T1 = (Q2 × Q1,Σ2 ∪ Σ1,δ21,〈q2,q1〉,〈 f2, f1〉). We claim
b(〈p1, p2〉) = 〈p2, p1〉 is a suitable bijective function.

First, note thatΣ1 ∪ Σ2 = Σ2 ∪ Σ1, 〈q2,q1〉 = b(〈q1,q2〉), and
〈 f2, f1〉 = b(〈 f1, f2〉).

Next,

δ21(b(〈p1, p2〉),a)

= δ21(〈p2, p1〉,a)

=



































〈δ2(p2,a),δ1(p1,a)〉 if a∈ ∑2 anda∈ ∑1;
〈δ2(p2,a), p1〉 if a∈ ∑2 and

(a 6∈ ∑1 or p1 = f1);
〈p2,δ1(p1,a)〉 if a∈ ∑1 and

(a 6∈ ∑2 or p2 = f2);
undefined otherwise;

= b





















































〈δ1(p1,a),δ2(p2,a)〉 if a∈ ∑1 anda∈ ∑2;
〈p1,δ2(p2,a)〉 if a∈ ∑2 and

(a 6∈ ∑1 or p1 = f1);
〈δ1(p1,a), p2〉 if a∈ ∑1 and

(a 6∈ ∑2 or p2 = f2);
undefined otherwise;



















= b
(

δ12(〈p1, p2〉,a)
)

Thus,T1 ·T2 ≡ T2 ·T1. 2

LEMMA 2. Composition is associative:(T1 ·T2) ·T3 ≡ T1 · (T2 ·T3).

Buffer Sharing in Concurrent Programs 4 2009/5/9

PROOFBy definition,(T1 ·T2) ·T3 = ((Q1×Q2)×Q3,(Σ1∪Σ2)∪
Σ3,δ(12)3,〈〈q1,q2〉,q3〉,〈〈 f1, f2,〉, f3〉) and T1 · (T2 · T3) = (Q1 ×
(Q2 ×Q3),Σ1 ∪ (Σ2 ∪ Σ3),δ1(23),〈q1,〈q2,q3〉〉,〈 f1,〈 f2, f3〉〉). We
claimb(〈〈p1, p2〉, p3〉) = 〈p1,〈p2, p3〉〉 is a suitable bijective func-
tion.

First, note that(Σ1∪Σ2)∪Σ3 = Σ1∪ (Σ2∪Σ3), 〈q1,〈q2,q3〉〉 =
b(〈〈q1,q2〉,q3〉), and〈 f1,〈 f2, f3〉〉 = b(〈〈 f1, f2〉, f3〉).

Next,

δ1(23)(b(〈〈p1, p2〉, p3〉),a)

= δ1(23)(〈p1,〈p2, p3〉〉,a)

=















































































































































〈δ1(p1,a),〈δ2(p2,a),δ3(p3,a)〉〉 if a∈ ∑1 anda∈ ∑2 and
a∈ ∑3;

〈δ1(p1,a),〈δ2(p2,a), p3〉〉 if a∈ ∑1 anda∈ ∑2 and
(a 6∈ ∑3 or p3 = f3);

〈δ1(p1,a),〈p2,δ3(p3,a)〉〉 if a∈ ∑1 anda∈ ∑3 and
(a 6∈ ∑2 or p2 = f2);

〈δ1(p1,a),〈p2, p3〉〉 if a∈ ∑1 and
(a 6∈ ∑2 or p2 = f2) and
(a 6∈ ∑3 or p3 = f3);

〈p1,〈δ2(p2,a),δ3(p3,a)〉〉 if a∈ ∑2 anda∈ ∑3 and
(a 6∈ ∑1 or p1 = f1);

〈p1,〈δ2(p2,a), p3〉〉 if a∈ ∑2 and
(a 6∈ ∑1 or p1 = f1) and
(a 6∈ ∑3 or p3 = f3);

〈p1,〈p2,δ3(p3,a)〉〉 if a∈ ∑3 and
(a 6∈ ∑1 or p1 = f1) and
(a 6∈ ∑2 or p2 = f2);

undefined otherwise;

= b























































































































































































































〈〈δ1(p1,a),δ2(p2,a)〉,δ3(p3,a)〉 if a∈ ∑1 anda∈ ∑2 and
a∈ ∑3;

〈〈δ1(p1,a),δ2(p2,a)〉, p3〉 if a∈ ∑1 anda∈ ∑2 and
(a 6∈ ∑3 or p3 = f3);

〈〈δ1(p1,a), p2〉,δ3(p3,a)〉 if a∈ ∑1 anda∈ ∑3 and
(a 6∈ ∑2 or p2 = f2);

〈〈δ1(p1,a), p2〉, p3〉 if a∈ ∑1 and
(a 6∈ ∑2 or p2 = f2) and
(a 6∈ ∑3 or p3 = f3);

〈〈p1,δ2(p2,a)〉,δ3(p3,a)〉 if a∈ ∑2 anda∈ ∑3 and
(a 6∈ ∑1 or p1 = f1);

〈〈p1,δ2(p2,a)〉, p3〉 if a∈ ∑2 and
(a 6∈ ∑1 or p1 = f1) and
(a 6∈ ∑3 or p3 = f3);

〈〈p1, p2〉,δ3(p3,a)〉 if a∈ ∑3 and
(a 6∈ ∑1 or p1 = f1) and
(a 6∈ ∑2 or p2 = f2);

undefined otherwise;









































































= b
(

δ(12)3(〈〈p1, p2〉, p3〉,a)
)

Thus,(T1 ·T2) ·T3) ≡ T1 · (T2 ·T3). 2

LEMMA 3. T1 ·T2 ·T3 · · ·Tn ≡ (((T1 ·T2) ·T3) · · ·) ·Tn

PROOF Since the composition is commutative and associative, we
can build the entire system incrementally by composing two tasks
at a time. 2

LEMMA 4. The outgoing transitions from a given state represent
every possible rendezvous that can occur at that particular state.

PROOFAccording to the definition ofδ , we add an outgoing edge
to a state for every rendezvous that can happen immediately after
that state.

Multiple outgoing arcs from a state may represent choices due
to control statements (such asif or while). δ (p1,a) = q2 and
δ (p1,b) = q2, then we have two outgoing choices due to control
flow.

On the other hand, a scheduling choice may occur when com-
posing two tasks. A scheduling choice occurs when the ordering
between two rendezvous is unknown. This happens when two dif-
ferent pairs of tasks can rendezvous on two different channels at
the same time.

Supposea ∈ Σ1 anda 6∈ Σ2 andδ1(p1,a) = q1, and if b ∈ Σ2
and b 6∈ Σ1 and δ2(p2,b) = q2, then δ12(〈p1, p2〉,a) = 〈q1, p2〉
andδ12(〈p1, p2〉,b) = 〈p1,q2〉. Thus, for every possible scheduling
choice, we have an outgoing edge from the given state.

The absence of any choice due to control or scheduling will
leave it with either one or zero outgoing arcs. Consequently, the
outgoing transitions from a given state represent all possible ren-
dezvous that can occur at that particular state. They represent both
control flow and scheduling choices. 2

A scheduling choice imposes no ordering among rendezvous,
therefore allowing the possibility of the rendezvous to happen at
the same time.

THEOREM 1. Two channels a and b can share buffers if,∀p, at
most one ofδ (p,a) andδ (p,b) is defined, but not both.

PROOF Supposea and b can rendezvous at the same time and
if p1 represents the state of the program counter just before the
rendezvous, then by Lemma 4 we have two outgoing arcs fromp1:
δ (p1,a) = q1 andδ (p1,b) = q2

Consequently, for∃p both δ (p,a) and δ (p,b) exists. Con-
versely, if ∀p at most one ofδ (p,a) and δ (p,b) exists, then we
can safely say thata andb can share buffers. 2

Our algorithm does not differentiate between control flow
choices (e.g., due toif or while) and scheduling choices (due to
partial ordering of rendezvous). Both kinds of choices produce
states having multiple outgoing arcs. We conclude that arcs going
out from the same state cannot share buffers. The multiplicity can
be contributed only by control choices leading to false positives,
but our system is safe; whenever we are unsure, we do not allow
sharing.

5. Tackling State Space Explosion

If two tasks communicate infrequently, there is a possibility that
the number of states in the product machine will grow too large
to deal with. We address this by introducing a threshold, which
limits the stack depth our recursive product machine composition
function may use, and corresponds to the longest simple path in
the product machine. If we reach the threshold, we stop and treat
separately the two tasks being composed.

This heuristic, which we chose because our implementation
was running out of stack space on certain complex examples, has
the advantage of applying exactly when we are unlikely to find
opportunities to share buffer memory. Tightly coupled tasks tend to
have small state spaces—these are exactly those that allow buffer
memory to be shared. Loosely coupled tasks by definition run
nearly independently and thus the communication patterns of most
pairs of channels are uncontrolled, eliminating the chance to share
buffers between them.

Algorithm 1 shows the composition algorithm. It recursively
composes two statesp1 and p2. The depthvariable is initialized

Buffer Sharing in Concurrent Programs 5 2009/5/9

to 0 and incremented whenever successor states are composed.
Wheneverdepthexceeds the threshold, we declare failure.

Algorithm 1 compose(p1, p2, Σ1, Σ2, depth, threshold)
1: if depth≤ thresholdthen
2: for all a∈ Σ1∪Σ2 do
3: 〈q1,q2〉 = δ (〈p1, p2〉,a)
4: if 〈q1,q2〉 6∈ hash then
5: Add 〈q1,q2〉 to hash
6: compose(q1, q2, Σ1, Σ2, depth+1, threshold)
7: end if
8: end for
9: else

10: print “Threshold exceeded”
11: end if

We draw conclusions about local channels (whose scope has
been completely explored) and we remain silent about the others.
We make safe conclusions even when other channels have not been
completely explored.

THEOREM 2. If our algorithm concludes that two channels a and
b can share buffers after abstracting away channel c, then a and b
can still share buffers in the presence of c.

PROOF If a and b can share buffers, then there is a sequential
ordering between them. By SHIM semantics (Edwards and Tardieu
2006b), introduction of a new channel can create ordering between
two channels that are not ordered, but can never disrupt an existing
sequential ordering. Therefore, if our algorithm concludes that two
buffers can share channels, the introduction of a new channel does
not affect the conclusion. 2

We conclude that two channels can share buffers only if two
conditions hold: the two channels have been explored completely
and every state has at most one of the two channels in its outgoing
edge set.

We take a bottom-up approach while merging groups of tasks.
Tasks in a (preprocessed) SHIM program have a tree structure. We
merge the leaf tasks of this tree before merging their parents. We
stop merging when all tasks have exceeded the threshold, or if the
complete program has been merged. This approach works nicely
because it allows us to stop whenever we run out of time or space
without ruining safety.

6. Buffer Allocation

Our static analysis algorithm produces a setSthat contains pairs
of channels that can share buffers. LetS′ be the complement of this
set. We represent it as a graph: channels represent vertexes and for
every pair〈ci ,c j 〉 ∈ S′, we draw an edge betweenci andc j . Two
adjacent vertexes cannot share buffers. Every node has a weight,
which corresponds to the size of the channel.

Minimizing buffer memory consumption, therefore, reduces
to the weighted vertex covering problem (Malaguti et al. 2008;
Malaguti 2008). It is defined as follows: A graphG is colored with
p colors such that no two adjacent vertexes are of the same color.
We denote the maximum weight of a vertex colored with colori
as max(i), and we need to find a coloring such that∑p

i=1max(i) is
minimum. The problem is NP-hard.

We use a greedy first-fit algorithm to get an approximate solu-
tion. Let G be a list of groups. InitiallyG is empty. We order the
channels in non-increasing order of the buffer sizes, then add the
channels one by one to the first non-conflicting group inG. If there
is no such group, we create a new group inG and add the channel to
this newly created group. A group is defined to be non-conflicting
if the channel to be added can share its buffer with every channel

already in the group. Channels in the same group can share buffers.
This algorithm runs in polynomial time but does not guarantee an
optimal solution.

7. Experimental Results

We implemented our algorithm and ran it on various SHIM
programs. Table 1 lists the results on running the experiments
on a 3 GHz Pentium 4 Linux machine with 1 GB RAM. For
each example, the columns list the number of lines of code in the
program, the total number of channels it uses, the number of tasks
that take part in communication (i.e., excluding any functions that
perform no communication), the number of bytes of buffer memory
saved by applying our algorithm, what percentage this is of overall
buffer memory, the time taken for analysis (including compilation,
abstraction, verification, and grouping buffers), and the number of
states our algorithm explored. For these experiments, we set the
threshold to 8000.

Source-Sink is a simple example of a FIFO with two processes:
one that passes data and the other that prints the results through an
output channel. Pipeline is a modification of source-sink that uses
two buffer processes in between the input and output process.

Bitonic Sort uses multiple tasks for that compare and shuffle
pairs of data values. They interact through thirteen channels.

The Prime Number Sieve example has bounded recursion and
uses the technique of Edwards and Zeng (2008) to remove it.

The Berkeley example has communication patterns that are data
dependent. We abstract away the data, making it simpler to analyze.

Framebuffer contains a line drawing task that drives a 640×480
video framebuffer. The communication pattern is complicated.

FFT takes an audio file as input, divides it into 1024-sample
blocks performs fixed-point FFT on each block, then does an in-
verse FFT. It uses the largest buffers of all the example programs.

The JPEG decoder is one of the largest applications currently
written in SHIM. It has multiple IDCT processors that run concur-
rently on groups of macroblocks passed around through buffers.

The FIR filter is a parallel filter with twenty-eight channels.
It takes about thirteen seconds to analyze this program and the
number of states explored is about eighty thousand. Since this was
one of the more challenging examples for our algorithm, we tried
varying the threshold. Table 2 summarizes our results. As expected,
the number of visited states increases as we increase the threshold.
With a threshold of 1000, we hardly explore the program, but
higher thresholds let us explore more. When the threshold reaches
5000, we have explored enough of the system to begin to find
opportunities for sharing buffer memory, even though we have not
explored the system completely.

Experimentally, we find that the analysis takes less than a
minute for modestly large programs and that we can reduce buffer
space by 60% and therefore considerable amount of PPE’s memory
for examples like the bitonic sort and the prime number sieve.

8. Related Work

Many memory reduction techniques exist for embedded sys-
tems. de Greef et al. (1997) reduce array storage in a sequential
program by reusing memory. Their approach has two phases: they
internally reduce storage for each array, then globally try to share
arrays. By contrast, our approach looks for sharing opportunities
globally on communication buffers in a concurrent setting.

StreamIt (Thies et al. 2002) is a deterministic language like
SHIM. Sermulins et al. (2005) present cache aware optimizations
by exploiting communication pattern in StreamIt programs. Their
aim is to improve instruction and data locality at the cost of data
buffer size. We have the opposite goal of reducing buffer sizes.

Chrobak et al. (2001) schedule tasks in a multiprocessor en-
vironment to minimize maximum buffer size. Our algorithm does

Buffer Sharing in Concurrent Programs 6 2009/5/9

Example Lines Channels Tasks Bytes Saved Buffer Reduction Runtime States

Source-Sink 35 2 11 4 50 % 0.1 s 394
Pipeline 35 5 9 16388 25 0.1 68
Bitonic Sort 35 5 13 12 60 0.1 135
Prime Number Sieve 40 5 16 12 60 0.5 122
Berkeley 40 3 11 4 33.33 0.6 285
FIR Filter 110 28 28 52 46.43 13.8 74646
Framebuffer 185 11 16 28 0.002 1.3 15761
FFT 230 14 15 344068 50 0.6 3750
JPEG Decoder 1020 7 15 772 50.13 1.8 517

Table 1. Experimental results with the threshold set to 8000

Threshold Bytes Saved Buffer Reduction Runtime States

2000 0 0 % 0.6 s 10024
3000 0 0 1.5 23530
4000 0 0 3.4 51086
5000 52 46.43 12.4 70929
6000 52 46.43 12.8 72101
7000 52 46.43 13.5 73433
8000 52 46.43 13.8 74646

Table 2. Effect of threshold on the FIR filter example

not add scheduling constraints to the problem: it reduces the total
buffer size with affecting the schedule, and thereby not affecting
the overall speed.

The work of Murthy and Bhattacharyya (2000, 2001, 2004,
2006) and Teich et al. (1998) is closest to ours. They describe sev-
eral algorithms for merging buffers in signal processing systems
that use synchronous data flow models (Lee and Messerschmitt
1987). Govindarajan et al. (2002) minimize buffer space while ex-
ecuting at the optimal computation rate in dataflow networks. They
cast this as a linear programming problem and solve it. Sofro-
nis et al. (2006) propose an optimal buffer scheme with a syn-
chronous task model as basis. These papers revolve around min-
imizing buffers in a synchronous setting; our work solves similar
problems in an asynchronous setting. Our approach finds if there is
an ordering between rendezvous of different channels based on the
product machine. We believe that our algorithm works on a richer
set of programs.

Lin (1998a,b) talks about an efficient compilation process of
programs that have communication constructs similar to SHIM. He
uses Petri nets to model the program and uses loop unrolling tech-
niques. We did not attempt this approach because loop unrolling
would cause the state space to explode even for small SHIM pro-
grams.

Static verification methods already exist for SHIM. For exam-
ple, Vasudevan and Edwards (2008) build a synchronous system
to find deadlocks in a SHIM program. They make use of the fact
that for a particular input sequence, if a SHIM program deadlocks
under one schedule it will deadlock under any other. By contrast,
the property we check in this paper is not schedule-independent:
two channels may rendezvous at the same time under one schedule
but may not under another schedule. This makes our problem more
challenging.

Edwards and Tardieu (2006a) describe a partial evaluation
method that combines multiple concurrent processes to produce
sequential code. Again, they make use of the scheduling indepen-
dence property by expanding one task at a time until it terminates
or blocks on a channel. On the other hand, we expand all possible
communications from a given state and therefore forcing us to con-

sider all tasks that can communicate from that state, rather than a
single task.

9. Conclusions

We presented a static buffer memory minimization technique
for the SHIM concurrent language. We obtain the partial order
between communication events on channels by forming the product
machine of potentially all tasks in a program.

We remove bounded recursion and expand each SHIM program
into a tree of tasks and use sound abstractions to construct for each
task an automaton that performs communication. Then we use the
merging rules to combine tasks.

We abstract away data and computation from the program and
only maintain parallel, communication and branch structures. We
abstract away the data-dependent decisions formed by conditionals
and loops. We do not differentiate between scheduling choices and
conditional branches. This may lead to to false positives: our tech-
nique can discard pairs even though it can share buffers. However,
our experimental results suggest this is not a big disadvantage and
in any case our technique remains safe.

Our algorithm can be practically applied to the SHIM compiler
that generates code for the Cell Broadband Engine. For instance,
we can save 344KB of the PPE’s memory for the FFT example.

We reduce memory without affecting the run-time schedule or
performance. By sharing, two or more buffer pointers point to the
same memory location and this can be done at compile-time during
the code-generation phase.

To avoid state space explosion, we introduced a threshold for
limiting the recursion depth our algorithm must handle. We plan to
look into more modular techniques that allow a set of tasks to be
analyzed independent of the remaining sets.

We currently ignore SHIM’s exceptions (Tardieu and Edwards
2006b). Exceptions in SHIM provide a convenient way to terminate
peer tasks and they are deterministic in behavior. We also plan to
consider exceptions in the future.

References

Marek Chrobak, János Csirik, Csanád Imreh, John Noga, Jiri Sgall, and
Gerhard J. Woeginger. The buffer minimization problem for multipro-

Buffer Sharing in Concurrent Programs 7 2009/5/9

cessor scheduling with conflicts. InICALP ’01: Proceedings of the 28th
International Colloquium on Automata, Languages and Programming,,
pages 862–874, London, UK, 2001. Springer-Verlag.

Eddy de Greef, Francky Catthoor, and Hugo de Man. Array placement
for storage size reduction in embedded multimedia systems. InASAP
’97: Proceedings of the IEEE International Conference on Application-
Specific Systems, Architectures and Processors, page 66, Washington,
DC, USA, 1997. IEEE Computer Society.

Stephen A. Edwards and Olivier Tardieu. SHIM: A deterministic model for
heterogeneous embedded systems. InProceedings of the International
Conference on Embedded Software (Emsoft), pages 37–44, Jersey City,
New Jersey, September 2005.

Stephen A. Edwards and Olivier Tardieu. Efficient code generation from
SHIM models. InProceedings of Languages, Compilers, and Tools
for Embedded Systems (LCTES), pages 125–134, Ottawa, Canada, June
2006a.

Stephen A. Edwards and Olivier Tardieu. SHIM: A deterministic model
for heterogeneous embedded systems.IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 14(8):854–867, August 2006b.

Stephen A. Edwards and Jia Zeng. Static elaboration of recursion for con-
current software. InProceedings of the Workshop on Partial Evaluation
and Program Manipulation (PEPM), San Francisco, California, January
2008.

Stephen A. Edwards, Nalini Vasudevan, and Olivier Tardieu.Programming
shared memory multiprocessors with deterministic message-passing
concurrency: Compiling SHIM to Pthreads. InProceedings of Design,
Automation, and Test in Europe (DATE), pages 1498–1503, Munich,
Germany, March 2008.

R. Govindarajan, Guang R. Gao, and Palash Desai Y. Minimizingbuffer
requirements under rate-optimal schedule in regular dataflownetworks.
Journal of VLSI Signal Processing Systems, 31(3):207–209, July 2002.

C. A. R. Hoare.Communicating Sequential Processes. Prentice Hall, Upper
Saddle River, New Jersey, 1985.

James A. Kahle, Michael N. Day, H. Peter Hofstee, Charles R. Johns,
Theodore R. Maeurer, and David Shippy. Introduction to the Cell
multiprocessor. IBM Journal of Research and Development, 49(4/5):
589–604, July/September 2005.

Gilles Kahn. The semantics of a simple language for parallel programming.
In Information Processing 74: Proceedings of IFIP Congress 74, pages
471–475, Stockholm, Sweden, August 1974. North-Holland.

Michael Kistler, Michael Perrone, and Fabrizio Petrini. Cell multiprocessor
communication network: Built for speed.IEEE Micro, 26(3):10–23,
May-June 2006.

Edward A. Lee and David G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235–1245, September 1987.

Bill Lin. Efficient compilation of process-based concurrentprograms with-
out run-time scheduling. InProceedings of Design, Automation, and
Test in Europe (DATE), pages 211–217, Paris, France, February 1998a.

Bill Lin. Software synthesis of process-based concurrent programs. In
Proceedings of the 35th Design Automation Conference, pages 502–505,
San Francisco, California, June 1998b.

E. Malaguti. The vertex coloring problem and its generalizations. 4OR: A
Quarterly Journal of Operations Research, 2008.

E. Malaguti, M. Monaci, and P. Toth. Models and heuristic algorithms for
a weighted vertex coloring problem.Journal of Heuristics, 2008.

Praveen K. Murthy and Shuvra S. Bhattacharyya. Systematic consolidation
of input and output buffers in synchronous dataflow specifications.IEEE
Workshop on Signal Processing Systems (SiPS), pages 673–682, 2000.

Praveen K. Murthy and Shuvra S. Bhattacharyya. Shared buffer implemen-
tations of signal processing systems using lifetime analysistechniques.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 20(2):177–198, February 2001.

Praveen K. Murthy and Shuvra S. Bhattacharyya. Buffer merging—a
powerful technique for reducing memory requirements of synchronous
dataflow specifications.ACM Transactions on Design Automation of
Electronic Systems, 9(2):212–237, April 2004.

Praveen K. Murthy and Shuvra S. Bhattacharyya.Memory Management
for Synthesis of DSP Software. CRC Press, Inc., Boca Raton, FL, USA,
2006.

Janis Sermulins, William Thies, Rodric Rabbah, and Saman Amarasinghe.
Cache aware optimization of stream programs. InProceedings of Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES), pages
115–126, New York, NY, USA, 2005. ACM.

Christos Sofronis, Stavros Tripakis, and Paul Caspi. A memory-optimal
buffering protocol for preservation of synchronous semantics under pre-
emptive scheduling. InProceedings of the International Conference on
Embedded Software (Emsoft), pages 21–33, New York, NY, USA, 2006.
ACM.

Olivier Tardieu and Stephen A. Edwards. R-SHIM: Deterministic concur-
rency with recursion and shared variables. InProceedings of the In-
ternational Conference on Formal Methods and Models for Codesign
(MEMOCODE), page 202, Napa, California, July 2006a.

Olivier Tardieu and Stephen A. Edwards. Scheduling-independent threads
and exceptions in SHIM. InProceedings of the International Conference
on Embedded Software (Emsoft), pages 142–151, Seoul, Korea, October
2006b.

Jürgen Teich, Eckart Zitzler, and Shuvra S. Bhattacharyya.Buffer memory
optimization in dsp applications — an evolutionary approach. In Pro-
ceedings of Parallel Problem Solving from Nature (PPSN), pages 885–
896, London, UK, 1998. Springer-Verlag.

William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A
language for streaming applications. InProceedings of the International
Conference on Compiler Construction (CC), volume 2304 ofLecture
Notes in Computer Science, pages 179–196, Grenoble, France, April
2002.

Nalini Vasudevan and Stephen A. Edwards. Static deadlock detection for
the SHIM concurrent language. InProceedings of the International Con-
ference on Formal Methods and Models for Codesign (MEMOCODE),
Anaheim, California, June 2008.

Nalini Vasudevan and Stephen A. Edwards. Celling SHIM: Compiling
deterministic concurrency to a heterogeneous multicore. InProceedings
of the Symposium on Applied Computing (SAC), volume III, pages 1626–
1631, Honolulu, Hawaii, March 2009.

Nalini Vasudevan, Satnam Singh, and Stephen A. Edwards. A deterministic
multi-way rendezvous library for Haskell. InProceedings of the Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), Miami,
Florida, April 2008.

Buffer Sharing in Concurrent Programs 8 2009/5/9

