
Approximate Reachability for Dead Code
Elimination in Esterel?

Olivier Tardieu and Stephen A. Edwards

Department of Computer Science, Columbia University, New York
{tardieu,sedwards}@cs.columbia.edu

Abstract. Esterel is an imperative synchronous programming language
for the design of reactive systems. Esterel? extends Esterel with a non-
instantaneous jump instruction (compatible with concurrency, preemp-
tion, etc.) so as to enable powerful source-to-source program transfor-
mations, amenable to formal verification. In this work, we propose an
approximate reachability algorithm for Esterel? and use its output to
remove dead code. We prove the correctness of our techniques.

1 Introduction

Esterel [1–3] is a synchronous parallel programming language. Its syntax is im-
perative, fit for the design of reactive systems where discrete control aspects
prevail. Sophisticated controllers may be described using sequential and parallel
compositions of behaviors, suspension and preemption mechanisms, conditionals,
loops, and synchronization through instantly broadcast signals. Both software [4,
5] and hardware [6, 7] synthesis are supported.

In this paper, we present an efficient, conservative reachability computation
for Esterel? and use its output to direct a dead code elimination procedure.
Esterel? [8–10] extends the language with a non-instantaneous jump statement
that enables many compilation steps to be performed at the source level, making
them easier to share across back ends.

We apply our dead code elimination procedure to cleaning up the output
of structural transformations in optimizing compilers. Although in theory such
transformations can be carefully engineered to avoid introducing dead code,
doing so is generally very difficult. Instead, creating and proving a dead code
elimination procedure for Esterel? as we do here frees us from this concern, and
is a necessary first step toward a verified optimizing compiler. Previous attempts
at the mathematical proof of an Esterel compiler [11, 12] have been limited to
simple, inefficient compilers.

Because the only known precise reachability algorithms for Esterel or Esterel?

are exponential [13–15], we take a cheap, conservative approach that is, however,
accurate enough to clean up most machine-generated code.

Source-level reachability analysis for Esterel is both challenging and reward-
ing. For example, Esterel’s concurrent exception-handling mechanism demands
any reachability algorithm track the relative priorities of exceptions, but this

is fairly easy to do because the needed information is explicit in the program
source. The addition of the unstructured jump instruction to Esterel? further
complicates an already complex issue.

Surprisingly, not every piece of code in an Esterel program that is never
executed can be removed. In fact, the execution of an Esterel program relies
on some preliminary probing, called causality analysis. As a result, a piece of
code is truly irrelevant if and only if it is not only never executed but also never
probed. Because of this distinction, previous work on dead code elimination for
concurrent but not synchronous languages is largely irrelevant for Esterel.

Several such causality analyses have been proposed for Esterel by means of
various formal semantics. For instance, in the so-called logical causality of the log-
ical semantics [16], “present S then nothing end” and “nothing” are equiv-
alent (strongly bisimilar). But, in the causality analysis of the constructive se-
mantics [3], they are not, as the test may lead to a deadlock. However, with
a maximal causality analysis [17], they would again be equivalent. In general,
removing apparently useless code may turn a correct program w.r.t. the logical
semantics into an incorrect one (cf. Section 2.3), or an incorrect program w.r.t.
the constructive semantics into a correct one (by removing deadlock conditions).

Here, we take a conservative approach and build our analyses from an ab-
stract semantics for Esterel? that safely approximates the logical, constructive,
and deterministic semantics [18] of the language by simply ignoring signals. The
correctness proofs for the dead code elimination, which we obtain for a particular
choice of concrete semantics—a logical semantics—can be easily adapted to the
other semantics. This also makes the analysis very efficient.

In Section 2, we describe the Esterel? language and its concrete and abstract
semantics. In Section 3 we start with single-step reachability, which answers
whether state s can be reached starting from state s0 in one step of execution of
the program p, and then apply a fixed-point iteration to answer whether state
s can ever be reached during the execution of p (thus going beyond a purely
structural analysis). Finally, in Section 4, we show how to match reachable states
to the source code in order to eliminate dead code. We conclude in Section 5.

2 Esterel?

We consider Berry’s kernel Esterel language [3] extended with the gotopause
instruction of Tardieu [8]. We describe its syntax and main semantic features in
Section 2.1 and provide a formal semantics for it in Section 2.2, from which we
derive an abstract semantics in Section 2.3 that we use for reachability analysis.

2.1 Syntax and Intuitive Semantics

Fig. 1 is the grammar of our language. Non-terminals p and q denote programs,
S signal names, ` positive integer labels, and d positive integer exit levels.

We denote Lp the set of labels of the pause instructions in p. Our defini-
tions of the “present,” “;,” and “||” constructs insist these labels are pairwise
distinct. In contrast, labels in gotopause instructions are unconstrained.

p, q ::= nothing Do nothing; terminate instantly
`:pause Suspend the execution for one instant
gotopause ` Instantly branch to “`:pause”, which

suspends the execution for one instant
signal S in p end Declare signal S in p and execute p
emit S Emit signal S and terminate instantly
present S then p else q end Execute p if S is present; q otherwise
p ; q Execute p followed by q if/when p terminates
p || q Execute p in parallel with q
loop p end Repeat p forever
try p end Execute p, catching exits in p
exit d Exit d enclosing “try . . . end” blocks

Fig. 1. Syntax of Esterel?. In statements where both p and q appear, they must contain
unique pause labels, i.e., Lp ∩ Lq = ∅.

The infix “;” operator binds tighter than “||”. Brackets ([and]) may be
used to group statements in arbitrary ways. In a present statement, then or
else branches may be omitted. For example, “present S then p end” is short-
hand for “present S then p else nothing end”. Similarly, we may omit the
label “`:” of the instruction “`:pause” in a program if there is no matching
“gotopause `” in this program.

Instants and reactions. An Esterel? program runs in steps called reactions in
response to the ticks of a global clock. Each reaction takes one instant. Prim-
itive constructs execute in the same instant except the pause and gotopause
instructions. When the clock ticks, a reaction occurs, which computes the output
signals and the new state of the program from the input signals and the current
state of the program. It may either finish the execution instantly or delay part
of it until the next instant because it reached at least one pause or gotopause
instruction. In this case, the execution is resumed in the next tick of the clock
from the locations of the pause instructions reached in the previous instant.

The program “emit A ; pause ; emit B ; emit C ; pause ; emit D”
emits signal A in the first instant of its execution, then emits B and C in the second
instant, finally emits D and terminates in the third instant. It takes three instants
to complete, i.e., proceeds by three reactions. To the environment, signals B and
C appear simultaneously since their emissions occur in the same instant.

Synchronous concurrency and preemption. One reaction of the parallel compo-
sition “p || q” is made of exactly one reaction of each non-terminated branch,
until all branches terminate.

In sequential code, the “exit d” instruction jumps to the end of d enclosing
“try . . . end” blocks. When “exit d” executes in a group of parallel branches,
it also terminates all the other branches. In Fig. 2a, A and D are emitted in the
first instant, then B, E, and G in the second and final one. Neither C nor F is
emitted. However, “exit 1” in the first branch does not prevent E from being
emitted in the second one. This is weak preemption.

try

emit A ; pause ; emit B ; exit 1 ; emit C

||

emit D ; pause ; emit E ; pause ; emit F

end ;

emit G

try

try

try

exit 1 || exit 2

end ; emit A

end ; emit B

end
(a) (b)

Fig. 2. Concurrency and Preemption: Two Examples

When groups of statements running in parallel execute multiple exit in-
structions, priority is given to the branch with the highest exit level, i.e., the
exit level of a group of parallel branches is the maximum executed level. Thus,
the program in Fig. 2b only emits B.

Loops. The program “loop emit S ; pause end” emits S in each instant and
never terminates. Combining loop, try, and exit constructs can produce loops
that terminate after a finite number of iterations. Loop bodies may not be in-
stantaneous [19]. For instance, “loop emit S end” is illegal since it suggests an
unbounded amount of work in a reaction.

Signals. The instruction “signal S in p end” declares the local signal S in p.
The free signals of a program are said to be interface signals for this program.

In an instant, a signal S is emitted if and only if one or more “emit S”
statements are executed that instant. The status of S is either present or absent.
A local signal is present iff it is emitted. An interface signal is present iff it is
emitted or provided by the environment. If S is present in an instant then all
“present S then p else q end” statements executed in this instant execute their
then branches in that instant, otherwise they all execute their else branches.

The presence of a signal is therefore not persistent. For example, in program
“signal S in emit S ; pause ; present S then emit O end end,” signal
S is emitted and thus present in the first instant of execution only, therefore O
is not emitted by this statement, as S is absent at the time of the test.

Interface signals can interact with local signals. For example, in
signal S in
present S then emit O end || present I then emit S end

end,
signal I is present iff it is provided by the environment. Signal S is emitted, thus
present, iff I is present. Signal O is emitted iff S is present. As a result, O is
present iff I or O is provided by the environment. Only I and O may be observed
by the environment as S cannot escape its scope of definition.

The instantaneous broadcast and instantaneous feedback implied by the sig-
nal coherence law, i.e., a local signal is present iff emitted, raise correctness issues.
Broadly, there are three issues, as illustrated by the following examples:

1. In “signal S in present S then emit S end end,” S could be absent or
present. Such non-deterministic programs are illegal.

2. In “signal S in present S else emit S end end,” S can neither be ab-
sent nor present. This program is illegal because it is non-reactive: it has no
possible behavior.

3. Finally, signals can be self-reinforcing. Signal S can only be present in the pro-
gram “signal S in present S then emit S else emit S end end” for
instance. This program is said to be logically correct, being both reactive and
deterministic. However, it is not causal (for the constructive causality of the
constructive semantics), since the status of S has to be guessed before being
confirmed. In summary, this program is legal w.r.t. a logical semantics, but
not w.r.t. the constructive semantics.

Strengthening the signal coherence law to precisely define the semantics of
such intricate examples is the central concern in choosing a causality analysis for
Esterel. In this work, as mentioned before, we do not want to commit ourselves
to a particular set of choices. As a result, we shall not only formalize a concrete
semantics for the language (making such choices), but also an abstract semantics
that conservatively approximates many possible concrete semantics.

Jumps. The gotopause instruction permits jumps in Esterel. The execution of
the code following the target pause starts exactly one instant after the code
preceding the gotopause instruction terminates. It makes it possible to specify
state machines in a natural way and allows loops to be expressed differently. For
instance, “1:pause ; emit S ; gotopause 1” emits S in each instant of execu-
tion starting from the second one. In fact, “loop emit S ; pause end” can be
expanded into “try exit 1 ; 1:pause end ; emit S ; gotopause 1” using
the pattern “try exit 1 ; . . . end” to avoid a startup delay.

Just as “exit d” in “exit d || pause” has priority over the pause instruc-
tion, it preempts the jump in “exit d || gotopause `”.

We make no assumptions about the label in a gotopause instruction. A
“gotopause `” instruction may have no target if the program contains no corre-
sponding “`:pause” instruction. In such a case, the completion of the execution
is delayed by one instant, but nothing takes place in its last instant. For example,
the execution of “gotopause 1; emit S” takes two instants; S is not emitted
in the second instant of execution.

Concurrent gotopause instructions may target arbitrary pause locations.
In “[gotopause 1 || gotopause 2] ; [1:pause ; . . . || 2:pause ; . . .]”
for instance, this is fine: in the second instant, the execution is resumed from
the locations of the two pause instructions in parallel. In contrast, in the pro-
gram “[gotopause 1 || gotopause 2] ; 1:pause ; . . . ; 2:pause ; . . . ,”
resuming the execution from two locations in a sequence does not make sense.
We say that this last program is not well formed, which we formalized earlier [10].

In this paper however, we have no need for such a correctness criterion. We
decide that, in the last example and in similar cases, the execution will non-
deterministically restart from either pause location. Importantly, giving such a
peculiar semantics to non-well-formed programs (which are illegal anyway) does
not make the analysis of well-formed program more costly or less precise, but
simplifies the formalism.

nothing
∅, 0−−→
E

∅ (nothing)

`:pause
∅, 1−−→
E

{l} (pause)

S ∈ E

emit S
{S}, 0−−−−→

E
∅ (emit)

` ∈ L0

`:pause/L0
∅, 0−−→
E

∅ (resume)

gotopause `
∅, 1−−→
E

{l} (goto)

exit d
∅, d+1−−−−→

E
∅ (exit)

p\X O, k−−−→
E

L

try p end\X O, ↓k−−−→
E

L
(try)

p\X O, k−−−→
E

L k 6= 0

loop p end\X O, k−−−→
E

L
(no-loop)

p\X O, 0−−−→
E

∅ q
O′, k−−−−→

E
L

p ; q\X O∪O′, k−−−−−−→
E

L
(seq)

p\X O, k−−−→
E

L k 6= 0

p ; q\X O, k−−−→
E

L
(seq-left)

q/L0
O, k−−−→

E
L

p ; q/L0
O, k−−−→

E
L

(seq-right)

p\X O, k−−−−−→
E∪{S}

L S ∈ O

signal S in p end\X O\{S}, k−−−−−−→
E

L
(signal+)

p\X O, k−−−−−→
E\{S}

L

signal S in p end\X O, k−−−→
E

L
(signal−)

S ∈ E p
O, k−−−→

E
L

present S then p else q end
O, k−−−→

E
L

(present)

S /∈ E q
O, k−−−→

E
L

present S then p else q end
O, k−−−→

E
L

(absent)

p/L0
O, k−−−→

E
L

present S then p else q end/L0
O, k−−−→

E
L

(present-left)

q/L0
O, k−−−→

E
L

present S then p else q end/L0
O, k−−−→

E
L

(present-right)

p/L0
O, 0−−−→

E
∅ p

O′, k−−−−→
E

L k 6= 0

loop p end/L0
O∪O′, k−−−−−−→

E
L

(loop)

p/L0
O, k−−−→

E
L L0 ∩ Lq = ∅

p || q/L0
O, k−−−→

E
L

(par-left)

q/L0
O, k−−−→

E
L L0 ∩ Lp = ∅

p || q/L0
O, k−−−→

E
L

(par-right)

p\X O, k−−−→
E

L q\X O′, l−−−→
E

L′ m = max(k, l)

p || q\X O∪O′, m−−−−−−→
E

(
L ∪ L′ if m = 1

∅ if m 6= 1

(par)

Fig. 3. Logical State Semantics

2.2 Logical State Semantics

In Fig. 3, we specify the logical state semantics of Esterel? as a set of facts and
deduction rules in a structural operational style [20]. Reactions of a program p
are expressed via two kinds of labeled transitions:

p
O, k−−→
E

L for the first instant of execution

p/L0
O, k−−→
E

L for subsequent instants of execution, L0 being the set of
pause locations (labels) the execution is resumed from.

corresponding to two classes of program states [7]: a unique initial state, simply
written p; and many intermediate states, written p/L0 for L0 ⊆ IN. We denote
Sp the set of all states of p and p\X a state of p of either class.

The set O lists the interface signals emitted by the reaction. The set E
lists the interface signals assumed present at the time of the reaction. The set
L ⊆ L(p) lists the labels of the pause and gotopause instructions reached by
the reaction. The completion code k ∈ IN encodes the status of the execution:

– k = 0 if the execution completes normally. L is empty.
– k = 1 if the reaction does not complete the execution of p. L is not empty.
– k = 2, 3, . . . if the execution terminates because of an exit instruction and

k − 1 enclosing “try . . . end” blocks must be exited. L is empty.

Technically, it is easier not to require L0 in p/L0 to be a subset of L(p).
Nevertheless, we can identify the states p/L0 and p/L1 if L0 ∩ Lp = L1 ∩ Lp,
thus only consider 2|Lp| intermediate states for the program p, thanks to:

Lemma 1. p/L0
O, k−−→
E

L iff p/(L0 ∩ Lp)
O, k−−→
E

L.

Proof. This and the following lemmas are established by induction on the struc-
ture of a program, or the structure of a proof tree of a reaction. For lack of space,
we shall not include the proofs in the paper.

Rule (exit) defines the completion code of “exit d” as d + 1. In rule (try), if
k is the completion code of p, then the completion code of “try p end” is:

↓k =

0 if k = 0 or k = 2 (normal termination or caught exception)
1 if k = 1 (non-terminated execution)
k − 1 if k > 2 (uncaught exception)

Rule (no-loop) applies when the control does not reach the end of the loop;
otherwise rule (loop) does.

Rule (par) applies when a parallel statement is first reached—its execution
starts—or restarted from both branches. Rules (par-left) and (par-right) apply
when the parallel statement is resumed from one branch only, that is to say when
the execution of the other branch has already completed.

As announced, if a state points to several locations in a sequence, the execu-
tion is non-deterministically resumed from one of them. For instance, respectively
by rule (seq) and rule (seq-right),

1:pause ; 2:pause/{1, 2} ∅, 1−−→
∅

{2} and 1:pause ; 2:pause/{1, 2} ∅, 0−−→
∅

∅.
Rule (present) applies when a “present S” statement is reached with S

present. Rule (absent) applies instead if S is absent. Rules (present-left) and
(present-right) specify how the execution of the present statement is resumed
(non-deterministically from either branch if both L0 ∩Lp 6= ∅ and L0 ∩Lq 6= ∅).

Rules (emit), (signal+), and (signal−) enforce the signal coherence law. We
shall not discuss it further as we now abstract signals in this formal semantics.

2.3 Abstract Semantics

In “signal S in present S then emit S else emit S end end,” S must be
present. Therefore, “else emit S” is never executed. However, removing the
else branch changes the behavior of the program, since S may be both absent
and present in “signal S in present S then emit S end end”. Because of
signals, never executed code is not necessarily dead. Therefore, we choose to

nothing
0−→ ∅ (nothing)

emit S
0−→ ∅ (emit)

`:pause
1−→ {l} (pause)

` ∈ L0

`:pause/L0
0−→ ∅

(resume)

gotopause `
1−→ {l} (goto)

exit d
d+1−−→ ∅ (exit)

p\X k−→ L

try p end\X ↓k−→ L
(try)

p\X 0−→ ∅ q
k−→ L

p ; q\X k−→ L
(seq)

p\X k−→ L k 6= 0

p ; q\X k−→ L
(seq-left)

q/L0
k−→ L

p ; q/L0
k−→ L

(seq-right)

p\X k−→ L

signal S in p end\X k−→ L
(signal)

p\X k−→ L

present S then p else q end\X k−→ L
(then)

q\X k−→ L

present S then p else q end\X k−→ L
(else)

p/L0
0−→ ∅ p

k−→ L k 6= 0

loop p end/L0
k−→ L

(loop)

p\X k−→ L k 6= 0

loop p end\X k−→ L
(no-loop)

p\X k−→ L q\X l−→ L′ m = max(k, l)

p || q\X m−→
(

L ∪ L′ if m = 1

∅ if m 6= 1

(par)

p/L0
k−→ L L0 ∩ Lq = ∅

p || q/L0
k−→ L

(par-left)

q/L0
k−→ L L0 ∩ Lp = ∅

p || q/L0
k−→ L

(par-right)

Fig. 4. Abstract Semantics

first abstract signals in the concrete semantics, then define dead code w.r.t. the
resulting abstract semantics.

The abstract semantics is easily derived from the logical state semantics by
making abstraction of signals. Its rules are gathered in Fig. 4. Rules (present) and
(present-left) are merged into a unique (then) rule, (absent) and (present-right)
into (else), and (signal+) and (signal−) into (signal).

It safely approximates the concrete semantics, i.e., preserves its reactions:

Lemma 2. If p\X O, k−−→
E

L then p\X k−→ L.

Importantly, the abstract semantics also safely approximates other semantics
such as the constructive semantics of Berry [3], dedicated to hardware synthesis.

3 Reachability Analysis

We say that a state p/L is reachable in the execution of p iff it may result of
a chain of reactions starting from p. Exact reachability analysis is in general
intractable, even w.r.t. the abstract semantics, as the number of states of a
program may be exponential in its size. As a result, we choose to approximate
the reachable states by means of reachable labels.

In “present S then 1:pause else 2:pause || 3:pause end” for exam-
ple, we shall aim at computing the set of reachable labels R = {1, 2, 3} rather
than the more precise set of reachable states S = {p/{1}, p/{2, 3}, p/∅}. Of
course, we want R to contain all the labels in S, i.e.,

⊔
S =

⋃
p/Li∈S{Li}, while

s(nothing) = {0} s(emit S) = {0}
s(gotopause `) = {1`} s(`:pause) = {1`}

s(signal S in p end) = s(p) s(try p end) = ↓s(p)
s(present S then p else q end) = s(p) ∪ s(q) s(exit d) = {d+1}

s(loop p end) = s(p) \ {0} s(p || q) = max(s(p), s(q))

s(p ; q) =

(
s(p) if 0 /∈ s(p)

(s(p) \ {0}) ∪ s(q) if 0 ∈ s(p)

Fig. 5. Instantaneous Reachability from the Initial State

being as small as possible. In other words, we shall only consider sets of states
of the form {p/L}L⊆R for R ⊆ IN.

While this choice leads to a less precise reachability analysis, it especially
makes sense in the context of dead code elimination. In any case, the input of
the dead code elimination algorithm (cf. Section 4) will be the list of alive pause
instructions, that is to say R rather than S.

In Section 3.1, we first consider instantaneous reachability, i.e., reachability
through a single reaction. We conclude for chains of reactions in Section 3.2.

3.1 Instantaneous Reachability

By definition,

– the intermediate state p/L is instantly reachable from p\X iff ∃k : p\X k→ L;
– the label ` is instantly reachable from p\X iff ∃k,∃L : p\X k−→ L ∧ ` ∈ L.

We write p\X ⇒ p/L in the first case, p\X ⇒ ` in the second. Importantly,

Lemma 3. If p/L0 ⇒ ` then ∃`0 ∈ L0 : p/{`0} ⇒ `.

Lemma 4. If L0 ⊆ R and p/L0 ⇒ p/L then L ⊆
⋃

`0∈R {` ∈ Lp : p/{`0} ⇒ `}.
Therefore, it makes sense to approximate a family S = (p/Li)i∈I of intermediate
states by the set of labels that appear in these states R =

⊔
S =

⋃
i∈I{Li}:

–
⊔
{p/L ∈ Sp : p ⇒ p/L} = {` ∈ Lp : p ⇒ `}

–
⊔ (⋃

p/L0∈S {p/L ∈ Sp : p/L0 ⇒ p/L}
)
⊆

⋃
`0∈
F

S {` ∈ Lp : p/{`0} ⇒ `}

The set of labels instantly reachable from a family S of intermediate states
can be safely approximated by the set of labels instantly reachable from the
family of states S′ = (p/{`0})`0∈

F
S , with the following trade-off:

– Because we replace the family S with up to 2|L(p)| states, by the family S′

of at most |L(p)| states, the cost of the computation improves exponentially.
– Loss of precision may occur if S 6= S′. For instance, if p is the program

“try 1:pause ; exit 1 || 2:pause ; 3:pause end,” then the only in-
stantly reachable state is p/{1, 2}. Because we approximate this state with
the set of states {p/∅, p/{1}, p/{2}, p/{1, 2}}, we end up computing that la-
bel 3 may be reachable in the execution of p (being instantly reachable from
p/{2}), although it cannot be reached from p/{1, 2}.

dR(nothing) = ∅ dR(emit S) = ∅
dR(gotopause `)

dR(exit d)

=

=

∅
∅

dR(`:pause) =

(
∅ if ` /∈ R

{0} if ` ∈ R

dR(signal S in p end) = dR(p) dR(try p end) = ↓dR(p)
dR(present S then p else q end) = dR(p) ∪ dR(q) dR(p || q) = dR(p) ∪ dR(q)

dR(loop p end) =

(
dR(p) if 0 /∈ dR(p)

(dR(p) ∪ s(p)) \ {0} if 0 ∈ dR(p)

dR(p ; q) =

(
dR(p) ∪ dR(q) if 0 /∈ dR(p)

(dR(p) \ {0}) ∪ s(q) ∪ dR(q) if 0 ∈ dR(p)

Fig. 6. Instantaneous Reachability from Intermediate States

Qualified completion codes. Denoting by “1`” a completion code 1 due to a
pause or gotopause of label `, we obtain the set of qualified completion codes
K = {0, 10, 11, . . . , 2, 3, . . . }. Formally, K is (IN \ {1})∪

⋃
`∈IN{1`}. Thanks to K,

we shall compute feasible completion codes and reachable labels simultaneously.
To recover regular completion codes from qualified completion codes, we

define the projection k 7→ k̂ from K to IN so that ∀k ∈ IN \ {1} : k̂ = k and
∀` ∈ IN : 1̂` = 1.

We equip K with the preorder “≤” such that k ≤ l in K iff k̂ ≤ l̂ in IN. If
K, K ′ ⊆ K then max(K, K ′) is {k ∈ K : ∃k′ ∈ K ′, k′ ≤ k} ∪ {k′ ∈ K ′ : ∃k ∈
K, k ≤ k′}. For instance, max({0, 14, 4, 6}, {11, 13, 3, 4}) = {11, 13, 14, 3, 4, 6}.

Finally, for ` ∈ IN, we define ↓1` = 1`.
We now compute the labels instantly reachable from p, then the labels in-

stantly reachable from the set of states {p/L}L⊆R given the set of labels R ⊆ IN.

Initial state. Previously [19], we formalized a static analysis that computes the
possible completion codes of reactions of the program p for a similar abstract
semantics. We now extend this analysis so as to deal with gotopause instructions
and obtain the labels instantly reachable from p at the same time.

Let E be the set of all Esterel? programs and P(K) be the powerset of K.
In Fig. 5, we specify the analysis function s : E → P(K) that overapproximates
the set of qualified completion codes reachable from the initial state. It is easily
derived from the rules of the abstract semantics for initial states. For instance,
s(present S then exit 7 end || 3:pause || gotopause 4) = {13, 14, 8}.

Lemma 5. ∃L ⊆ Lp : p
k−→ L iff k̂ ∈ s(p). Moreover, p ⇒ ` iff 1` ∈ s(p).

Hence, the set of labels instantly reachable from p is:

Lemma 6.
⊔
{p/L ∈ Sp : p ⇒ p/L} = {` ∈ Lp : 1` ∈ s(p)}.

Intermediate states. For R ⊆ IN, we define dR : E → P(K) in Fig. 6 by now
considering the rules applicable to intermediate states. Intuitively, dR(p) is meant
to be the set of possible qualified completion codes of reactions of p/{`0} for
`0 ∈ R. If p is “1:pause ; 2:pause || 3:pause ; 4:pause ; exit 6” for
instance, then d{1}(p) = {12}, d{3,4}(p) = {14, 7}, d{1,2,3,4}(p) = {0, 12, 14, 7}.

Lemma 7. ∃L ⊆ Lp : p/{`0}
k−→ L iff k̂ ∈ d{`0}(p). Moreover, p/{`0} ⇒ ` iff

1` ∈ d{`0}(p).

Lemma 8. For all R, R′, p : dR∪R′(p) = dR(p) ∪ dR′(p).

Hence, the set of labels instantly reachable from the states {p/L0}L0⊆R is:

Lemma 9.
⊔ (⋃

L0⊆R {p/L ∈ Sp : p/L0 ⇒ p/L}
)

= {` ∈ Lp : 1` ∈ dR(p)}.

In Lemmas 6 and 9, we obtain equalities. Thus, this reachability analysis is
exact w.r.t. the abstract semantics and for set of states of the form {p/L}L⊆R.

3.2 Fixed Point

We define ∆p : L0 7→ {` ∈ Lp : 1` ∈ s(p) ∪ dL0(p)}. This function is monotonic
over the complete lattice P(Lp), therefore [21] it has a least fixed point Rp. We
already know that if p ⇒ L then L ⊆ ∆p(∅) and if p/L0 ⇒ L then L ⊆ ∆p(L0).
Therefore, Rp overapproximates the labels reachable in the execution of p, thus
the reachable states.

Theorem 1. If p ⇒ L0, p/L0 ⇒ L1, ..., p/Ln−1 ⇒ Ln then Ln ⊆ Rp.

4 Dead Code Elimination

Checking program equivalence at the abstract level does not make sense since, for
instance, “nothing” and “emit S” behave the same in the abstract semantics.
For R ⊆ IN, we say that the programs p and q are:

– initially equivalent iff ∀E,O, k, L : p
O, k−−→
E

L ⇔ q
O, k−−→
E

L, and

– R-equivalent iff ∀L0 ⊆ R,∀E,O, k, L : p/L0
O, k−−→
E

L ⇔ q/L0
O, k−−→
E

L.

As with the definition of instantaneous reachability, these definitions give
us the ability to derive program equivalence (a property of executions) from
instantaneous equivalence properties (properties of reactions).

Lemma 10. If p and q are initially equivalent and Rp-equivalent then they are
strongly bisimilar, that is to say behave the same in all contexts [22].

Defining dead (unreachable) code can be managed at the abstract level. In the
previous section, we defined instantly reachable labels, i.e., instantly reachable
pause instructions. In fact, thanks to the structural definitions of s and dR, we
can extend the idea of instantaneous reachability to blocks of code:

– q in p is not instantly reachable, iff the computation of s(p) does not involve
the computation of s(q).

– q in p is not R-reachable, iff dR(q) is empty and the computation of dR(p)
does not involve the computation of s(q).

Intuitively, q is not instantly reachable in p iff it is in sequence after a block
of code r that cannot terminate instantly, that is to say 0 /∈ s(r). Moreover, q is
not R-reachable in p iff q does not contain any pause instruction with a label in
R and q is not in sequence after a block of code that can terminate instantly if
restarted from some pause instruction with a label in R.

In the sequel, we shall simplify programs so as to eliminate unreachable
code while preserving program equivalence. Although our equivalence proofs
depend on the semantics for which we define program equivalence, since our
transformations only involve unreachable code, which we define at the abstract
level, we claim that similar equivalence results hold for other concrete semantics,
provided they share the same abstraction.

Simplifying “try p || exit 1 ; q end” so as to preserve initial equiva-
lence and R-equivalence for some set R requires to simplify p in the same way.
Importantly, in Esterel?, q cannot be simply discarded because it can be reached
through gotopause instructions. However, because of “exit 1,” preserving R-
equivalence for q is good enough. In other words, if p is “emit S ; . . . ” then
“emit S” must be preserved. But, if q is, then “emit S” can be discarded.

To start with, we define the functions {sdR}R⊆IN that gather the possible
completion codes of the behaviors of the program p we want to reproduce:

sdR : IB×E → K
(0, p) 7→ dR(p)
(1, p) 7→ dR(p) ∪ s(p)

The Boolean b is 0 if only the behaviors of intermediates states (with labels
in R) are relevant; b is 1 if, in addition, the initial behaviors of p are relevant.

In Fig. 7, we formalize code elimination as a family of R-equivalence-preser-
ving functions {rR : IB × E → E}R⊆IN, which also preserve initial equivalence,
if called with a Boolean parameter equal to 1. These functions are designed to
delete as much code as possible while preserving the required equivalences.

As with the definition of dR before, the structural definition of rR makes
sure that rR is recursively applied to each block of the initial program, since
any statement, whatever its position, can potentially be reached through jumps
in Esterel?. However, not all statements can be reached “from the left,” that is
to say are in sequence after a statement that may terminate. The value of the
Boolean parameter b in recursive calls is computed accordingly.

The simplifications implemented by rR are the following:

– All emit, exit, and gotopause instructions are preserved iff left-reachable.
– A pause instruction is preserved if its label is in R or if it is left-reachable.
– The “try . . . end” construct in “try p end” is preserved if the correspond-

ing exception may occur. If removed, exception levels have to be adjusted
accordingly: ↘p is obtained by decrementing all exit levels in p greater than
the number of enclosing “try . . . end” constructs in p, while replacing all
exit instructions targeting the removed construct by nothing. For instance,
rR(1, try exit 1 || exit 2 end) = rR(1, nothing || exit 1).

rR(b, nothing) = nothing

rR(b, emit S) =

(
nothing if b = 0

emit S if b = 1

rR(b, `:pause) =

(
nothing if (` /∈ R) ∧ (b = 0)

`:pause if (` ∈ R) ∨ (b = 1)

rR(b, gotopause `) =

(
nothing if b = 0

gotopause ` if b = 1

rR(b, exit d) =

(
nothing if b = 0

exit d if b = 1

rR(b, try p end) =

(
rR(b,↘p) if 2 /∈ sdR(b, p)

try rR(b, p) end if 2 ∈ sdR(b, p)

rR(b, p ; q) =

(
rR(b, p) ; rR(0, q) if 0 /∈ sdR(b, p)

rR(b, p) ; rR(1, q) if 0 ∈ sdR(b, p)

rR(b, signal S in p end) =

(
rR(b, p) if S does not occur in rR(b, p)

signal S in rR(b, p) end if S occurs in rR(b, p)

rR(b, present S then p
else q end)

=

(
rR(0, p ; try exit 1 ; ↗q end) if b = 0

present S then rR(1, p) else rR(1, q) end if b = 1

rR(b, loop p end) =

(
rR(b, p) if 0 /∈ sdR(b, p)

loop rR(1, p) end if 0 ∈ sdR(b, p)

rR(b, p || q) = rR(b, p) || rR(b, q)

Fig. 7. Dead Code Elimination

– Depending on the possible termination of p in “p ; q,” q is rewritten so
as to preserve initial equivalence or not. Moreover, if p or q end up being
nothing after simplification, it can be discarded as well as the “;” operator.
We define: p; nothing = p, nothing; q = q, p; q = p; q otherwise.

– Signal declarations are deleted if possible.
– A left-reachable “present S then p else q end” test is recursively simplified.

A non-left-reachable test is first replaced by “p ; try exit 1 ; ↗q end” to
remove the test itself while preserving the branches, then simplified. Excep-
tion levels in q have to be adjusted:↗q is obtained by incrementing exit levels
greater than the number of enclosing “try . . . end” constructs in q. For exam-
ple, rR(0, present S then 1:pause ; emit O else 2:pause ; exit 3 end) is
equal to rR(0, 1:pause ; emit O; try exit 1; 2:pause ; exit 4 end).

– A loop construct is deleted if its body never terminates. If it may terminate
then initial equivalence must be preserved for the body, whatever b.

– The branches of a parallel are recursively rewritten. The parallel itself may
be deleted if a branch reduces to nothing, hence the || operator.

We establish initial equivalence and R-equivalence by structural induction:

Lemma 11. Whatever R, p
O, k−−→
E

L ⇔ rR(1, p)
O, k−−→
E

L.

Lemma 12. Whatever b, if L0 ⊆ R then p/L0
O, k−−→
E

L ⇔ rR(b, p)/L0
O, k−−→
E

L.

loop

try

present I then

1:pause;

exit 1

end;

2:pause;

emit O

end

end

loop
expansion

=⇒

try

exit 1;

try

present I then

1:pause ; exit 1

end;

2:pause ; emit O

end

end;

try

present I then

gotopause 1 ; exit 1

end;

gotopause 2 ; emit O

end

dead code
elimination

=⇒

try

exit 1;

try

1:pause;

exit 1;

2:pause;

emit O

end

end;

present I then

gotopause 1

end;

gotopause 2

Fig. 8. Example

Theorem 2. p and rRp
(1, p) behave the same (are strongly bisimilar).

This dead code elimination procedure is far from complete because of the
approximations involved, yet it is already powerful, in particular w.r.t. machine-
generated code. For instance, applying it after loop expansion [8] produces com-
pact code, as illustrated in Fig. 8. While the expansion makes two copies of the
loop body, the final code only contains one copy of “present I” and “emit O”.

loop p end

loop
expansion

=⇒ try exit 1 ; ↗ p end ; p[`:pause 7→ gotopause `]

5 Conclusions

We have specified a static reachability analysis and an algorithm for dead code
elimination in Esterel? programs. While we designed the reachability analysis
with dead code elimination in mind, it can be used independently.

By abstracting signals from the analysis, we ensure it is applicable for many
different semantics of the language. In addition, it makes it possible to safely
dismantle states into their elementary components (locations of pause instruc-
tions), thus dramatically cutting the cost of the required fixed-point computa-
tion. Our analysis is exact and optimal with respect to this approximation.

In fact, apart from a single fixed-point computation, both the analysis and
the transformation are obtained from structural traversals of the program source,
resulting in simple correctness proofs.

We would like to extend this work in two directions. First, adopting either
the logical or the constructive semantics of Esterel?, we shall consider synchro-
nizations through signals, in addition to synchronizations through exceptions
that we already take into account. Second, we plan to formalize and check our
correctness proofs using a theorem prover, paving the way for embedding this
work in a certified compiler for Esterel?.

References

1. Berry, G., Gonthier, G.: The Esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming 19 (1992) 87–152

2. Boussinot, F., de Simone, R.: The Esterel language. Another Look at Real Time
Programming, Proceedings of the IEEE, Special Issue 79 (1991) 1293–1304

3. Berry, G.: The constructive semantics of pure Esterel, draft version 3. http://www-
sop.inria.fr/esterel.org/ (1999)

4. Closse, E., Poize, M., Pulou, J., Vernier, P., Weil, D.: Saxo-rt: Interpreting Esterel
semantic on a sequential execution structure. In: SLAP’02. Volume 65 of Electronic
Notes in Theoretical Computer Science., Elsevier (2002)

5. Edwards, S.A., Kapadia, V., Halas, M.: Compiling Esterel into static discrete-event
code. In: SLAP’04. Electronic Notes in Theoretical Computer Science, Elsevier
(2004)

6. Berry, G.: Esterel on hardware. Philosophical Transactions of the Royal Society
of London, Series A 19(2) (1992) 87–152

7. Mignard, F.: Compilation du langage Esterel en systèmes d’équations booléennes.
PhD thesis, Ecole des Mines de Paris (1994)

8. Tardieu, O.: Goto and concurrency: Introducing safe jumps in Esterel. In: SLAP’04.
Electronic Notes in Theoretical Computer Science, Elsevier (2004)

9. Tardieu, O., de Simone, R.: Curing schizophrenia by program rewriting in Esterel.
In: MEMOCODE’04. (2004)

10. Tardieu, O.: Loops in Esterel: from operational semantics to formally specified
compilers. PhD thesis, Ecole des Mines de Paris (2004)

11. Schneider, K.: A verified hardware synthesis of Esterel programs. In: DIPES’00.
(2001) 205–214

12. Schneider, K., Brandt, J., Schüele, T.: A verified compiler for synchronous pro-
grams with local declarations. In: SLAP’04. Electronic Notes in Theoretical Com-
puter Science, Elsevier (2004)

13. Malik, S.: Analysis of cyclic combinational circuits. In: ICCAD’93. (1993) 618–625
14. Shiple, T., Berry, G., Touati, H.: Constructive analysis of cyclic circuits. In: Proc.

International Design and Testing Conf (ITDC), Paris. (1996)
15. Namjoshi, K.S., Kurshan, R.P.: Efficient analysis of cyclic definitions. In: CAV’99.

(1999) 394–405
16. Berry, G.: The semantics of pure Esterel. In Broy, M., ed.: Program Design Calculi.

Volume 118 of Series F: Computer and System Sciences., NATO ASI Series (1993)
361–409

17. Schneider, K., Brandt, J., Schüele, T., Tuerk, T.: Maximal causality analysis. In:
ACSD’05. (2005)

18. Tardieu, O.: A deterministic logical semantics for Esterel. In: SOS Workshop’04.
Electronic Notes in Theoretical Computer Science, Elsevier (2004)

19. Tardieu, O., de Simone, R.: Instantaneous termination in pure Esterel. In: SAS’03.
Volume 2694 of Lecture Notes in Computer Science., Springer (2003) 91–108

20. Plotkin, G.: A structural approach to operational semantics. Report DAIMI FN-
19, Aarhus University, Denmark (1981)

21. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics 5 (1955) 285–309

22. Park, D.: Concurrency and automata on infinite sequences. In: 5th GI Conference.
Volume 104 of Lecture Notes in Computer Science., Springer (1981)

