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Abstract

Concurrent programming languages should be a good fit
for embedded systems because they match the intrinsic par-
allelism of their architectures and environments. Unfortu-
nately, most concurrent programming formalisms are prone
to races and nondeterminism, despite the presence of mech-
anisms such as monitors.

In this paper, we propose SHIM, the core of a concur-
rent language with disciplined shared variables that remains
deterministic, meaning the behavior of a program is inde-
pendent of the scheduling of concurrent operations. SHIM
does not sacrifice power or flexibility to achieve this de-
terminism. It supports both synchronous and asynchronous
paradigms—loosely and tightly synchronized threads—the
dynamic creation of threads and shared variables, recursive
procedures, and exceptions.

We illustrate our programming model with examples in-
cluding breadth-first-search algorithms and pipelines. By
construction, they are race-free. We provide the formal se-
mantics of SHIM and a preliminary implementation.

1 Introduction

Embedded systems differ from traditional computing sys-
tems in their need for concurrent descriptions to handle si-
multaneous activities in their environment or to exploit het-
erogeneous hardware. While it would be nice to program
such systems in purely sequential languages, this greatly
hinders exploiting parallelism. Instead, we believe the so-
lution is to provide fundamentally concurrent languages that
by construction avoid many of the usual pitfalls of parallel
programming.

We say the behavior of a system is deterministic if and
only if it depends exclusively on external decisions, i.e.,
on well-defined inputs of the system (which may include a
clock), rather than internal decisions of the compiler, opti-
mizer, runtime scheduler, debugger, etc. The motivation for
our work rests on two central assumptions. Most programs
(including concurrent programs) are meant to behave de-
terministically. However, most programming languages (in-
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cluding Java and C) do not guarantee determinism but in-
stead provide constructs designed to help achieve it.

C’s nondeterminism lurks in subtle places, such as func-
tion argument evaluation order, and in “undefined behav-
ior,” such as reading uninitialized memory. Most program-
mers are careful enough to avoid calling functions with side-
effects when passing parameters, but the undefined behav-
ior of C produces a whole host of problems including buffer
overflows, which is probably the leading cause of computer
insecurity today. Languages such as Cyclone [26] and the
CCured rewriter [29] have been developed to attack exactly
these sources of nondeterminism in the language.

The design of Java successfully avoids most of the obvi-
ously nondeterministic aspects of C by adding array bounds
checking, fixing expression evaluation order, etc., but its
concurrency introduces a whole host of potential sources of
nondeterminism, leading to concurrency-related bugs such
as data races and the like. It is these concurrency-induced
sources of nondeterminism that we are primarily concerned
with avoiding.

In this work, we advocate for SHIM, a deterministic con-
current programming language. A program written in SHIM
is guaranteed to behave the same regardless of the schedul-
ing of concurrent operations. While the restrictions SHIM
imposes no doubt make it impossible to implement cer-
tain algorithms that appear nondeterministic but actually
are well-behaved, we believe SHIM is both expressive and
amenable to efficient implementation. We argue for SHIM’s
expressivity through a series of examples, and demonstrate
a preliminary compiler for the language able to generate
single-threaded C code.

1.1 The New SHIM

Our original SHIM (Software/Hardware Integration
Medium) model of computation [15, 16] provides determin-
istic concurrency in a simple setting: SHIM systems consist
of sequential processes that communicate using rendezvous
through point-to-point communication channels. SHIM
systems are therefore delay-insensitive and deterministic
in the same way and for the same reasons as Kahn’s
networks [27], but are simpler to schedule and require
only bounded resources by adopting rendezvous-style
communication inspired by Hoare’s CSP [23].
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We designed the original SHIM model to capture the mix
of finely scheduled hardware and coarsely scheduled soft-
ware typical of embedded systems. However, the program-
ming model we have shown [15, 16] is limited, much better
at describing static hardware components than complex, dy-
namic software tasks.

In this paper, we present a major extension of the SHIM
model and language. The result is a programming language
that resembles C and Java (and can be used as such) while
still guaranteeing deterministic concurrency without requir-
ing careful attention to the use of semaphores or moni-
tors found in many concurrent programming languages. In-
stead of a static network of processes connected by prede-
fined point-to-point communication channels, SHIM now
enables the dynamic creation of threads and shared vari-
ables. Using recursion, one can then instantiate arbitrarily
many threads. We also introduce concurrent, deterministic
exceptions. While these are meant to resemble the excep-
tions in Java (and have the same semantics in single-threaded
code), they interact smoothly with concurrency, providing
a structured, deterministic way to terminate groups of pro-
cesses and thus provide a powerful tool for describing se-
quential behavior in a concurrent setting. We believe that
such control constructs for groups of concurrent processes
has been a key omission in most dataflow-oriented concur-
rent languages.

One attribute of SHIM is the ease with which concurrency
can be introduced. For example, here is a typical sequential
SHIM program that looks for akeyin a binarytreedepth first
throwing exceptionFoundif it finds thekey.

depth_first_search(int key, Tree tree) {
if (tree != null) {
if(key == tree.key) throw Found;
depth_first_search(key, tree.left);
depth_first_search(key, tree.right);

}
}

Adding two lines of code turns this depth-first-search al-
gorithm into a concurrent breadth-first-search:

breadth_first_search(int key, Tree tree) {
if (tree != null) {
if(key == tree.key) throw Found;
next key; // synchronize concurrent threads
breadth_first_search(key, tree.left);

par // fork concurrent threads
breadth_first_search(key, tree.right);

}
}

In Section 4, we augment this code to return a value as-
sociated with the key. An obvious pitfall in the concurrent
version of the algorithm would be ignoring what to do when
the key appears multiple times in the tree;SHIM makes it
impossible not to include an arbitration policy for this case.

Overall, we believe its concurrency, determinism, facil-
ities for dynamic thread creation, and exceptions makes it
possible to use SHIM to program true software compo-
nents for an embedded system and obtain strong functional-
ity guarantees about complete (hardware/software) designs.

e ::= L |V | op1 e | e op2 e | ( e) expressions
s ::=V = e; | F( (V(,V)∗)?); statements
| { b∗ } | if ( e) selse s | while ( e) s
| spar s | next V; | try scatch( E ) s | throw E;

b ::= T V; | s block statements
d ::= T V | T &V parameter declarations
p ::= P( (d(,d)∗)?) { b∗ } procedure declarations
r ::= p∗ main() { b∗ } programs

L denotes literals,T types (e.g.,int, void), E exception
identifiers,V variable identifiers, andP procedure identi-
fiers.par binds more tightly than other constructs.

Figure 1: The syntax of SHIM

We begin with an informal description of our language
and its syntax. We first focus on the exception-free fragment
of SHIM (Section 2), then consider exceptions (Section 3).
We develop the breadth-first-search example in Section 4.
We provide the formal semantics of SHIM with exceptions
(Section 5), describe a basic compiler for it (Section 6), dis-
cuss related work (Section 7), and conclude (Section 8).

2 The Basic SHIM Language

SHIM, whose syntax is summarized in Figure 1, draws from
many familiar sources. Its core is an imperative language
with C-style syntax and semantics that includes local vari-
able declarations and procedure calls, but not pointers. Our
procedures have both pass-by-value and pass-by-reference
parameters (those prefixed with the C++-style&). Our lan-
guage does not have functions per se, but procedures can
return values through pass-by-reference arguments.

In addition to the usual imperative statements, SHIM has
four novel ones:

• “spar s” for concurrency,

• “next V;” for communication,

• “try scatch( E ) s” to define and handle exceptions,
and

• “throw E;” to raise exceptions.

2.1 Concurrency

The “p par q” statement runsp and q concurrently and
waits for bothp and q to complete their execution before
it terminates. In other words, it forks two threads of execu-
tion responsible for runningp andq and suspends the cur-
rent thread until the completion of both. As a result, a parent
thread never runs at the same time as its subthreads.

By design,par is commutative and associative. For in-
stance, “p par q par r” and “q par r par p” behave
identically. However, because of variable scope, “{p par

q} par r” may behave differently, just as “{p} q” and “p
q” may be different in C.

2



The SHIM scheduler is allowed to arbitrarily interleave
the execution of concurrently-running threads, provided do-
ing so does not violate inter-thread communication rules. In
general, concurrent threads executeasynchronously.

To achieve deterministic behavior—behavior independent
from arbitrary scheduling choices—we impose restrictions
on “shared variables”—the constructs through which con-
current threads may communicate. In apar statement, zero
or one thread is passed each variable by reference; one or
more threads may be passed the same variable by value.

We rely on a simple syntactic rule to choose which thread
(if any) gets the by-reference variable: a variable is anlval
for a thread and passed-by-reference iff it appears to the left
of an assignment or is bound to a pass-by-reference argu-
ment in a procedure call; a variable is anrval for a thread
if it only occurs in expressions, after thenextkeyword, or is
bound to pass-by-value arguments only in procedure calls.
A variable must not be anlval for two threads or more in a
par statement.

For example,

f(int &x) {} // pass­by­reference
g(int x) {} // pass­by­value
main() {
int a; a = 0;
int b; b = 0;
a = 1; par b = a; // OK
a = 1; par a = 2; // No: a is an lval twice
f(a); par f(b); // OK
f(a); par g(a); // OK
g(a); par g(a); // OK
f(a); par f(a); // No: a is an lval twice

}

An lval is passed by reference to the thread, anrval is
passed by value. For example,

main() {
int a; a = 3;
int b; b = 7;
int c; c = 1;
{ // lval: a, rval: b, c
a = a + c;

// a is 4, b is 7, c is 1
a = a + b;

// a is 11, b is 7, c is 1
} par { // lval: b, rval: a, c
b = b ­ c;

// a is 3, b is 6, c is 1
b = b + a;

// a is 3, b is 9, c is 1
}

// a is 11, b is 9, c is 1
}

Herec is passed by value to both threads. Nevertheless, it
is correct and more efficient to pass it by reference since
neither thread updatesc. In general, a variable that is anrval
for all the threads can be safely passed by reference to all
of them. Thanks to this optimization, few variables are ever
passed by value.

2.2 Communication

The restriction than no variable may be passed by reference
to more than one thread at a time makes it impossible for a
thread to modify another thread’s copy of a variable through
a simple assignment. Instead, inter-thread communicationis

performed by thenext instruction, which forces threads to
synchronize before exchanging values. Depending on how a
variable is passed to a thread,nexteither transmits the new
global value of a variable or receives the new global value.
For example,

f(int a) { // a is a copy of c
a = 3;
next a; // a gets c’s value

// a = 5
}
g(int &b) { // b is an alias for c
b = 5;
next b; // synchronize with f

// b = 5
}
main() {
int c; c = 0;
f(c); par g(c);

}

Both a andb are incarnations ofc. Thenextinstructions as-
sign the current value ofc to a andb. Sincec was passed by
value to f and by reference tog, “next b” and “next a”
behave as a send operation ing and a receive operation inf
respectively, which together result in assigningb’s value to
a.

To make communication deterministic,next instructions
forces all threads sharing the variable to synchronize. In the
previous example, “next a” and “next b” execute simul-
taneously.

Such synchronizations may cause deadlocks. For exam-
ple,

main() {
void a; void b;
{ next a; next b; } par { next b; next a; }

}

deadlocks because the branches sharea andb and the first
branch is waiting for a synchronization ona while second
branch is waiting onb.

In SHIM, variables withvoid type provide pure synchro-
nization.

A thread is only required to synchronize on a variable it
shares. For example,

main() {
void a; void b;
{ next a; next b; } par { next b; }

}

does not deadlock because the right branch does not sharea.
If a thread terminates, it is no longer compelled to par-

ticipate in a synchronization and therefore does not cause a
deadlock. For example,

main() {
void a;
{ next a; next a; } par { next a; }

}

does not deadlock. Only the first synchronization ona in-
volves both threads.

Pending synchronizations may take place in any order. In

main() {
void a; void b;
next a; par next b; par next b; par next a;

}
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the synchronization ona may occur before or after the syn-
chronization onb.

2.3 Delegation

If a thread divides into subthreads, the parent thread effec-
tively delegates its ownership of a variable to all of its chil-
dren that use the variable, meaning they are required to par-
ticipate in any communication on this variable. For example,

main() {
void a; void b;
{ { next a; next b; } par {} } par { next b; a; }

}

deadlocks. The rightmost branch knows abouta and there-
fore must participate in communication ona.

In contrast,

main() {
int a; a = 0;
int b; b = 0;
{ // thread 1: rval: a, b
{ // thread 1.1: lval a
next a;

// a is 1, b is 0
} par { // thread 1.2: lval b
next b;

// a is 0, b is 2
}

// a is 1, b is 2
} par { // thread 2: lval: a, b
b = 2;
next b;
a = 1;
next a;

}
}

does not deadlock. Thread 2 synchronizes with thread 1.2
first, then with thread 1.1. Althougha andb are passed by
value to thread 1,a is then passed to 1.1 by reference andb to
thread 1.2. Consequently, thenextinstructions in threads 1.1
and 1.2 behave as receive operations and return the received
values to thread 1.

The pattern “next a; par next b;” is a convenient id-
iom for synchronizing and communicating ona andb in any
order.

If no subthread is responsible for a variable of the par-
ent thread, the parent thread remains responsible for it. For
example,

main() {
void a; void b;
{ // thread 1: shares a and b

next a; // thread 1.1: shares a
par
next b; // thread 1.2: shares b

} par { // thread 2: shares a and b
next a; next a; b;

}
}

deadlocks. After the first synchronization ona, thread 1 re-
mains sensitive toa even if its now-unique remaining sub-
thread is sensitive tob only. Therefore, thread 1 recovers the
responsibility fora that was temporarily held by one of its
subthreads. A synchronization ona must involve thread 1,
thus the deadlock.

In contrast,

main() {
void a; void b;
{ // thread 1: shares a

next a;
} par { // thread 2: shares b

next b;
} par { // thread 3: shares a and b

next a; next a; b;
}

}

does not deadlock. Grouping matters!
In summary, a communication takes place iff all leaf

nodes of the tree of threads that share a common variable,
i.e., were passed the variable by value or by reference, are
ready to execute anextinstruction for this variable or one of
its copies. The tree for each variable evolves dynamically as
threads are created and terminate.

2.4 A FIFO Example

The example below is a simple pipeline with feedback con-
sisting of a procedure that increments its input (f ) and two
calls of a buffer procedure (g). The pipeline passes around
a 1, then a 2, a 3, etc.

f(int a, int &b) {
while (true) {

b = a + 1;
next b; // sends b since b is passed by reference
next a; // receives a since a is passed by value

}
}
g(int b, int &c) {
while (true) {

next b; // receives
c = b;
next c; // sends

}
}
main() {
int a; int b; int c;
a = 0;
f(a,b); par g(b,c); par g(c,a);

}

Starting from the same buffer procedure (g), the code be-
low uses recursion and concurrency to implement a FIFO of
sizen.

fifo(int i, int &o, int n) {
int c;
int m; m = n ­ 1;
if (m) {

g(i, c); par fifo(c, o, m);
} else {

g(i, o);
}

}

3 Exceptions in SHIM

The inter-thread communication facility provided bynext
can be used to pass control messages among threads (e.g.,
“please terminate now”), but doing so is somewhat awkward.
SHIM’s exception mechanism is layered on the inter-process
communication mechanism to preserve determinism while
providing powerful sequential control.

Exceptions are scoped, caught, and handled by thetry-
catchconstruct and raised by thethrow instruction. Excep-
tion declarations may be nested. Exceptions do not carry val-
ues.
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In sequential code, SHIM’s exceptions are classical: the
throw instruction behaves as a jump to the matching handler,
unrolling the stack as necessary. For example,
main() {
int i; i = 0;
try {
i = 1;
throw T;
i = i * 2; // is not executed

} catch(T) { i = i * 3; }
// i = 3

}

3.1 Best-Effort Preemption

Concurrent preemption in SHIM follows the principle of
best effort. Exceptions may be raised from subthreads, and
whether concurrently-running threads in the scope of the ex-
ception are affected depends on communication. For exam-
ple,
main() {
int i; i = 0;
try { // thread 1
throw T;

} par { // thread 2
while (true) { i = i + 1; } // runs forever

} catch(T) {}
}

never terminates. The two threads never communicate and
hence never synchronize. Thread 1 thus has no way to inter-
rupt thread 2 at a deterministic point of its execution (e.g.,
at a deterministic value ofi). Thread 2 runs forever. Such a
pattern will generate a compiler warning.

We say a thread ispoisonediff it raises or propagates an
exception. If a thread attempts to communicate with a poi-
soned thread, it gets poisoned and propagates the exception,
i.e., it behaves as if it had thrown the same exception. For
example,
main() {
int i; i = 0;
int j; j = 0;
try { // thread 1: shares i
while (i < 5) {
i = i + 1;
next i;

}
throw T;

} par { // thread 2: shares i and j
while (true) {
next i; // is eventually poisoned by thread 1
j = j + i;
next j;

}
} par { // thread 3: shares j
while (true) {
next j; // is eventually poisoned by thread 2

}
} catch(T) {}

// i is 5, j is 15
}

terminates. Thread 1 poisons thread 2 that in turn poisons
thread 3, even though no variable is shared between threads 1
and 3.

We say a thread isdying iff it is in the scope of an excep-
tion raised or propagated by one of its subthreads but is still
alive because another of its subthreads is still running, being
unaffected by the exception. If a thread attempts to commu-
nicate with a dying subthread, it gets poisoned as well.

main() {
void i;
void j;
void k;
try { // thread 1: shares i, j, and k

{ // thread 1.1: shares i
i;

} par { // thread 1.2: shares j
j;
throw T;

} par { // thread 1.3: shares k
while (true) { // runs forever
next k; // synchronize with thread 4

}
}

} par { // thread 2: shares i
next i; // is poisoned by thread 1

} par { // thread 3: shares j
next j; // is poisoned by thread 1.2

} par { // thread 4: shares k
while (true) { // runs forever
next k; // synchronize with thread 1.3

}
} catch(T) {}

}

In this example, thread 3 gets poisoned while attempting
to communication with thread 1.2. Thread 4 communicates
with thread 1.3, which is running fine. Thread 2 attempts to
communicate first with thread 1.1 then with thread 1 itself
since, upon the completion of thread 1.1, thread 1 becomes
responsible fori. Thread 1 is dying due to exceptionT in
thread 1.2. Therefore, thread 2 gets poisoned. Here again, we
observe that thread 1, while dying, never dies since thread
1.3 never returns.

3.2 Scoping

Poison does not flow beyond the scope of its exception. In

main() {
int i; i = 0;
int j; j = 0;
{ // thread 1: shares i

try { // thread 1.1: shares i
i;
throw T;

} par { // thread 1.2: shares i
i = i + 1; // is executed
next i; // is poisoned by thread 1.1
i = i + 1; // is not executed

} catch(T) {}
} par { // thread 2: shares i and j

j = j + 1; // is executed
next i; // executes normally
j = j + 1; // is executed

}
// i is 1, j is 2

}

exceptionT preventsi from being incremented a second
time. However, it does not poison thread 2, which is outside
the scope of the exception. Thenext instruction in thread 2,
which would have to synchronize with thenext instruction
in thread 1.1 ifT had not been raised, is instead delayed un-
til the completion of thetry-catchblock, at which point it
may take place as usual, since thread 2 is the only remaining
thread sharingi.

3.3 Concurrently-thrown Exceptions

When exceptions are raised in parallel, the outermost excep-
tion takes priority and defines the exit point.
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main() {
int i; i = 0;
try {
try {
throw T;

} par {
throw U;

} catch(T) {}
i = i + 1; // not executed

} catch(U) {}
// i is 0

}

When exceptions are raised concurrently at different lev-
els of the thread hierarchy, closer exceptions are dealt with
first. For example, in

main() {
int i; i = 0;
try { // thread 1: shares i
i;
throw T;

} par { // thread 2: shares i
try { // thread 2.1: shares i
i;
throw U;

} par { // thread 2.2: shares i
next i; // is poisoned by thread 2.1

} catch(U) {}
i = i + 1; // is executed
next i; // is poisoned by thread 1
i = i + 1; // is not executed

} catch(T) {}
// i is 1

}

exceptionU ensures thati is incremented once by poisoning
thenext instruction in thread 2.2, thus preventing exception
T to poison it. ExceptionT only poisons the othernext in-
struction so thati is not incremented again.

3.4 The FIFO Revisited

Using an exception, we can terminate the FIFO we described
earlier.

source(int &a) {
while (a > 0) {
a = a ­ 1;
next a; // sends a

}
throw T;

}
sink(int b) {
while (b != 0) {
next b; // receives b

}
// do something else

}
main() {
int a; a = 5;
int b; b = ­1;
int n; n = 3;
{
try {
source(a); par fifo(a, b, n);

} catch(T) {}
} par {
sink(b);

}
}

Thesourcesends the values 4, . . . , 0 to the three-place FIFO
that delivers them to thesink. Thanks to poisoning rules, the
exceptionT poisons each one of the three one-place buffers
of the FIFO only after it has finished transmitting the five
values and becomes receptive again to a sixth value. In other

words, the FIFO completes its transmission before terminat-
ing. On the other hand, because the sink is not part of the
scope ofT, it is unaffected byT.

Importantly, if we omit thethrow instruction in the source,
we end up with rather different behavior. Indeed, after the
termination of the source, the receivingnext instruction of
the first buffer in the FIFO is no longer compelled to syn-
chronize with anyone and thus behaves as a no-op; the FIFO
repeatedly outputs the last transmitted value.

Alternatively, we could terminate the FIFO by raisingT
in the sink procedure, provided we modify the scope ofT
accordingly.

In summary, thanks to exceptions, there is no need to hard
code a termination condition or an end-of-stream data token
in our FIFO.

4 Example: Concurrent Breadth-first Search

In this section, we combine recursion, concurrency, and ex-
ceptions to implement two breadth-first-search algorithmsin
binary trees.

While there are no pointers or objects in the language we
have described, we can easily extend SHIM and define a type
for binary trees in a Java-like syntax:

class Tree {
int key;
int value;
Tree left;
Tree right;

};

Each node associates an integervalueto an integerkey.
In general, pointers or objects may introduce aliasing and

thus break the determinism of SHIM. However, in the exam-
ples below we shall only access binary trees in a read only
manner. Therefore, there is no danger of a race. We assume
these binary trees are created by sequential code beforehand.
We leave the discussion of data structures and pointers in
SHIM for future work.

4.1 The depth-first-searchmemalgorithm

Let us start with a sequential algorithm for deciding mem-
bership of a key in a tree.

mem(int key, Tree tree) {
if(tree != null) {

if(key == tree.key) throw Found;
mem(key, tree.left);
mem(key, tree.right);

}
}
mem2(int key, Tree tree, int &found) {
found = 0;
try {

mem(key, tree);
} catch(Found) { found = 1; }

}

The recursivememprocedure reports success through the
Foundexception. Themem2procedure produces a Boolean
result instead. Overall, this implements a depth-first-search
algorithm that gives priority to the left.
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4.2 The breadth-first-searchmemalgorithm

To turn the depth-first-search algorithm into a breadth-first-
search one in SHIM, we add two lines:

mem(int key, Tree tree) {
if (tree != null) {
if(key == tree.key) throw Found;
next key; // addition 1
mem(key, tree.left);

par // addition 2
mem(key, tree.right);

}
}

The purpose of the second addition is obvious: it turns the
sequence of the two recursive calls into their parallel com-
position.

The first addition is more subtle. Basically, it makes it pos-
sible for a branch that finds thekey to interrupt concurrent
branches by forcing them to synchronize. The synchroniza-
tion pattern is illustrated below: all the recursive calls corre-
sponding to the same depth (same node label) synchronize
as shown by the dashed lines.

1

2

3

4 4

3

4

2

3 3

4

If the key is found at a square node, then all recursive calls
terminate at this (third) level either by raising the excep-
tion (square nodes) or by getting poisoned (circular nodes).
Nodes at the fourth level and below are not visited.

Incidentally, because the key’s value is never modified,
thenextinstruction is used here for synchronization purpose
only. A dedicatedtick channel could be used instead:

mem(int key, Tree tree, void tick) {
if (tree != null) {
if (key == tree.key) throw Found;
next tick; // synchronizes on tick
mem(key, tree.left, tick); // shares tick

par
mem(key, tree.right, tick); // shares tick

}
}

4.3 The breadth-first-searchassocalgorithm

We now would like to improve the breadth-first-search algo-
rithm to return the value associated with the key. One tenta-
tive extension of the previous algorithm is the following:

assoc(int key, Tree tree, int &value) {
if (tree != null) {
if(key == tree.key) {
value = tree.value;
throw Found;

}
next key;
assoc(key, tree.left, value); // lval: value

par
assoc(key, tree.right, value); // lval: value

}
}

But this code is rejected by the compiler as incorrect:value
is passed by reference to both parallel recursive calls, which
may cause a race. Consider again the example of the pre-
vious section. It contains the key in two nodes at level 3.
Which value should be returned? The leftmost or the right-
most value? The above piece of code does not specify a de-
terministic behavior, but fortunately our language enforces
determinism and rejects the above program.

Here is a correct algorithm:

assoc(int key, Tree tree, int &value) {
if(tree != null) {

if(key == tree.key) {
value = tree.value;
throw Found;

}
next key;
int tmp;
try {
assoc(key, tree.left, value);

} par {
try {
assoc(key, tree.right, tmp);

} catch(Found) { throw Right; }
} catch(Right) { value = tmp; throw Found; }

}
}
assoc2(int key, Tree tree, int &value) {
value = ­1;
try {

assoc(key, tree, value);
} catch(Found) {}

}

First, we introduce a temporary variabletmp to hold the
value returned by the recursive call for the right subtree. An
assignment fromtmpto valuemay only occur in the handler
of theRightexception, whose scope contains the parallel re-
cursive calls. Hence, the assignment is in sequence after the
parallel composition. This is correct.

Second, we use exceptions to implement priorities. There
are four cases:

1. Neither branch raises exceptionFound: the procedure
terminates normally or runs forever if the tree is infinite.

2. The left branch only raises exceptionFound: the excep-
tion kills the right branch and propagates upwards. The vari-
ablevaluecontains the value returned by the left branch.

3. The right branch only raises exceptionFound: the ex-
ception is caught andRight is raised. ExceptionRight kills
the left branch. The exception handler forRightassignstmp
to value. ExceptionFoundis raised and propagates upwards.
The variablevaluecontains the value returned by the right
branch.

4. Both branches raise exceptionFound: the exception
propagates upwards, in particular preempting the execution
of the handler for theRight exception. The variablevalue
contains the value returned by the left branch.

In summary, the algorithm returns the value associated
with the leftmost node among those nodes that match the
key and have the shortest distance to the root of the tree.

Thanks to concurrency, recursion, and exceptions we
can implement in SHIM a deterministic breadth-first-search
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algorithm, and no nondeterministic algorithm can be ex-
pressed in SHIM.

5 The Semantics of SHIM

Here, we provide a formal operational semantics of SHIM.
We express the execution of a program as a set of rules
that specify the possible transitions between program states.
For simplicity, we first address concurrency and communi-
cation in SHIM (Section 5.1), then consider exceptions (Sec-
tion 5.2). We conclude with a discussion of determinism
(Section 5.3).

5.1 Concurrency and Communication

One challenge here is choosing an appropriate notion of
state. We start with an informal discussion of the various
components of a state, describe our state encoding, explain
the rules of the formal semantics, and demonstrate the se-
mantics by showing how it executes an example. In Sec-
tion 6, we describe a concrete implementation of these se-
mantics.

In our semantics, we express the state of a program as
a pair consisting of aresidue, which specifies the code re-
maining to be executed in each thread and the hierarchy of
threads; and astore, which describes the current memory
layout and content. The initial state consists of the body of
themainprocedure and an empty store.

The store maps locations to values. A variable declaration
allocates a fresh location in the store and binds it to the name
of the variable being declared. An assignment to a variable
updates the value of its location in the store.

Since SHIM is concurrent, we define the residue to be a
tree of code fragments that encodes the hierarchy of threads.
Only the leaves of a residue run concurrently; the execution
of a non-leaf node only proceeds when its children have ter-
minated and disappeared from the tree. Apar statement aug-
ments the tree by adding concurrently-running children un-
der the node of the current thread.

Each node in the residual tree maintains aview. Each view
binds the variable identifiers visible to the thread to locations
in the store. This is a single location for a local variable; each
parameter is actually a pair of locations: one that holds the
current value of the parameter; another that tracks the loca-
tion of the shared variable location, i.e., the source location
of the data copied in anextoperation.

Although for simplicity our semantics uses a single,
global store shared across all threads, SHIM can be imple-
mented in a distributed, message-passing style. Our views
capture data locality—a thread may only access data in
its view. Information may only flow between concurrently-
running threads atnext instructions that perform a sort of
message passing.

5.1.1 Notation

For simplicity, we assume the parameters, local variables of
a thread, and procedure names have pairwise distinct identi-
fiers. We only consider well-scoped, well-typed programs. In

particular, we assume that all procedures calls are matched
by declarations with matching arities.

For a procedurep, param(p) are the formal parameters of
p; param(p)i is the ith parameter ofp. We write byref(p)
and byval(p) for the sets of by-reference and by-value pa-
rameter indices respectively. Moreover, body(p) stands for
the sequence of statements inp.

Our semantics holds the values of variables in a store.
Λ = {λ ,µ, . . .} denotes an infinite set of abstract loca-
tions andV denotes values. A store is a partial function
σ : Λ → V . Dom(σ) denotes the domain of the storeσ ,
which we require to be finite. By design, uninitialized loca-
tionsλ ∈Dom(σ) have value⊥. We often use a set-like no-
tation to define the function of a store, e.g.,{λ 7→ 0,µ 7→ ⊥}
denotes a storeσ whereσ(λ ) = 0 andσ(µ) =⊥.

A view can be thought of as a symbol table that maps
variable names to locations in the store. Technically, a view
v : V → Λ + (Λ×Λ) is a partial function from a finite set
of variable identifiers to locations (for local variables) or
pairs of locations (for parameters). Ifv(x) = λ then we de-
fine vloc(x) = vglb(x) = v(x), otherwise we definev(x) =
vloc(x),vglb(x). By design,vloc(x) points to the current value
of namex, whereasvglb(x) retains the shared variable loca-
tion associated with namex. We denote by Glb(v) the im-
age ofvglb and by Def(v) the locations of the local vari-
able identifiers in Dom(v), i.e., the locationsλ such that
∃x∈Dom(v) : v(x) = λ . For instance{x 7→ λ ,y 7→ α,β} de-
notes a viewv such thatvloc(x) = λ , vloc(y) = α, vglb(x) = λ ,
vglb(y) = β , Dom(v) = {x,y}, Glb(v) = {λ ,β}, Def(v) =
{λ}.

A state—the main object manipulated by the semantics—
is a pairr/σ , whereσ is a store andr a residue such that all
locations appearing inr are in Dom(σ). A residuer is a tree
whose nodes are pairss∗|v that combine a sequence of state-
ments with a view.0 denotes the empty list of statements.
We denote byR⊲ s∗|v compound residues wheres∗|v is the
root of the tree andR is a non-empty multiset of residues
that denotes the branches of the tree. For instance, the state
marked with(∗) in Figure 4 has root0|{c 7→ λ} and leaves
f(c);|{c 7→ µ,λ} andg(c);|{c 7→ λ ,λ}. Branch ordering
is irrelevant. The store is{λ 7→ 0,µ 7→ 0}.

If residuer has a root node with viewvwe define Glb(r) =
Glb(v) and Def(r) = Def(v).

5.1.2 Formal Semantics

In Figure 2, we formalize the semantics of SHIM without ex-
ceptions as a set of deduction rules in a structural operational
style [31].

In addition to what we previously described, we add an
extra piece of information atop⊲ symbols, which relates to
exception scopes. It can be ignored for the moment; we shall
discuss it in Section 5.2;

The rules for if, while statements and assignments are
standard. An auxiliary functionE , which we do not define
here, computes expression values. It implements a determin-
istic Java-like evaluation strategy. It resolves local variable
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and parameter names to values using functionσ ◦vloc.
At a local variable declaration, we bind the name of the

variable to a new location whose value starts at⊥. As usual,
the semantics is defined up to alpha-renaming of locations.

The block rule uses a trick to correctly scope additional
variable declarations: it forks a single child node that con-
tains the body of the block and copies the current view.

The contextrule derives a step for a node from a step of
one of its children.⊎ denotes the union of multisets.

The join and return rules take care of the completion of
function calls, blocks, and parallel branches. Rulejoin han-
dles one branch at a time so that a branch releases its chan-
nels immediately upon termination. When the last branch
terminates, the execution of the parent thread is resumed
thanks to rulereturn.

The next, gather, andsyncrules handle synchronization.
Thenextrule specifies that a leaf code fragment starting with
anextinstruction for variablex may synchronize on location
vglb(x) and expectsvloc(x) to be updated to reflect the current
value of vglb(x). Thanks to thegather rule, an inner node
may synchronize on locationλ provided all its child nodes
that know aboutλ agree on such a synchronization. Rule
syncproceeds with the synchronization at the node whereλ
was initially allocated: all local copies of the shared variable
are atomically updated.

Thecall rule handles procedure calls. It allocates new lo-
cations for by-value parameters, which are initialized with
the values of the actual parameters. It also expands the body
of the callee and creates a view for it. This view binds the
formal parameters of the procedure to their actual values.

The par rule iterates thebranch rule to handle parallel
compositions. Thebranchrule resembles thecall rule except
that it relies on the Lval and Rval sets obtained by static
analysis to decide which variables are passed by reference
to the thread. Importantly, variables that do not occur in the
thread are not part of the view of the thread.

Observe thenext, gather, andcall rules are only meant
to produce intermediate results that are eventually used by
rulessyncandpar to prove regular transitions.

5.1.3 Example

Figure 4 shows one possible execution of the example in
Section 2.2. We decorate each transition with a skeleton of
its proof tree. Starting from the body of themainprocedure,
the execution first proceeds with the local variable declara-
tion, the assignment and the concurrent procedure calls that
fork two parallel threads. Since parallel branches may exe-
cute asynchronously, several transitions may in general be
taken from a given program state. In particular, the two tran-
sitions for the two local assignments may occur in any order.
After the two assignments, a synchronization takes place. It
updates the value at locationν with the value at locationλ .
Finally, both procedures and both branches return and the
program terminates.

5.2 Exceptions

In Figure 3, we provide additional rules to handle exceptions
in SHIM. Combined with the rules of Figure 2, they form the
operational semantics of our language.

To keep track of exceptions scopes in the semantics, we
augment the residual structure we described in Section 5.1.
From now on, we write

R
m
⊲ s∗|v,

wherem is either an exception identifiere if the ⊲ results
from a try-catchconstruct for exceptione and 0 otherwise
(block, call, andpar rules).

We also introduce the placeholder instructionhandler to
denote pending handlers in the residual tree. Thehandler
instruction does not appear in the SHIM language itself.

The try rule forks a new child node for the bodyp of the
try-catchconstruct, decorates the⊲ with the exception iden-
tifier e, and insert the handlerq. The view ofp is obtained
by copying the current view.

Rulesthrow, throw2, andthrow3handlethrowstatements.
First, rulethrow replaces the body of the thread with a spe-
cial X statement that marks it as a poisoned threads. Second,
rule throw2marks enclosing threads with the sameX to indi-
cate they are dying. Finally, rulethrow3stops the poisoning
at the boundary of the exception scope.

Rulesexit andhandlerhandle the completion of poisoned
threads. When all subthreads of a thread are poisoned, they
are deleted. The corresponding exception handler is exe-
cuted, if any, if the poisoning ends at the parent thread.

Ruleskip-handlerspecifies that handlers must not be exe-
cuted if the exception was not raised, i.e., following areturn
transition.

Rules exception, exception2, and exception3 decide
whether a communication attempt with a threadr on a shared
variable with global locationλ poisons the thread attempting
the communication:λ ∈ Exc(r).

Rules next-fail, gather-fail, sync-fail propagate poison
from poisoned or dying threads to threads that attempt to
communicate with them. Rulenext-fail andgather-fail are
duals of rulesnextandgatherexcept they prepare for a com-
munication failure, that is to say poison propagation, rather
than a success. Rulesync-failmatches a communication at-
tempt with a poisoned or dying thread and proceeds with the
poisoning of the thread attempting the communication.

5.3 Determinism

We claim that our semantics are deterministic in Kahn’s
sense:computationsandcommunicationsare the same for
all fair executions. Intuitively, this follows from our pro-
cesses following the Kahn principle: communication takes
place exclusively through channels, is blocking, and each
thread of control can block on at most one communication
at once and cannot retreat from an attempt to communicate.

More precisely, our transition system is locally confluent.
Informally, whenever several transitions are possible from
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E (e,σ ◦vloc) 6= 0

if (e) p else q s∗|v
/

σ −→ p s∗|v
/

σ (if)

E (e,σ ◦vloc) 6= 0

while (e) p s∗|v
/

σ −→ p while (e) p s∗|v
/

σ (while)

true

x=e;s∗|v
/

σ −→ s∗|v
/

σ{vloc(x) 7→ E (e,σ ◦vloc)}
(assign)

λ /∈ Dom(σ)

t x;s∗|v
/

σ −→ s∗|v{x 7→ λ}
/

σ{λ 7→ ⊥} (declare)

r
/

σ −→ r ′
/

σ ′

{r}⊎R
m
⊲ s∗|v

/

σ −→ {r ′}⊎R
m
⊲ s∗|v

/

σ ′
(context)

I 6= /0 ∀i ∈ I : r i
λ
−−→
Mi

r ′i ∀ j ∈ J : λ /∈Glb(r j)

{r i}i∈I ⊎{r j} j∈J
m
⊲ s∗|v

λ
−−−−→
⋃

i∈I Mi
{r ′i}i∈I ⊎{r j} j∈J

m
⊲ s∗|v

(gather)

p0|v
/

σ 7−→ r0

/

σ0 . . . pn|v
/

σn−1 7−→ rn

/

σn

p0 par . . . par pn s∗|v
/

σ −→ {r0, . . . , rn}
0
⊲ s∗|v

/

σn

(par)

E (e,σ ◦vloc) = 0

if (e) p else q s∗|v
/

σ −→ q s∗|v
/

σ (else)

E (e,σ ◦vloc) = 0

while (e) p s∗|v
/

σ −→ s∗|v
/

σ (wend)

R 6= /0

{0|v′}⊎R
m
⊲ s∗|v

/

σ −→ R
m
⊲ s∗|v

/

σ (join)

true

{0|v′}
m
⊲ s∗|v

/

σ −→ s∗|v
/

σ (return)

v′ : Dom(v)→ Λ×Λ
x 7→ vloc(x),vglb(x)

{p∗} s∗|v
/

σ −→ {p∗|v′}
0
⊲ s∗|v

/

σ
(block)

true

next x;s∗|v
vglb(x)
−−−−−→
{vloc(x)}

s∗|v
(next)

r
λ
−−→
M

r ′ λ ∈ Def(r)

r
/

σ −→ r ′
/

σ{µ 7→ σ(λ )}µ∈M

(sync)

∀x∈ Rval(p) :λx /∈ Dom(σ)
∀x,y∈ Rval(p) :x 6= y⇒ λx 6= λy

v′ : Lval(p)∪Rval(p)→ Λ×Λ
x 7→ λx,vglb(x) ∀x∈ Rval(p)
x 7→ vloc(x),vglb(x) ∀x∈ Lval(p)

p|v
/

σ 7−→ p|v′
/

σ{λx 7→ σ ◦vloc(x)}x∈Rval(p)

(branch)

∀i ∈ byval(p) :λi /∈ Dom(σ)
∀i, j ∈ byval(p) : i 6= j ⇒ λi 6= λ j

v′ : param(p) → Λ×Λ
param(p)i 7→ λi ,vglb(ai) ∀i ∈ byval(p)
param(p)i 7→ vloc(ai),vglb(ai) ∀i ∈ byref(p)

p(a0, ...,an);s∗|v
/

σ −→ {body(p)|v′}
0
⊲ s∗|v

/

σ{λi 7→ σ ◦vloc(ai)}i∈byval(p)

(call)

Figure 2: The semantics of the exception-free fragment of SHIM.

a given program state, they commute: they may be applied
sequentially in any order, all permutations resulting in the
same final state. However, due to the size of the semantics
we have not completed a formal proof of this result. In fact,
due to the dynamic nature of communication channels and
units of execution in our model, even a precise theorem is
beyond the scope of this paper.

6 A Basic Implementation

In this section, we present a basic implementation of SHIM
and some details of its compiler, which generates single-
threaded C code. Not surprisingly, implementing concur-
rency, thenextstatement, and thetry-throw-catchconstruct
are the main challenges. Our compiler, while preliminary, is
able to run all the examples in this paper except those that
manipulate non-integer data.

Of course, in the long run, we want to provide compil-
ers for SHIM able to exploit concurrency. In particular, we

would like to consider multicore code generation. But for the
time being, a single-threaded code generator is sufficient to
experiment with our programming model.

Our implementation of SHIM is similar to the basic soft-
ware translation we presented elsewhere [16]: each proce-
dure is translated into a single C function that uses a state
variable and a leadingswitchstatement to permit the func-
tion to block and resume at communication points. A central
scheduler executes ready-to-run functions in a nondetermin-
istic order that does not affect the overall system behaviorin
accordance with the SHIM semantics.

SHIM’s recursion means a program may require un-
bounded resources, so our compiler produces code that
dynamically allocates memory for procedure activation
records. Furthermore, because of the concurrency, such ac-
tivation records cannot simply be stored on a stack (while
procedures are properly nested in SHIM, a group of concur-
rent procedures may call other procedures or terminate in an

10



true

{X|v0, . . . ,X|vn}
m
⊲ X|v

/

σ −→ X|v
/

σ (exit)

true

{X|v0, . . . ,X|vn}
m
⊲ handler q s∗|v

/

σ −→ q s∗|v
/

σ(handler)

true

handler q s∗|v
/

σ −→ s∗|v
/

σ (skip-handler)

v′ : Dom(v)→ Λ×Λ
x 7→ vloc(x),vglb(x)

try p catch(e) q s∗|v
/

σ −→ {p|v′}
e
⊲ handler q s∗|v

/

σ
(try)

true

next x;s∗|v
vglb(x)
−−−−→

fail
X|v

(next-fail)

true

throw e;s∗|v
e
−→ X|v

(throw)

r
e
−→ r ′ m 6= e

{r}⊎R
m
⊲ s∗|v

e
−→ {r ′}⊎R

m
⊲ X|v

(throw2)

r
e
−→ r ′

{r}⊎R
e
⊲ s∗|v

/

σ −→ {r ′}⊎R
e
⊲ s∗|v

/

σ
(throw3)

λ ∈Glb(v)
λ ∈ Exc(X|v)

(exception)

λ ∈Glb(v)\Glb(R)

λ ∈ Exc(R
m
⊲ X|v)

(exception2)

λ ∈Glb(v)∩Exc(r)

λ ∈ Exc({r}⊎R
m
⊲ X|v)

(exception3)

I 6= /0 ∀i ∈ I : r i
λ
−−→

fail
r ′i ∀ j ∈ J : λ /∈Glb(r j)

{r i}i∈I ⊎{r j} j∈J
m
⊲ s∗|v

λ
−−→

fail
{r ′i}i∈I ⊎{r j} j∈J

m
⊲ X|v

(gather-fail)

r
λ
−−→

fail
r ′ λ ∈ Exc(rλ )

{r}⊎{rλ}⊎{r i}i∈I
m
⊲ s∗|v

/

σ −→ {r ′}⊎{rλ}⊎{r i}i∈I
m
⊲ s∗|v

/

σ
(sync-fail)

Figure 3: The semantics of exceptions in SHIM.

arbitrary order), so we choose to store them on the heap (i.e.,
by callingmallocandfree).

The problem of activation record allocation in the pres-
ence of concurrency (e.g., through coroutines) is well-
understood and the solution is sometimes referred to as a
“cactus stack” after their tree-like structure and/or prickly
difficulty. For example, the Icon programming language [21]
places restrictions on its coroutine-like generators to avoid
cactus stacks in most cases (in certain cases, however, it
copies activation records to the top of the stack), but sim-
ply puts them on the heap in general. Gupta and Soffa [22]
suggest that heap-managed activation records are usually as
efficient as other, more complicated schemes, so that is the
approach we have taken.

6.1 Dismantling

To maintain the invariant that each procedure invocation has
exactly one program counter, we dismantlepar constructs
into parallel procedure calls. To simplify the exception-
handling machinery, we also dismantletry-catchconstructs
into procedure calls. Both of these simplify the runtime sys-
tem at the probable expense of efficiency, which was not our
objective in developing this implementation.

Our dismantler follows the simple syntactic rules de-
scribed in Section 2.1 to determine which variables are
passed by reference and value to the procedure that imple-
ment branches of apar construct. Figure 5 shows an ex-

main() {
int a; int b; int c;
a = 1; b = 10; c = 100;
{

a = a + 1;
} par {

b = a + c;
} par {

c = b + 2;
}
try {

a = a + 5;
throw T;

} catch (T) {
b = b + 1;

}

// a=7, b=102, c=12
}

main_1(int &a) { a = a + 1; }
main_2(int &b, int a, int c) {
b = a + c;

}
main_3(int &c, int b) {
c = b + 2;

}
main_4(int &a) { throw 0; }
main() {
int a; int b; int c;
a = 1; b = 10; c = 100;
main_1(a); par
main_2(b, a, c); par
main_3(c, b);
main_4(a); catch (0) {
b = b + 1;

}
}

Figure 5: A SHIM program and the result of dismantling

ample: the three parallel branches of thepar have become
proceduresmain_1–main_3, the body of thetry has become
main_4, and the exceptionT has been replaced with the
number 0.

6.2 Data Types

Figure 6 shows the two fundamental datatypes used by the
runtime system. Every procedure’s activation record begins
with the same fields asstruct ar, which starts with three
pointers that doubly-link the tree of activation records. This
tree is traversed when procedures communicate, terminate,
or throw exceptions.
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int c; c=0; f(c); par g(c);| /0
/

/0

declare
−−−−→ c=0; f(c); par g(c);|{c 7→λ}

/

{λ 7→⊥}
assign
−−−→ f(c); par g(c);|{c 7→λ}

/

{λ 7→0}
branch branch

par
−−−−−−−→

{

f(c);|{c 7→µ,λ}, g(c);|{c 7→λ ,λ}
}

⊲0|{c 7→λ}
/

{λ 7→0,µ 7→0} (∗)
call

context−−−→
{

{a=3;next a;|{a 7→ν ,λ}}⊲0|{c 7→µ,λ}, g(c);|{c 7→λ ,λ}
}

⊲0|{c 7→λ}
/

{λ 7→0,µ 7→0,ν 7→0}
call

context−−−→
{

{a=3;next a;|{a 7→ν ,λ}}⊲0|{c 7→µ,λ},{b=5;next b;|{b 7→λ ,λ}}⊲0|{c 7→λ ,λ}
}

⊲0|{c 7→λ}
/

{λ 7→0,µ 7→0,ν 7→0}
assign
context
context−−−−→

{

{next a;|{a 7→ν ,λ}}⊲0|{c 7→µ,λ},{b=5;next b;|{b 7→λ ,λ}}⊲0|{c 7→λ ,λ}
}

⊲0|{c 7→λ}
/

{λ 7→0,µ 7→0,ν 7→3}
assign
context
context−−−−→

{

{next a;|{a 7→ν ,λ}}⊲0|{c 7→µ,λ}, {next b;|{b 7→λ ,λ}}⊲0|{c 7→λ ,λ}
}

⊲0|{c 7→λ}
/

{λ 7→5,µ 7→0,ν 7→3}
next

gather
next

gather
gather
sync

−−−−−−−→
{

{0|{a 7→ν ,λ}}⊲0|{c 7→µ ,λ}, {0|{b 7→λ ,λ}}⊲0|{c 7→λ ,λ}
}

⊲0|{c 7→λ}
/

{λ 7→5,µ 7→0,ν 7→5}
return
context−−−→

{

0|{c 7→µ ,λ}, {0|{b 7→λ ,λ}}⊲0|{c 7→λ ,λ}
}

⊲0|{c 7→λ}
/

{λ 7→5,µ 7→0,ν 7→5}
return
context−−−→

{

0|{c 7→µ ,λ}, 0|{c 7→λ ,λ}
}

⊲0|{c 7→λ}
/

{λ 7→5,µ 7→0,ν 7→5}
join
−−→

{

0|{c 7→λ ,λ}
}

⊲0|{c 7→λ}
/

{λ 7→5,µ 7→0,ν 7→5}
return
−−−→ 0|{c 7→λ}

/

{λ 7→5,µ 7→0,ν 7→5}

The third and fourth transition are reproduced below (the store is omitted):

f(c); par g(c);|{c 7→λ}
branch branch

par
−−−−−−−→ 0|{c7→λ}

f(c);|{c7→µ,λ} g(c);|{c7→λ ,λ}
call

context−−−→

0|{c7→λ}

0|{c 7→µ ,λ}

a=3;next a;|{a 7→ν ,λ}

g(c);|{c7→λ ,λ}

Figure 4: An example of execution.

struct channel {
int *local;
int caller_channel_index;
union {
int intv;
int *intp;

} val;
};

struct ar {
struct ar *caller;
struct ar *first_callee;
struct ar *next_sibling;
void (*fp)(struct ar *);
int state;
int exception_index;
int handler_state;
int num_channels;
int blocked_channel;
struct channel channels[1];

};

Figure 6: SHIM runtime data structures for channels and
procedure activation records.

The fp member is a pointer to the C function implement-
ing the corresponding SHIM function that uses this activa-
tion record. Note that these functions take a pointer to a
struct ar, which is then immediately typecast to a pointer
to the actual activation record type for the procedure.

Thestatefield holds the control state of the function be-
tween invocations. When a function is first called,state is
zero. When a function blocks by executing anextor calls a
group of functions, it updatesstatewith a small integer to
indicate where it should be re-activated. Thus, thestatevari-
able functions like a return address.

Theexception_indexfield indicates the number of the ex-
ception, if any, that is handled when control returns to this
function. Thus it may change depending on what function it
has called. Our compiler dismantlestry statements into pro-
cedure calls with handlers and generates code that unrolls the
stack looking for such a matching handler when an excep-
tion is thrown. Thehandler_statefield indicates the control
state the function should enter when handling an exception.
It, too, may change while the function is running.

Thenum_channelsfield indicates the length of thechan-
nels array. Theblocked_channelfield is normally−1 but
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struct main_act {
struct ar (*caller);
struct ar (*first_callee);
struct ar (*next_sibling);
void (*fp)(struct ar *);
int state;
int exception_index;
int handler_state;
int num_channels;
int blocked_channel;
struct channel channels[3];
union main_callsites *callsites;

};

union main_callsites {
struct {
struct main_1_act f0;
struct main_2_act f1;
struct main_3_act f2;
} cs0;
struct {
struct main_4_act f0;
} cs1;

};

Figure 7: The data types for themainprocedure in Figure 5

takes on the index of the channel that the procedure is syn-
chronizing on when it is blocked.

The length of thechannelsarray in struct ar is actually
a trick: its length in a real activation record is equal to the
number of parameters passed to the procedure plus its lo-
cal variables. Because C does not check array bounds, our
code instead uses thenum_channelsfield to ensure we do
not overwrite the end of this array.

Each entry in thechannelsarray is astruct channelthat
consists of the address of the variable for the channel (the
local field, which only supports integer variables), the index
of the channel in the caller that was passed (−1 for local vari-
ables), and a union that holds either an integer (for pass-by-
value parameters and local variables) or an integer pointer
(for pass-by-reference parameters) that represents the actual
value of a variable. It is this field that appears as rvalues and
lvalues in SHIM expressions.

The local field points to the memory location that is up-
dated when an inter-procedure communication takes place
(as in the semantics). For pass-by-value arguments,local
points into the activation record for the procedure itself,but
for pass-by-reference arguments, it points into the activa-
tion record where the pass-by-reference variable was defined
(i.e., its topmost scope).

Figure 7 shows the data types for the activation record
for the main procedure of Figure 5. As mentioned above,
the fields in this activation record parallel those instruct ar
(Figure 6) so a pointer to astruct main_actcan be safely cast
to a struct ar, but includes a properly-sizedchannelsarray
(three for the two argumentsa andb and the local variable
c) and a pointer to aunion that holds activation records for
each procedure at every call site (union main_callsites).

When a function starts, it callsmalloc() once to allocate
storage for its callsites andfree() once to free this storage
when the function terminates. It is possible that this space
is never used because the function never calls any others;
optimizing this is future work.

6.3 The Central Scheduler

The central scheduler is straightforward: it simply takes a
pointer to an activation record off a stack of runnable pro-
cesses and calls the function whose pointer is thefp pointer
within the activation record. The C code looks like

ar­>exception_index = 0;
ar­>handler_state = 3; /* handler at case 3: */
ar­>first_callee =

(struct ar *) &(ar­>callsites­>cs1.f0);
ar­>callsites­>cs1.f0 = (struct main_4_act) {

(struct ar *) ar, /* caller */
0, /* first_callee */
0, /* next_sibling */
main_4_func, /* fp */
0, /* state */
­1, /* exception_index */
0, /* handler_state */
1, /* num_channels */
­1, /* blocked_channel */
{ { &(ar­>channels[0].val.intv),

0,
{ .intp=&(ar­>channels[0].val.intv) } } } };

*(++sp) = (struct ar *) &(ar­>callsites­>cs1.f0);
ar­>state = 4;
return;

case 3: /* catch 0 */
ar­>channels[1].val.intv = /* b = b + 1 */

ar­>channels[1].val.intv + 1;
case 4: /* normal termination */

Figure 8: Generated code at themain_4call site in Figure 5.

struct ar *stack[128];
struct ar **sp;

while (sp > stack) {
­­sp;
((*(sp))­>fp)(*(sp));

}

Here, 128 is an arbitrary limit on the number of pro-
cesses that can be blocked simultaneously, although it is not
a limit on the recursion depth—this is not the stack of ac-
tivation records. This limit could be raised or easily made
unbounded.

6.4 Calling Concurrent Procedures

Because the activation record tree may be read before a
newly-called procedure has started running, our compiler
generates code that initializes the activation records for
called functions in the caller, rather than having a function
initialize its own activation record.

To simplify the generated code, we generate code that uses
the ISO C99 compound literal extensions, which allow us
to elegantly state the desired contents of called functions’
activation records. Figure 8 shows the code we generate for
themain_4 callsite in Figure 7.

The code in Figure 8 first initializes theexception_index
and handler_statefields in main’s activation record since
this callsite (created by dismantling atry-catch) handles ex-
ception 0 (the unique number assigned by the dismantler
to T).

Next, it points the first callee field inmain’s activation
record to an activation record formain_4, the procedure be-
ing called (thear variable points to the activation record
for main, a struct main_act). Then it fills in the activation
record in thecs1field of union main_callsites, pushes its ad-
dress onto the stack of runnable functions, sets the state of
themainprocedure to 4 (so it will return to thecase 4label
when it terminates normally), and finally passes control back
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to the global scheduler. Ifmain_4terminates normally, con-
trol is passed back to thecase 4label. However, ifmain_4
throws the T exception, control is passed to thecase 3label.

The assignment statement that initializes the activation
record fills in astruct main4_actusing the ISO C99 com-
pound literal syntax. Much like an initialization after a vari-
able declaration, this lists a value for each field. For exam-
ple, the first field,caller, is initialized to the value ofar,
the activation record formain. Thefirst_calleefield is set to
zero sincemain_4has not yet called other procedures. The
next_siblingfield is set to 0 because this callsite is not invok-
ing procedures in parallel.

6.5 Next, Throw, and Termination

The translation of thenextstatement is deceptively simple.
If a is channel number 1 in the current procedure (e.g., its
second parameter)next(a)is translated into the C fragment

ar­>state = 2;
next(ar, 1);
return;

case 2:

This prepares the function to resume at thecase 2label
when it resumes (nexteffectively blocks unless all the pro-
cedures that participate in the synchronization of the given
channel are also trying to synchronize on that channel), at-
tempts a communication action (the call to thenext func-
tion), and passes control back to the central scheduler.

Similarly, if 3 is the encoding for the exception T,throw T
is translated into

ar­>state = 2;
throw(ar, 3);
return;

case 2:

Finally, a call to the internal functionterminateis placed
at the end of the code for each function to clean up and prop-
agate the effects of its termination. For example, a function
may indirectly unblock or poison other functions when it ter-
minates; theterminatefunction is responsible for this.

Broadly,nextchecks if all threads connected to the given
channel are ready to communicate on the channel and per-
forms the communication if they are,throw walks up the
stack to find where the given exception is caught and poi-
sons and terminates what threads it can, andterminatere-
moves the thread and tries to unblock the threads that were
blocked on the thread.

Figures 9 and 10 show the pseudocode for the run-
time system. It is complicated because we are simulat-
ing what is fundamentally a concurrent semantics on a se-
quential machine; an implementation on a parallel machine
would be simpler. The three main entry points arenext,
throw, and terminate; the evaluate-channelprocedure is
the main workhorse underlying them;poison-subtreeprop-
agates exceptions;collect-poisonedcleans up after threads
are poisoned and runscatchclauses;channel-poisonedand
channel-readyare helper functions that test whether a par-
ticular channel has been poisoned or is ready to commu-

nicate; and finallytransmit moves data among ready-to-
communicate threads.

The next procedure (lines 1–3) marks the thread as
blocked (line 2) and callsevaluate-channelto attempt the
actual communication. Successful communication, which is
detected and acted upon in line 31, is the only thing that can
unblock a thread, which is done in line 69.

The throw procedure (lines 4–9) walks up the call stack
and marks every thread as poisoned (line 7) until it finds
a function that handles the given exception. Then it calls
collect-poisonedon the thread in an attempt to propagate the
poison and terminate poisoned threads.

Theterminateprocedure (lines 10–17) removes the thread
from its parent’s list of threads and then either resumes the
parent if it was the last surviving child (line 13—this corre-
sponds to a normal function return), or propagates the effects
of its termination to all the channels that know about it and
possibly to any poisoned siblings that were waiting for it to
terminate (line 15terminate-evaluate2).

Theevaluate-channelprocedure (lines 18–33) is the main
workhorse, responsible for attempting to communicate on a
channel. The are two main cases: the channel has been poi-
soned by a child ofa (lines 20–25), or the channel is ready
to communicate because all of the children at the top of the
tree that know aboutc are blocked on it (lines 26–31).

The first case is when the channel has been poisoned
at this level. Unlike communication, which requires every
thread that knows about a channel to participate in a com-
munication, poisoning can take place even when threads that
know aboutc in other parts of the tree are not yet willing to
communicate onc. This is because while communication is
tied to the scope of the channel, poisoning is tied to the scope
of the exception, which is accounted for in the “walk up the
tree” logic in thethrowprocedure.

The rules for poisoning are as follows: a channel is poi-
soned if there is a poisoned path along threads that know
about the channel to a leaf. Thechannel-poisonedfunction
(lines 56–60, called in line 21) tests this by trying to walk
down the tree along such a path. If a channel is poisoned by
a subtree, the poison is spread to every one of its sibling sub-
trees that is ready to communicate on the channel (if they are
not ready to communicate, they might terminate normally
before the poison can take hold). The predicate is tested in
line 23 and the subtrees are poisoned by thepoison-subtree
procedure (line 34poison-subtree2, called in line 24).

Thepoison-subtreeprocedure (lines 34–42) walks down a
tree to every thread that knows about the channelc, poison-
ing them all. When it reaches a leaf, it propagates the effect
of the poison to every channel it knows about and attempts
to clean up completely-poisoned threads (lines 40–42).

If no child of a subtree is poisoned, control reaches line 26
in evaluate-channel. If we are at the top of the tree for
channelc (tested in line 26), then we callchannel-ready
(lines 61–65, called in line 28) on each of the children that
know aboutc. If they are all ready and there is at least one,
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1: procedurenext(activation recorda, channelc)
2: Mark a as blocked onc
3: evaluate-channel(a,c)

4: procedure throw(activation recorda, exceptione)
5: p← a
6: while p does not handleedo poison up to handler
7: mark p as poisoned
8: p← p’s caller
9: collect-poisoned(a)

10: procedure terminate(activation recorda)
11: removea from caller’s children
12: if a’s caller now has no childrenthen
13: schedulea’s caller all parallel calls terminated
14: else
15: for eachchannelc known toa do
16: evaluate-channel(a,c) unblock peers
17: collect-poisoned(a) any poisoned siblings?

18: procedureevaluate-channel(activation recorda, channelc)
19: while c is a channel ina do
20: for eachchild s of a that knows aboutc do
21: if channel-poisoned(s,c) then
22: for eachchild s of a that knows aboutc do
23: if channel-ready(s,c) then
24: poison-subtree(s,c)
25: return
26: if c is not defined ina’s callerthen top of the tree
27: for eachchild sof a that knows aboutc do
28: if not channel-ready(s,c) then
29: return not ready to communicate: block
30: if some child knows aboutc then
31: transmit(value ofc in a, a, c)
32: c← channel forc in caller ofa, if it exists
33: a← caller ofa

Figure 9: The runtime algorithms (1/2)

transmit is called (lines 66–73, called in line 31) that walks
down the tree to perform the communication (line 68).

Otherwise, if no child is poisoned and we are not at the top
of the tree,evaluate-channelmoves up the tree (lines 32–33).

The collect-poisonedprocedure (lines 43–55) walks up
the tree, looking for a node with all of its children poisoned.
The children of such nodes are terminated and the process
proceeds up the tree unless the thread itself is not poisoned
(line 49). When all a node’s children are poisoned but it
is not, it indicates that the node caught the exception and
can handle it. Thus, the state of the thread is set to that of
the exception’s handler (line 50) and the thread is scheduled
(line 51).

Otherwise, the effect of the children terminating is prop-
agated (lines 53–54) andcollect-poisonedcontinues to walk
up the tree.

7 Related Work

We first discuss the relationship of SHIM to existing work
on data races in concurrent systems, then compare SHIM to
existing concurrent programming languages.

34: procedurepoison-subtree(activation recorda, channelc)
35: marka as poisoned
36: if a has childrenthen
37: for eachchild s that knows aboutc do
38: poison-subtree(s,c)
39: else at a leaf: propagate its death
40: for eachchannelc known toa do
41: evaluate-channel(a,c)
42: collect-poisoned(a)

43: procedurecollect-poisoned(activation recorda)
44: while a is an activation recorddo
45: for eachchild c of a do
46: return if c is not poisoned or has children
47: if a has childrenthen
48: terminatea’s children
49: if a is not poisonedthen
50: seta’s state to its handler
51: schedulea run the catch body
52: return
53: for eachchild c of a do
54: evaluate-channel(a,c)
55: a← a’s parent

56: function channel-poisoned(activation recorda, channelc)
57: return false ifa is not poisoned
58: for eachchild s that knows aboutc do
59: return true if channel-poisoned(s,c)
60: return true if no child knows aboutc, false otherwise

61: function channel-ready(activation recorda, channelc)
62: return false ifa is poisoned
63: for eachchild s that knows aboutc do
64: return false if not channel-ready(s,c)
65: return false if no child knows aboutc, true otherwise

66: procedure transmit(valuev, activation recorda, channelc)
67: if a has no childrenthen
68: set the value ofc in a to v
69: marka as unblocked
70: schedulea
71: else
72: for eachchild s of a that knows aboutc do
73: transmit(v,s,c)

Figure 10: The runtime algorithms (2/2)

7.1 Data Races

There is a growing literature on data races in concurrent pro-
gramming languages, including work on type systems and
static analysis tools to detect races [17, 19, 9], dynamic
checkers [32, 13, 18], and language constructs and restric-
tions [3, 34].

A race condition occurs when two threads simultaneously
access the same data variable and at least one of the accesses
is a write. SHIM simply prohibits such races. First, concur-
rent accesses to the same data variable must be guarded by
nextinstructions that forces the accesses to be synchronized,
thus deciding the sequence of read and write accesses. Sec-
ond, at most one thread owns each shared variable at a time:
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no thread but the owner thread may write the value of the
variable.

In SHIM, to enable concurrent writes, the owner thread
must implement a deterministic arbiter that gathers tenta-
tive write orders from concurrent threads and determinis-
tically decides what to do. Designing arbiters typically re-
quires some careful, domain-specific thinking, but it can be
done. We presented one such arbiter in Section 4.

In fact, such an arbiter is exactly what is required from,
say, a Java programmer to make his program behave prop-
erly. Hence, the distinction between SHIM and Java is that
in the absence of a deterministic arbiter, the SHIM compil-
ers reject the program, whereas the Java compiler produces
a nondeterministic program.

Many authors argue that the absence of data races does
not imply the absence of concurrency-related bugs [12, 19,
2, 34], and we agree. All these projects share a common
view: the execution of a concurrent program may produce
undesirable behaviors arising from the interleaving of exe-
cution steps in concurrent threads (not necessarily reads and
writes to the same data variable). They draw clever lines be-
tween acceptable and unacceptable interleavings and tackle
the second kind. Importantly, SHIM not only enforces mu-
tual exclusion in concurrent accesses to shared data variables
but in general prohibits all interleaving-dependent behaviors
with the obvious drawback it is more restrictive and the ob-
vious benefit of simplicity.

This does not solve all problems however. For instance,
in an example from Vaziri et al. [34], updates to thezipcode
andcity fields of acustomerobject should be constrained so
that concurrent updates may not end up with an inconsistent
state: the zipcode from update (a), with the city from update
(b). In SHIM, such an atomicity property can be enforced
by making sure the same thread is responsible for updating
these two fields, hence a common arbiter is used. We have
no doubt such higher-level concerns are very relevant to the
“correct” behavior of concurrent programs. Determinism as
such is only a tool that can contribute to correctness. It can-
not decide high-level atomicity constraints assumed by the
programmer, but does make their implementation easier.

7.2 Concurrent Programming Languages

SHIM is hardly the first concurrent language to be pro-
posed [1], but most others use more error-prone communi-
cation mechanisms. For example, the shared-memory-and-
monitors style used in Java and C# first appeared in the mid-
1970s in Brinch Hansen’s concurrent Pascal [10]. Evolving
as they did from the desire for a high-level language for pro-
gramming operating systems, monitors were just designed to
provide a universal synchronization mechanism, not the least
error-prone mechanism. Even Brinch Hansen states “first-
in, first-out queues are indeed more convenient to use [than
monitors]” [11, p. 39].

Hoare’s CSP was one of our inspirations [23], in partic-
ular its choice of rendezvous-style communication, which
has been adopted by such languages as OCCAM [25] and

Ada [24]. Both, however, provide nondeterministic selection
among multiple events, which can create a race.

Our style of determinism was inspired by Kahn’s lit-
tle language [27], which prohibits nondeterministic merges
and therefore provides race-free concurrency. Our original
SHIM language [15] was very closely based on Kahn’s
ideas, albeit with rendezvous-style communication to avoid
the challenges of scheduling Kahn networks in bounded
memory [30].

Aspects of SHIM, in particular its philosophy of deter-
minism, were inspired by the now-large body of work on
synchronous programming languages [4, 5], especially Es-
terel [7] which is imperative. However, the execution model
in SHIM is deliberately asynchronous and designed to han-
dle widely varying execution rates; only communication is
synchronous.

Exceptions in SHIM, while closely matching the prior-
ity rules of concurrent exceptions in Esterel [6], also largely
differ from those due to the absence of a master clock. In
SHIM, exceptions only propagate with communications if
and when they take place, rather than unconditionally at in-
stant boundaries. In particular, in Section 3.4, note that an
exception in SHIM typically kills a FIFO only after it has
emptied, whereas similarly structured code in Esterel would
kill the FIFO “now” discarding all values in transit.

Fair threads [8] also based on synchronous programming
ideas address concerns similar to ours but require the a priori
choice of a scheduling policy, rather than providing behav-
iors independent from it.

To a lesser degree, SHIM was also inspired by the join-
calculus [20], which tries to force data-locality amenableto
efficient implementation into Milner’sπ-calculus [28].

8 Conclusions and Future Work

We have presented SHIM, a practical little language that pro-
vides Kahn-like deterministic concurrency in a traditional
imperative-language setting. In addition to arithmetic ex-
pressions and classical control-flow constructs, we provide
recursive procedure calls, synchronized shared variables,
and exceptions, all in a concurrent setting. We proposed a
core syntax defined the semantics of this little language, and
described an unoptimized implementation of our language
as a translation to C. Our compiler, which is roughly 2000
lines of OCAML, produces functioning code for every ex-
ample we presented in this paper except those with non-
scalar types.

The syntax we propose, while rich enough to express in-
teresting programs, is just a skeleton on which we are build-
ing a complete language. In particular, we shall address the
lack of data structures in SHIM. Because pointers may intro-
duce inter-thread aliasing and the potential for races, this is
not straightforward. We think a mix of user specified anno-
tations and inference is required here, using aliasing analysis
and ownership types [14] as basic building blocks.

Making our language practical will also require a proper
module or package system for encapsulating libraries. By
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nature, however, the design of this aspect of the language is
largely orthogonal to the semantics we have presented here
and we expect a system from another successful language
can be employed with few problems.

From a more theoretical viewpoint, we would like to for-
malize and prove that our language is deterministic, i.e.,
prove a confluence property for our semantics. Our ad-
herence the Kahn principle in the design of our language
strongly suggests this should be true and possible to prove.

Boundedness was a goal of the original SHIM lan-
guage [15] that the language in this paper does not guarantee
since it permits unbounded recursion. While this is very con-
venient for certain software systems, it makes a direct hard-
ware implementation difficult. In order to ensure decidability
of type-checking proof assistants such as Coq [33] require
that functions are provably terminating, total, and determin-
istic. We plan a mechanism for hardware implementation of
SHIM that will involve similar constraints and techniques.

In short, we believe we have a solid, powerful foundation
for expressing concurrent algorithms for both software and
hardware. However, much remains to be done.
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